Based on break characteristics of roofs in fully mechanized top-coal mining of thick shallow coal seams, a fracture mechanics model was built, and the criterion of crack propagation in the main roof was derived using ...Based on break characteristics of roofs in fully mechanized top-coal mining of thick shallow coal seams, a fracture mechanics model was built, and the criterion of crack propagation in the main roof was derived using the fracture mechanics theory. The relationships between the fracture length of the roof and the working resistance of the supports were discovered, and the correlations between the load on the overlying strata and the ratio of the crack's length to the thickness of the roof were obtained. Using a working face of Jindi Coal Mine, Xing county Shanxi province as an example, the relationships between the fracture length of the roof and the working resistance of the supports were analysed in detail. The results give a design basis in hydraulic top coal caving supports, which could provide useful references in the practical application. On-site experiment proves that the periodic weighting step interval of the caving face is 15–16 m, which is basically consistent with the theoretical analysis results, and indicates that the mechanized caving hydraulic support is capable of meeting the support requirements in the mining of a super-thick but shallowly buried coal seam.展开更多
Underground pressure is abnormal during mining of shallow coal seams under gullies. We studied gully slope movements, subject to underground mining, with physical simulation and theoretical analysis. The rules disclos...Underground pressure is abnormal during mining of shallow coal seams under gullies. We studied gully slope movements, subject to underground mining, with physical simulation and theoretical analysis. The rules disclose that the slope rock slides horizontally in response to mining in the direction of gullies and rotates reversely with the appearance of a polygon block in mining away from gullies. We focused our attention on the case of mining away from a gully. We built a mechanical model in terms of a polygon block hinged structure and investigated the variation of horizontal thrust and shear force at the hinged point in relation to the rotation angle under different fragmentations. The Sliding-Rotation instability conditions of the polygon block hinged structure are presented based on the analyses of sliding instability and rotation instability. These results can serve as a theoretical guide for roof control during mining away from gullies in a coalfield defined by gullies.展开更多
A roadway within ultra-close multiple-seams(RUCMSs) is one of the most difficult supported coal roadways to deal with in underground coal mines. This is usually due to the unknown stress distributions, improper roadwa...A roadway within ultra-close multiple-seams(RUCMSs) is one of the most difficult supported coal roadways to deal with in underground coal mines. This is usually due to the unknown stress distributions, improper roadway layout, and unreasonable support parameters. In order to solve this support problem and effectively save RUCMSs from frequent and abrupt disasters(such as serious deformation of the surrounding rock, roof cave ins, and coal side collapse), a comprehensive method is adopted here which includes theoretical analysis, numerical simulation, and field monitoring. A mechanical model was constructed to determine the stress distribution in the coal pillar after two sides of a longwall panel had been mined. Based on this model, the horizontal, vertical, and tangential stress equations for the plane below the floor of the upper-left coal pillar were deduced. In addition, a typical coal mine(the Jinggonger colliery, located in Shuozhou city, Shanxi province, China) with an average distance between its 9# and 11# coal seams of less than 8.0 was chosen to conduct research on the proper layout and reasonable support required for a typical coal roadway located within coal seam 11#. Using FLAC3D(Fast Lagrangian Analysis of Continua in 3-Dimensions) numerical software, eight schemes were designed with different horizontal distances(d) between the center lines of the coal pillar and the roadway in the lower coal seam(RLCS). The simulations and detailed analysis indicate that the proper distances required are between 22.5 and 27.5 m. A total of 20 simulation schemes were used to investigate the factors influencing the support provided by the key bolts(bolt length, spacing, distance between two rows, installation angle, and pre-tightening force). The results were analyzed and used to determine reasonable values for the support parameters. Field results show that the stability and strength of the RLCS can be effectively safeguarded using a combination of researched stress distribution characteristics, proper layout of the RLCS, and correct support parameters.展开更多
A comprehensive study was undertaken at Jiaozi coal mine to investigate the development regularity of ground fissures in shallow buried coal seam mining with Karst landform,shedding light on the development type,geogr...A comprehensive study was undertaken at Jiaozi coal mine to investigate the development regularity of ground fissures in shallow buried coal seam mining with Karst landform,shedding light on the development type,geographical distribution,dynamic development process,and failure mechanism of these ground fissures by employing field monitoring,numerical simulation,and theoretical analysis.The findings demonstrate that ground fissure development has an obvious feature of subregion,and its geographical distribution is significantly affected by topography.Tensile type,open type,and stepped type are three different categories of ground fissure.Ground fissures emerge dynamically as the panel advances,and they typically develop with a distance of less than periodic weighting