The paper presents a fully integrated ultra-wide band(UWB)low noise amplifier(LNA)for 3-10 GHz applications.It employs self-biased resistive-feedback and current-reused technique to achieve wide input matching and low...The paper presents a fully integrated ultra-wide band(UWB)low noise amplifier(LNA)for 3-10 GHz applications.It employs self-biased resistive-feedback and current-reused technique to achieve wide input matching and low power characteristics.An improved biased architecture is adopted in the second stage to attain a better gain-compensation performance.The design is verified with TSMC standard 1 P6 M 0.18μm RF CMOS process.The measurement results show that the parasitic problem of the transistors at high frequencies is solved.A high and flat S21 of 9.7±1.5 dB and the lowest NF 3.5 dB are achieved in the desired frequency band.The power consumption is only 7.5 mA under 1.6 V supply.The proposed LNA achieves broadband flat gain,low noise,and high linearity performance simultaneously,allowing it to be used in 3-10 GHz UWB applications.展开更多
In this paper, a compact coplanar epsilon.negative(ENG) antenna is proposed with ultra.wide operation band and small size of 18×11.5 mm2. The proposed antenna is designed based on a coplanar.waveguide(CPW) feedin...In this paper, a compact coplanar epsilon.negative(ENG) antenna is proposed with ultra.wide operation band and small size of 18×11.5 mm2. The proposed antenna is designed based on a coplanar.waveguide(CPW) feeding antenna, and thus the via.free structure is employed to realize the ENG unit cell, which is convenient to tune the frequency of zeroth.order resonance(ZOR) and extends the ZOR bandwidth. The high.order resonant frequencies are achieved and mainly determined by the separate slots that are located between the radiating patch and the ground plane. Adding the left.handed inductance between the radiating patch and ground has slight impact on the high.order resonant frequencies, and then the ultra.wide band is achieved by merging the ZOR bandwidth with the high.order resonant bandwidths. The ground plane primarily works as a matching network for the proposed antenna. Although it generates a low.frequency resonance, the performance is undesirable due to the impedance mismatching. The measured results show that the reflection coefficient, |S11| <.10 d B, is in a wide frequency range from 5.25 to 13 GHz, which covers the upper operation band of UWB communication. Also, the antenna contains relatively stable gains and omni.directional radiation patterns.展开更多
Mutual coupling reduction or isolation enhancement in antenna arrays is an important area of research as it severely affects the performance of an antenna.In this paper,a new type of compact and highly isolated Multip...Mutual coupling reduction or isolation enhancement in antenna arrays is an important area of research as it severely affects the performance of an antenna.In this paper,a new type of compact and highly isolated Multiple-Input-Multiple-Output(MIMO)antenna for ultra-wideband(UWB)applications is presented.The design consists of four radiators that are orthogonally positioned and confined to a compact 40×40×0.8 mm3 space.The final antenna design uses an inverted L shape partial ground to produce an acceptable reflection coefficient(S11<−10 dB)in an entire UWB band(3.1–10.6)giga hertz(GHz).Moreover,the inter-element isolation has also been enhanced to>20 db for majority of the UWB band.The antenna was fabricated and tested with the vector network analyzer(VNA)and in an anechoic chamber for scattering parameters and radiation patterns.Furthermore,different MIMO diversity performance metrics are also measured to validate the proposed model.The simulation results and the experimental results from the constructed model agree quite well.The proposed antenna is compared with similar designs in recently published literature for various performance metrics.Because of its low envelope correlation coefficient(ECC<0.1),high diversity gain(DG>9.99 dB),peak gain of 4.6 dB,reduced channel capacity loss(CCL<0.4 b/s/Hz),and average radiation efficiency of over 85%,the proposed MIMO antenna is ideally suited for practical UWB applications.展开更多