step distance in advance of panel advancing position.Ground fissures present the dynamic development feature,temporary fissure has the ability of self-healing.The dynamic development process of ground fissure with closed-distance coal seam repeated mining is expounded,and the development scale is a dynamic development stage of“closure→expansion→stabilized”on the basis of the original development scale.From the perspective of topsoil deformation,the computation model considering two points movement vectors towards two directions of the gob and the ground surface is established,the development criterion considering the critical deformation value of topsoil is obtained.The mechanical model of hinged structure of inclined body is proposed to clarify the ground fissure development,and the interaction between slope activity and ground fissure development is expounded.These research results fulfill the gap of ground fissures about development regularity and formation mechanism,and can contribute to ground fissure prevention and treatment with Karst landform.展开更多
The paper aims to identify a reasonable method for mining ultra-thick coal seams in an end-slope in surface mine, With a case study of Heidaigou surface coal mine(HSCM), the paper conducted a comparative research on t...The paper aims to identify a reasonable method for mining ultra-thick coal seams in an end-slope in surface mine, With a case study of Heidaigou surface coal mine(HSCM), the paper conducted a comparative research on three mining methods, namely Underground Mining Method(UMM), Highwall Mining System(HMS) and Local Steep Slope Mining Method(LSSMM). A model was firstly established to simulate the impact that UMM and HMS exert on monitoring points and surface deformation. The way that stripping and excavation amount varies with different slope angle, and the corresponding end slope stability were analyzed in the mode of LSSMM. Then a TOPSIS model was established by taking into account six indicators such as recovery ratio, technical complexity and adaptability, the impact on surface mining production, production safety and economic benefits. Finally, LSSMM was determined as the best mining method for mining ultra-thick coal seams in end slope in HSCM.展开更多
This paper provides an improved understanding of the movement mechanisms of both bed-rock gully and sandy soil gully when underground mining occurs underneath,followed by systematic analysis of the contributing factor...This paper provides an improved understanding of the movement mechanisms of both bed-rock gully and sandy soil gully when underground mining occurs underneath,followed by systematic analysis of the contributing factors such as mining advance direction,gully slope angle,gully erosion coefficient and mining height.This paper presents the results from monitoring,theoretical analyses and up to date modeling based on the geological features in the gully affected area,and the implications of these results to the success of roof support trial.It was observed that when mining occurred towards the gully,sliding of slope block along the fracture surface occurred,which resulted in unstable roof condition;when mining progressed away from the gully,polygon blocks developed in the gully slope and rotated in reversed direction forming hinged structure;within the bed-rock slope,the hinged structure was unstable due to shear failure of the polygon block;however,within the sandy soil slope,the structure was relatively stable due to the gradual rotating and subsiding of the polygon block.The increase of the value of slope angle and mining height lead to a faster and more intensive fracture development within the gully slope,which had a pronounced effect on gully slope stability and underground pressure.Various remediation approaches are hence proposed in this paper including introducing more powerful support and reasonable mining height,setting up working face along or away from gullies,using room and pillar,strip mining and backfill instead of longwall mining.展开更多
In Huojitu Coal Mine of Shendong mining area, the dynamic strata pressure (DSP) accidents occurred when the working faces passed the gully terrain. Focusing on this problem, we used physical simulation experimental me...In Huojitu Coal Mine of Shendong mining area, the dynamic strata pressure (DSP) accidents occurred when the working faces passed the gully terrain. Focusing on this problem, we used physical simulation experimental method to thoroughly study the influence of eroded overlying primary key strata (PKS) in the gully terrain on DSP of shallow coal seams in this paper. The result show that when mining activities took place in the uphill section of shallow coal seams in gully terrain and the PKS were eroded, the blocks could not form stable bond-beam structures since the horizontal force of PKS blocks in adjacent sloping surfaces were relatively small. The sliding instability of blocks caused rapid increase of the load on the sub-key strata (SKS) blocks, which resulted into coal slide and roof fall as well as sharp drop of active columns. This led to DSP phenomenon. When the PKS blocks were intact, there was no DSP phenomenon to enable blocks provide certain horizontal force to maintain stable bond-beam structure. The simulation results were verified by the mining practices of working face 21306 crossing the gully terrain in the Huojitu Coal Mine.展开更多
We studied underground pressure and its mechanism during back-gully mining in a shallow coal seam under a bedrock gully slope,by means of physical simulation,numerical modeling and field monitoring.The results show th...We studied underground pressure and its mechanism during back-gully mining in a shallow coal seam under a bedrock gully slope,by means of physical simulation,numerical modeling and field monitoring.The results show that the intensity of underground pressure is related to its relative position at the coalface.The underground pressure is intensive and the support resistance reaches a maximum when the coalface is at the bottom of the gully,whereas the underground pressure is moderate and decreases gradually when the coalface passes the gully.The mechanism of these changes is analyzed when the slope rotated in a reversed direction to the slope dip during back-gully mining and form an unstable,multilateral block hinged structure,due to slipping.The subsidence of multilateral blocks is considerable when the block fragmentation is small,resulting in enormous changes in the underground pressure.With an increase in the mass of the block body,the block displacement will be reduced in conjunction with an increased clamp effect by both the unbroken rocks and broken rocks in the goaf,resulting in a decrease of the underground pressure.展开更多
The water resisting property of aquiclude is the key factor of water conservation and safety mining, and the mining induced cracks in aquiclude is major factor of water resisting property. The aquiclude is composed by...The water resisting property of aquiclude is the key factor of water conservation and safety mining, and the mining induced cracks in aquiclude is major factor of water resisting property. The aquiclude is composed by loess layer and red clay layer in Yushuwan Coal Mine, and the water reaction property of clay and loess of aquiclude was tested by soil mechanics method. The permeability coefficient of the loess is 0.856 m/d and the clay is 0.434 m/d. The dilatability coefficient of the loess is 16.1% and the clay is 14.6%. Through physical solid-liquid simulation with whole stress-stain similarity, the distribution of "downward crack zone" and "upward crack zone" was found to be the major factor of aquiclude stability. The downward crack closing length is about 30% of the downward crack length. The expanding of clay and loess with water are principal factors of downward crack closing. At last, the mechanical model of downward crack closing was constructed, and the criterion of crack closing was put forward at all. This work will provides the theoretical base for aquiclude stability research and safety mining in shallow seam.展开更多
Based on a shallow roadway with weakly cemented soft strata in western China, this paper studies the range and degree of plastic zones in soft strata roadways with weak cementation. Geological radars were used to moni...Based on a shallow roadway with weakly cemented soft strata in western China, this paper studies the range and degree of plastic zones in soft strata roadways with weak cementation. Geological radars were used to monitor the loose range and level of surrounding rocks. A mechanical model of weakly cemented roadway was established, including granular material based on the measured results. The model was then used to determine the plastic zone radium. The predicted results agree well with measured results which provide valuable theoretical references for the analysis of surrounding rock stability and support reinforcing design of weakly cemented roadways. Finally, a combined supporting scheme of whole section bolting and grouting was proposed based on the original supporting scheme. It is proved that this support plan can effectively control the deformation and plastic zone expansion of the roadway surrounding rock and thus ensure the long-term stable and safe mining.展开更多
Phreatic water resources are widely found in thick unconsolidated surface layers in western China, where water levels respond sensitively and quickly to large-scale underground mining in conjunction with shallow coal ...Phreatic water resources are widely found in thick unconsolidated surface layers in western China, where water levels respond sensitively and quickly to large-scale underground mining in conjunction with shallow coal seams. Longwall face #32201 of the Bulianta Coal Mine, in the Shendong coalfield was selected as an industrial trail base, where field observations on ground-water levels were conducted when the working face was below a water-rich area. The space-time variation in the behavior of un-consolidated water levels in response to underground mining and its relation with of advance were observed through the field trials. The basic conditions for water preservation in mines are presented and the mechanisms of water preservation in mining analyzed, given the geological condition of two key strata and a severely weathered layer buried in the overburden. The field trails show that water preservation in mining shallow coal seams can be successful under suitable conditions, providing new technology for envi-ronmental protection in the desert coalfields of northwestern China.展开更多
文摘Based on break characteristics of roofs in fully mechanized top-coal mining of thick shallow coal seams, a fracture mechanics model was built, and the criterion of crack propagation in the main roof was derived using the fracture mechanics theory. The relationships between the fracture length of the roof and the working resistance of the supports were discovered, and the correlations between the load on the overlying strata and the ratio of the crack's length to the thickness of the roof were obtained. Using a working face of Jindi Coal Mine, Xing county Shanxi province as an example, the relationships between the fracture length of the roof and the working resistance of the supports were analysed in detail. The results give a design basis in hydraulic top coal caving supports, which could provide useful references in the practical application. On-site experiment proves that the periodic weighting step interval of the caving face is 15–16 m, which is basically consistent with the theoretical analysis results, and indicates that the mechanized caving hydraulic support is capable of meeting the support requirements in the mining of a super-thick but shallowly buried coal seam.