The modern landmine's electronic fuse is susceptible to strong interference or can even be damaged by the ultra-wide band electromagnetic pulse(UWB-EMP). The finite-difference time-domain(FDTD) method in lossy me...The modern landmine's electronic fuse is susceptible to strong interference or can even be damaged by the ultra-wide band electromagnetic pulse(UWB-EMP). The finite-difference time-domain(FDTD) method in lossy media with cylindrical coordinates is used to study the interactions of the UWB-EMP with the landmine. First, the coupling of UWB-EMP into the landmine shielding shell through an aperture is numerically simulated. Second, the coupled electromagnetic field of mine shells made of different shielding materials and with apertures of different sizes is plotted. Third, the aperture coupling laws of UWB-EMP into shells are analyzed and categorized. Such an algorithm is capable of effectively preventing ladder similar errors, and consequently improving the calculation precision, and in addition to adopting the message passing interface(MPI) parallel method to divide the total calculating range into more sub-ranges, the overall calculating efficiency is greatly increased. These calculations are surely a constructive reference for modern landmine design against electromagnetic damage.展开更多
Ultra-wideband (UWB) is one of the recent topics that received a great concern from academia and industry. However, UWB found many difficulties to be standardized due to the overlay working that made UWB an important ...Ultra-wideband (UWB) is one of the recent topics that received a great concern from academia and industry. However, UWB found many difficulties to be standardized due to the overlay working that made UWB an important potential interference source to many licensed and unlicensed spectrum throughout the band 3.1 to 10.6 GHz. This paper demonstrates the design of integrated triple band notched for UWB Microstrip antenna. We simulated UWB short range systems which require low power and these are built using inexpensive digital components. We proposed a compact triple band notched CPW (Co-planar Waveguide) fed Micro strip Antenna (MSA) for UWB. This band-notched antenna has rejection characteristics at 3.2 GHz (for Wi-MAX band 3.16 to 3.32 GHz), at 5.5 GHz (for WLAN 2 band—5.3 to 5.72 GHz) and at 7.9 GHz (for ITU band 7.72 GHz to 8.13 GHz). The simulation was done using IE3D simulator.展开更多
Theoretical calculations predict transition frequencies in the terahertz range for the field-effect transistors based on carbon nanotubes, and this shows their suitability for being used in high frequency applications...Theoretical calculations predict transition frequencies in the terahertz range for the field-effect transistors based on carbon nanotubes, and this shows their suitability for being used in high frequency applications. In this paper, we have designed a field-effect transistor based on carbon nanotube with high transition frequency suitable for ultra-wide band applications. We did this by optimizing nanotube diameter, gate insulator thickness and dielectric constant. As a result, we achieved the transition frequency about 7.45 THz. The environment of open source software FETToy is used to simulate the device. Also a suitable model for calculating the transition frequency is presented.展开更多
The evaluation of System Performance of UWB (ultra-wide band) jointing in MC (multi-carrier) signaling in correlated environments is presented in the report. The correlated Nakagami-m statistical distribution for the ...The evaluation of System Performance of UWB (ultra-wide band) jointing in MC (multi-carrier) signaling in correlated environments is presented in the report. The correlated Nakagami-m statistical distribution for the multipath fading model is assumed in this scenario. In fact to establish the model for analyzing in this article is using MC-CDMA (multi-carrier code-division multiple-access) system characterization combined with a UWB scheme. The average BER (bit error rate) is calculated and compared to a special case of previously published results. Studied results from this paper can be implied to approve the system performance for a UWB system combined with a MC-CDMA wireless communication system. It is worth noting that the Nakagami-m distributed fading parameter significantly dominates UWB system performance when it cooperates with MC signaling under a fading environment. Finally, it is worthy of noting that when the SNR (signal-to-noise ratio) at system’s receiver reaches a preset high threshold value, the parameter of power decay ratio effect could be not included.展开更多