基金Financial support for this work, provided by the Research Fund of the Fundamental Research Funds for the Central Universities of China University of Mining & Technology (No. 2010ZDP02B02)the State Key Laboratory of Coal Resources and Mine Safety (No. SKLCRSM08X2)+1 种基金the Jiangsu "333" High Qualified Talents, the National Natural Science Foundation of China (Nos. 50904063 and 51004101)the Scientific Research Foundation of China University of Mining & Technology (Nos. 2008A003 and 2009A001)
文摘Underground pressure is abnormal during mining of shallow coal seams under gullies. We studied gully slope movements, subject to underground mining, with physical simulation and theoretical analysis. The rules disclose that the slope rock slides horizontally in response to mining in the direction of gullies and rotates reversely with the appearance of a polygon block in mining away from gullies. We focused our attention on the case of mining away from a gully. We built a mechanical model in terms of a polygon block hinged structure and investigated the variation of horizontal thrust and shear force at the hinged point in relation to the rotation angle under different fragmentations. The Sliding-Rotation instability conditions of the polygon block hinged structure are presented based on the analyses of sliding instability and rotation instability. These results can serve as a theoretical guide for roof control during mining away from gullies in a coalfield defined by gullies.
基金Project(2014QNA50)supported by Fundamental Research Funds for the Central UniversitiesChina+1 种基金Project(51404248)supported by National Natural Science Foundation of the Youth Science Foundation of ChinaProject(PAPD)supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘A roadway within ultra-close multiple-seams(RUCMSs) is one of the most difficult supported coal roadways to deal with in underground coal mines. This is usually due to the unknown stress distributions, improper roadway layout, and unreasonable support parameters. In order to solve this support problem and effectively save RUCMSs from frequent and abrupt disasters(such as serious deformation of the surrounding rock, roof cave ins, and coal side collapse), a comprehensive method is adopted here which includes theoretical analysis, numerical simulation, and field monitoring. A mechanical model was constructed to determine the stress distribution in the coal pillar after two sides of a longwall panel had been mined. Based on this model, the horizontal, vertical, and tangential stress equations for the plane below the floor of the upper-left coal pillar were deduced. In addition, a typical coal mine(the Jinggonger colliery, located in Shuozhou city, Shanxi province, China) with an average distance between its 9# and 11# coal seams of less than 8.0 was chosen to conduct research on the proper layout and reasonable support required for a typical coal roadway located within coal seam 11#. Using FLAC3D(Fast Lagrangian Analysis of Continua in 3-Dimensions) numerical software, eight schemes were designed with different horizontal distances(d) between the center lines of the coal pillar and the roadway in the lower coal seam(RLCS). The simulations and detailed analysis indicate that the proper distances required are between 22.5 and 27.5 m. A total of 20 simulation schemes were used to investigate the factors influencing the support provided by the key bolts(bolt length, spacing, distance between two rows, installation angle, and pre-tightening force). The results were analyzed and used to determine reasonable values for the support parameters. Field results show that the stability and strength of the RLCS can be effectively safeguarded using a combination of researched stress distribution characteristics, proper layout of the RLCS, and correct support parameters.