This research analyzes and implements an innovative and tiny ultrawideband(UWB)antenna with band-notched features for body-centric communication.The shape of the designed antenna looks like a‘swan’with a slotted pat...This research analyzes and implements an innovative and tiny ultrawideband(UWB)antenna with band-notched features for body-centric communication.The shape of the designed antenna looks like a‘swan’with a slotted patch.Computer Simulation Technology(CST)is used to assess and investigate the performance of this antenna.With a band notch,this antenna can prevent interference from Wireless Local Area Network(WLAN)(5.15–5.825 GHz)and Worldwide Interoperability for Microwave Access(WiMAX)(5.25–5.85 GHz)systems.At first,the performance parameters like return loss response,gain,radiation patterns,and radiation efficiency of this UWB antenna are evaluated.After that,the human body effects on the antenna performance of the antenna are also examined to place the antenna at various distances away from 3-layers of phantom body model at different frequencies.All the on-body performance parameter results are compared and analyzed with free space performance parameter results.Lastly,by changing patch slot length and ground plane length,parametric studies were done for performance comparison.According to this research,it is noticed that the antenna is tiny and new.It shows good performance in body case as well.Hence,the antenna is very suitable for healthcare applications.展开更多
The micro-genetic algorithm (MGA) optimization combined with the finite-difference time-domain (FDTD) method is applied to design a band-notched ultra wide-band (UWB) antenna. A U-type slot on a stepped U-type UWB mon...The micro-genetic algorithm (MGA) optimization combined with the finite-difference time-domain (FDTD) method is applied to design a band-notched ultra wide-band (UWB) antenna. A U-type slot on a stepped U-type UWB monopole is used to obtain the band-notched characteristic for 5 GHz wireless local area network (WLAN) band. The measured results show that voltage standing wave ration (VSWR) less than 2 covers 3.1-10.6 GHz operating band and VSWR more than 2 is within 5.150-5.825 GHz notched one with the highest value of 5.6. Agreement among the calculated, HFSS simulated and measured results validates the effiectiveness of this MGA-FDTD method, which is efficient for UWB antennas design.展开更多
A small-sized, low-profile, and planar dual band antenna for Bluetooth (2.4 - 2.484 GHz) and ultra-wideband (UWB) (3.1 - 10.6 GHz) with multi-band notched antennas is presented. Two antennas A and B with different typ...A small-sized, low-profile, and planar dual band antenna for Bluetooth (2.4 - 2.484 GHz) and ultra-wideband (UWB) (3.1 - 10.6 GHz) with multi-band notched antennas is presented. Two antennas A and B with different types of slots are used to obtain tri-band notched characteristic. In antenna A notched bands, 5 - 6 GHz for WLAN, and 3.3 - 4 GHz for WiMAX, are achieved using a U-slot in ground structure and in the radiating patch. In antenna B two notched bands at 3.3 - 4 GHz, for WiMAX and 7.2 GHz for C-band satellite communication systems are achieved by using a U-slot in ground structure and a H-shaped slot in the radiating patch. The radiation characteristics of the two antennas are calculated using a commercial EM simulator based on Finite Element Method (FEM) and the Finite Integration Technique (FIT). The two antennas show acceptable gain flatness with stable omnidirectional radiation patterns across the integrated Bluetooth and UWB bands.展开更多
This paper presents the design of a small printed ultra wideband antenna with Band Notched characteristics. Both the free space and on-body performances of this antenna were investigated through simulation. The newly ...This paper presents the design of a small printed ultra wideband antenna with Band Notched characteristics. Both the free space and on-body performances of this antenna were investigated through simulation. The newly designed UWB antenna is more revised small form factor sized, with the ability to avoid interference caused by WLAN (5.15 - 5.825 GHz) and WiMAX (5.25 - 5.85 GHz) systems with a band notch. The return loss response, gain, radiation pattern on free space of the antenna were investigated. After that, the on-body performances were tested on 3-layer human body model with radiation pattern, gain, return loss, and efficiency at 3.5, 5.7, 8, 10 GHz and all the results were compared with free space results. As the on-body performance was very good, the proposed antenna will be suitable to be used for multi-purpose medical applications and sports performance monitoring.展开更多
This paper presents the design of a compact bow-tie antenna with triple band notched characteristics for UWB applications. The proposed antenna can operate from 3.1 to 10.6 GHz with VSWR -...This paper presents the design of a compact bow-tie antenna with triple band notched characteristics for UWB applications. The proposed antenna can operate from 3.1 to 10.6 GHz with VSWR - 8.4 GHz) centered at 8.1 GHz, the CSRR2 rejects the WLAN band (5.15 - 5.85 GHz) centered at 5.6 GHz, and the CSRR3 rejects the band (4.10 - 4.47 GHz) centered at 4.32 GHz. Compared with recent design, this antenna is more compact, and presents better simulation results of its characteristics. Our newly designed antenna is a potential candidate for application in UWB communication systems.展开更多
基金Supported by the National Natural Science Foundation of China(No.61534003,61874024,61871116)
文摘The paper presents a fully integrated ultra-wide band(UWB)low noise amplifier(LNA)for 3-10 GHz applications.It employs self-biased resistive-feedback and current-reused technique to achieve wide input matching and low power characteristics.An improved biased architecture is adopted in the second stage to attain a better gain-compensation performance.The design is verified with TSMC standard 1 P6 M 0.18μm RF CMOS process.The measurement results show that the parasitic problem of the transistors at high frequencies is solved.A high and flat S21 of 9.7±1.5 dB and the lowest NF 3.5 dB are achieved in the desired frequency band.The power consumption is only 7.5 mA under 1.6 V supply.The proposed LNA achieves broadband flat gain,low noise,and high linearity performance simultaneously,allowing it to be used in 3-10 GHz UWB applications.
基金supported by the National Natural Science Foundation of China (NNSF) under Grant 61531016National Natural Science Foundation of China (NNSF) under Grant 61271090+1 种基金Sichuan province science and technology support project under Grant 2016GZ0059Sichuan province science and technology support project under Grant 2017GZ0110
文摘In this paper, a compact coplanar epsilon.negative(ENG) antenna is proposed with ultra.wide operation band and small size of 18×11.5 mm2. The proposed antenna is designed based on a coplanar.waveguide(CPW) feeding antenna, and thus the via.free structure is employed to realize the ENG unit cell, which is convenient to tune the frequency of zeroth.order resonance(ZOR) and extends the ZOR bandwidth. The high.order resonant frequencies are achieved and mainly determined by the separate slots that are located between the radiating patch and the ground plane. Adding the left.handed inductance between the radiating patch and ground has slight impact on the high.order resonant frequencies, and then the ultra.wide band is achieved by merging the ZOR bandwidth with the high.order resonant bandwidths. The ground plane primarily works as a matching network for the proposed antenna. Although it generates a low.frequency resonance, the performance is undesirable due to the impedance mismatching. The measured results show that the reflection coefficient, |S11| <.10 d B, is in a wide frequency range from 5.25 to 13 GHz, which covers the upper operation band of UWB communication. Also, the antenna contains relatively stable gains and omni.directional radiation patterns.
基金Deanship of ScientificResearch,King Abdulaziz University for providing financial vide grant number (KEP-MSc-41-135-1443).
文摘Mutual coupling reduction or isolation enhancement in antenna arrays is an important area of research as it severely affects the performance of an antenna.In this paper,a new type of compact and highly isolated Multiple-Input-Multiple-Output(MIMO)antenna for ultra-wideband(UWB)applications is presented.The design consists of four radiators that are orthogonally positioned and confined to a compact 40×40×0.8 mm3 space.The final antenna design uses an inverted L shape partial ground to produce an acceptable reflection coefficient(S11<−10 dB)in an entire UWB band(3.1–10.6)giga hertz(GHz).Moreover,the inter-element isolation has also been enhanced to>20 db for majority of the UWB band.The antenna was fabricated and tested with the vector network analyzer(VNA)and in an anechoic chamber for scattering parameters and radiation patterns.Furthermore,different MIMO diversity performance metrics are also measured to validate the proposed model.The simulation results and the experimental results from the constructed model agree quite well.The proposed antenna is compared with similar designs in recently published literature for various performance metrics.Because of its low envelope correlation coefficient(ECC<0.1),high diversity gain(DG>9.99 dB),peak gain of 4.6 dB,reduced channel capacity loss(CCL<0.4 b/s/Hz),and average radiation efficiency of over 85%,the proposed MIMO antenna is ideally suited for practical UWB applications.