基金funded by State Key Laboratory of Strata Intelligent Control and Green Mining Cofounded by Shandong Province and the Ministry of Science and Technology,Shandong University of Science and Technology(Grant No.MDPC2023ZR01)Open Fund of State Key Laboratory of Water Resource Protection and Utilization in Coal Mining(Grant No.WPUKFJJ2019-19)Major research project of Guizhou Provincial Department of Education on innovative groups(Grant No.Qianjiaohe KY[2019]070)。
文摘A comprehensive study was undertaken at Jiaozi coal mine to investigate the development regularity of ground fissures in shallow buried coal seam mining with Karst landform,shedding light on the development type,geographical distribution,dynamic development process,and failure mechanism of these ground fissures by employing field monitoring,numerical simulation,and theoretical analysis.The findings demonstrate that ground fissure development has an obvious feature of subregion,and its geographical distribution is significantly affected by topography.Tensile type,open type,and stepped type are three different categories of ground fissure.Ground fissures emerge dynamically as the panel advances,and they typically develop with a distance of less than periodic weighting step distance in advance of panel advancing position.Ground fissures present the dynamic development feature,temporary fissure has the ability of self-healing.The dynamic development process of ground fissure with closed-distance coal seam repeated mining is expounded,and the development scale is a dynamic development stage of“closure→expansion→stabilized”on the basis of the original development scale.From the perspective of topsoil deformation,the computation model considering two points movement vectors towards two directions of the gob and the ground surface is established,the development criterion considering the critical deformation value of topsoil is obtained.The mechanical model of hinged structure of inclined body is proposed to clarify the ground fissure development,and the interaction between slope activity and ground fissure development is expounded.These research results fulfill the gap of ground fissures about development regularity and formation mechanism,and can contribute to ground fissure prevention and treatment with Karst landform.
基金provided by the National Natural Science Foundation of China(No.90510002)the Science and Technology Research of the Ministry of Education of China(No.306008)
文摘The paper aims to identify a reasonable method for mining ultra-thick coal seams in an end-slope in surface mine, With a case study of Heidaigou surface coal mine(HSCM), the paper conducted a comparative research on three mining methods, namely Underground Mining Method(UMM), Highwall Mining System(HMS) and Local Steep Slope Mining Method(LSSMM). A model was firstly established to simulate the impact that UMM and HMS exert on monitoring points and surface deformation. The way that stripping and excavation amount varies with different slope angle, and the corresponding end slope stability were analyzed in the mode of LSSMM. Then a TOPSIS model was established by taking into account six indicators such as recovery ratio, technical complexity and adaptability, the impact on surface mining production, production safety and economic benefits. Finally, LSSMM was determined as the best mining method for mining ultra-thick coal seams in end slope in HSCM.
基金provided by the National Natural Science Foundation of China (Grant No.51004101,No.51264035)the Science Foundation for Young Scholars of China University of Mining &Technology (Grant No.2009A001)+1 种基金the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)the Fundamental Research Funds for the Central Universities (2012QNA35)
文摘This paper provides an improved understanding of the movement mechanisms of both bed-rock gully and sandy soil gully when underground mining occurs underneath,followed by systematic analysis of the contributing factors such as mining advance direction,gully slope angle,gully erosion coefficient and mining height.This paper presents the results from monitoring,theoretical analyses and up to date modeling based on the geological features in the gully affected area,and the implications of these results to the success of roof support trial.It was observed that when mining occurred towards the gully,sliding of slope block along the fracture surface occurred,which resulted in unstable roof condition;when mining progressed away from the gully,polygon blocks developed in the gully slope and rotated in reversed direction forming hinged structure;within the bed-rock slope,the hinged structure was unstable due to shear failure of the polygon block;however,within the sandy soil slope,the structure was relatively stable due to the gradual rotating and subsiding of the polygon block.The increase of the value of slope angle and mining height lead to a faster and more intensive fracture development within the gully slope,which had a pronounced effect on gully slope stability and underground pressure.Various remediation approaches are hence proposed in this paper including introducing more powerful support and reasonable mining height,setting up working face along or away from gullies,using room and pillar,strip mining and backfill instead of longwall mining.
基金The support from both the National Natural Science Foundation of China (No. 50974116)the Open Research Foundation from State Key Laboratory of Coal Resources and Mine Safety at China University of Mining and Technology (No. 08KF04) are gratefully acknowledged
文摘In Huojitu Coal Mine of Shendong mining area, the dynamic strata pressure (DSP) accidents occurred when the working faces passed the gully terrain. Focusing on this problem, we used physical simulation experimental method to thoroughly study the influence of eroded overlying primary key strata (PKS) in the gully terrain on DSP of shallow coal seams in this paper. The result show that when mining activities took place in the uphill section of shallow coal seams in gully terrain and the PKS were eroded, the blocks could not form stable bond-beam structures since the horizontal force of PKS blocks in adjacent sloping surfaces were relatively small. The sliding instability of blocks caused rapid increase of the load on the sub-key strata (SKS) blocks, which resulted into coal slide and roof fall as well as sharp drop of active columns. This led to DSP phenomenon. When the PKS blocks were intact, there was no DSP phenomenon to enable blocks provide certain horizontal force to maintain stable bond-beam structure. The simulation results were verified by the mining practices of working face 21306 crossing the gully terrain in the Huojitu Coal Mine.
基金financial support for this work,provided by the National Natural Science Foundation of China(Nos.51004101 and 50904063)the Science Foundation for Young Scholars of China University of Mining & Technology(Nos.2008A003 and 2009A001 )the Graduate Student Scientific Research Innovation in the University of Jiangsu Province(No.CX07B_149z).
文摘We studied underground pressure and its mechanism during back-gully mining in a shallow coal seam under a bedrock gully slope,by means of physical simulation,numerical modeling and field monitoring.The results show that the intensity of underground pressure is related to its relative position at the coalface.The underground pressure is intensive and the support resistance reaches a maximum when the coalface is at the bottom of the gully,whereas the underground pressure is moderate and decreases gradually when the coalface passes the gully.The mechanism of these changes is analyzed when the slope rotated in a reversed direction to the slope dip during back-gully mining and form an unstable,multilateral block hinged structure,due to slipping.The subsidence of multilateral blocks is considerable when the block fragmentation is small,resulting in enormous changes in the underground pressure.With an increase in the mass of the block body,the block displacement will be reduced in conjunction with an increased clamp effect by both the unbroken rocks and broken rocks in the goaf,resulting in a decrease of the underground pressure.
文摘The water resisting property of aquiclude is the key factor of water conservation and safety mining, and the mining induced cracks in aquiclude is major factor of water resisting property. The aquiclude is composed by loess layer and red clay layer in Yushuwan Coal Mine, and the water reaction property of clay and loess of aquiclude was tested by soil mechanics method. The permeability coefficient of the loess is 0.856 m/d and the clay is 0.434 m/d. The dilatability coefficient of the loess is 16.1% and the clay is 14.6%. Through physical solid-liquid simulation with whole stress-stain similarity, the distribution of "downward crack zone" and "upward crack zone" was found to be the major factor of aquiclude stability. The downward crack closing length is about 30% of the downward crack length. The expanding of clay and loess with water are principal factors of downward crack closing. At last, the mechanical model of downward crack closing was constructed, and the criterion of crack closing was put forward at all. This work will provides the theoretical base for aquiclude stability research and safety mining in shallow seam.
基金provided by the National 973 Programs(No.2014CB046905)the National Natural Science Foundation of China(Nos.51274191 and 51404245)+1 种基金the Doctoral Fund of Ministry of Education(No.20130095110018)China Postdoctoral Science Foundation(No.2014M551699)
文摘Based on a shallow roadway with weakly cemented soft strata in western China, this paper studies the range and degree of plastic zones in soft strata roadways with weak cementation. Geological radars were used to monitor the loose range and level of surrounding rocks. A mechanical model of weakly cemented roadway was established, including granular material based on the measured results. The model was then used to determine the plastic zone radium. The predicted results agree well with measured results which provide valuable theoretical references for the analysis of surrounding rock stability and support reinforcing design of weakly cemented roadways. Finally, a combined supporting scheme of whole section bolting and grouting was proposed based on the original supporting scheme. It is proved that this support plan can effectively control the deformation and plastic zone expansion of the roadway surrounding rock and thus ensure the long-term stable and safe mining.
基金supports for this work provided by the Research Fund of the State Key Laboratory of Coal Resources and Mine Safety (NoSKLCRSM08X2)the Jiangsu "333" High Qualified Talents, the National Natural Science Foundation of China (No50904063)the Scientific Research Foundation of China University of Mining & Technology (Nos.2008A003 and 2009A001)
文摘Phreatic water resources are widely found in thick unconsolidated surface layers in western China, where water levels respond sensitively and quickly to large-scale underground mining in conjunction with shallow coal seams. Longwall face #32201 of the Bulianta Coal Mine, in the Shendong coalfield was selected as an industrial trail base, where field observations on ground-water levels were conducted when the working face was below a water-rich area. The space-time variation in the behavior of un-consolidated water levels in response to underground mining and its relation with of advance were observed through the field trials. The basic conditions for water preservation in mines are presented and the mechanisms of water preservation in mining analyzed, given the geological condition of two key strata and a severely weathered layer buried in the overburden. The field trails show that water preservation in mining shallow coal seams can be successful under suitable conditions, providing new technology for envi-ronmental protection in the desert coalfields of northwestern China.