基金Project supported by the Postdoctoral Science Foundation of China(Grant No.2014M552610)
文摘The modern landmine's electronic fuse is susceptible to strong interference or can even be damaged by the ultra-wide band electromagnetic pulse(UWB-EMP). The finite-difference time-domain(FDTD) method in lossy media with cylindrical coordinates is used to study the interactions of the UWB-EMP with the landmine. First, the coupling of UWB-EMP into the landmine shielding shell through an aperture is numerically simulated. Second, the coupled electromagnetic field of mine shells made of different shielding materials and with apertures of different sizes is plotted. Third, the aperture coupling laws of UWB-EMP into shells are analyzed and categorized. Such an algorithm is capable of effectively preventing ladder similar errors, and consequently improving the calculation precision, and in addition to adopting the message passing interface(MPI) parallel method to divide the total calculating range into more sub-ranges, the overall calculating efficiency is greatly increased. These calculations are surely a constructive reference for modern landmine design against electromagnetic damage.
文摘Ultra-wideband (UWB) is one of the recent topics that received a great concern from academia and industry. However, UWB found many difficulties to be standardized due to the overlay working that made UWB an important potential interference source to many licensed and unlicensed spectrum throughout the band 3.1 to 10.6 GHz. This paper demonstrates the design of integrated triple band notched for UWB Microstrip antenna. We simulated UWB short range systems which require low power and these are built using inexpensive digital components. We proposed a compact triple band notched CPW (Co-planar Waveguide) fed Micro strip Antenna (MSA) for UWB. This band-notched antenna has rejection characteristics at 3.2 GHz (for Wi-MAX band 3.16 to 3.32 GHz), at 5.5 GHz (for WLAN 2 band—5.3 to 5.72 GHz) and at 7.9 GHz (for ITU band 7.72 GHz to 8.13 GHz). The simulation was done using IE3D simulator.
文摘Theoretical calculations predict transition frequencies in the terahertz range for the field-effect transistors based on carbon nanotubes, and this shows their suitability for being used in high frequency applications. In this paper, we have designed a field-effect transistor based on carbon nanotube with high transition frequency suitable for ultra-wide band applications. We did this by optimizing nanotube diameter, gate insulator thickness and dielectric constant. As a result, we achieved the transition frequency about 7.45 THz. The environment of open source software FETToy is used to simulate the device. Also a suitable model for calculating the transition frequency is presented.
文摘The evaluation of System Performance of UWB (ultra-wide band) jointing in MC (multi-carrier) signaling in correlated environments is presented in the report. The correlated Nakagami-m statistical distribution for the multipath fading model is assumed in this scenario. In fact to establish the model for analyzing in this article is using MC-CDMA (multi-carrier code-division multiple-access) system characterization combined with a UWB scheme. The average BER (bit error rate) is calculated and compared to a special case of previously published results. Studied results from this paper can be implied to approve the system performance for a UWB system combined with a MC-CDMA wireless communication system. It is worth noting that the Nakagami-m distributed fading parameter significantly dominates UWB system performance when it cooperates with MC signaling under a fading environment. Finally, it is worthy of noting that when the SNR (signal-to-noise ratio) at system’s receiver reaches a preset high threshold value, the parameter of power decay ratio effect could be not included.
基金Taif University Researchers are supporting project number(TURSP-2020/216),Taif University,Taif,Saudi Arabia.
文摘This research analyzes and implements an innovative and tiny ultrawideband(UWB)antenna with band-notched features for body-centric communication.The shape of the designed antenna looks like a‘swan’with a slotted patch.Computer Simulation Technology(CST)is used to assess and investigate the performance of this antenna.With a band notch,this antenna can prevent interference from Wireless Local Area Network(WLAN)(5.15–5.825 GHz)and Worldwide Interoperability for Microwave Access(WiMAX)(5.25–5.85 GHz)systems.At first,the performance parameters like return loss response,gain,radiation patterns,and radiation efficiency of this UWB antenna are evaluated.After that,the human body effects on the antenna performance of the antenna are also examined to place the antenna at various distances away from 3-layers of phantom body model at different frequencies.All the on-body performance parameter results are compared and analyzed with free space performance parameter results.Lastly,by changing patch slot length and ground plane length,parametric studies were done for performance comparison.According to this research,it is noticed that the antenna is tiny and new.It shows good performance in body case as well.Hence,the antenna is very suitable for healthcare applications.
基金supported by the Shanghai Leading Academic Discipline Project (Grant No.S30108)
文摘The micro-genetic algorithm (MGA) optimization combined with the finite-difference time-domain (FDTD) method is applied to design a band-notched ultra wide-band (UWB) antenna. A U-type slot on a stepped U-type UWB monopole is used to obtain the band-notched characteristic for 5 GHz wireless local area network (WLAN) band. The measured results show that voltage standing wave ration (VSWR) less than 2 covers 3.1-10.6 GHz operating band and VSWR more than 2 is within 5.150-5.825 GHz notched one with the highest value of 5.6. Agreement among the calculated, HFSS simulated and measured results validates the effiectiveness of this MGA-FDTD method, which is efficient for UWB antennas design.
文摘A small-sized, low-profile, and planar dual band antenna for Bluetooth (2.4 - 2.484 GHz) and ultra-wideband (UWB) (3.1 - 10.6 GHz) with multi-band notched antennas is presented. Two antennas A and B with different types of slots are used to obtain tri-band notched characteristic. In antenna A notched bands, 5 - 6 GHz for WLAN, and 3.3 - 4 GHz for WiMAX, are achieved using a U-slot in ground structure and in the radiating patch. In antenna B two notched bands at 3.3 - 4 GHz, for WiMAX and 7.2 GHz for C-band satellite communication systems are achieved by using a U-slot in ground structure and a H-shaped slot in the radiating patch. The radiation characteristics of the two antennas are calculated using a commercial EM simulator based on Finite Element Method (FEM) and the Finite Integration Technique (FIT). The two antennas show acceptable gain flatness with stable omnidirectional radiation patterns across the integrated Bluetooth and UWB bands.
文摘This paper presents the design of a small printed ultra wideband antenna with Band Notched characteristics. Both the free space and on-body performances of this antenna were investigated through simulation. The newly designed UWB antenna is more revised small form factor sized, with the ability to avoid interference caused by WLAN (5.15 - 5.825 GHz) and WiMAX (5.25 - 5.85 GHz) systems with a band notch. The return loss response, gain, radiation pattern on free space of the antenna were investigated. After that, the on-body performances were tested on 3-layer human body model with radiation pattern, gain, return loss, and efficiency at 3.5, 5.7, 8, 10 GHz and all the results were compared with free space results. As the on-body performance was very good, the proposed antenna will be suitable to be used for multi-purpose medical applications and sports performance monitoring.
文摘This paper presents the design of a compact bow-tie antenna with triple band notched characteristics for UWB applications. The proposed antenna can operate from 3.1 to 10.6 GHz with VSWR - 8.4 GHz) centered at 8.1 GHz, the CSRR2 rejects the WLAN band (5.15 - 5.85 GHz) centered at 5.6 GHz, and the CSRR3 rejects the band (4.10 - 4.47 GHz) centered at 4.32 GHz. Compared with recent design, this antenna is more compact, and presents better simulation results of its characteristics. Our newly designed antenna is a potential candidate for application in UWB communication systems.