In this essay, we studied how heat input affected the microstructure, hardness, grain size and heat-affected zone(HAZ) dimension of WCX355 ultra-fine grain steel which was welded respectively by the ultra narrow-gap w...In this essay, we studied how heat input affected the microstructure, hardness, grain size and heat-affected zone(HAZ) dimension of WCX355 ultra-fine grain steel which was welded respectively by the ultra narrow-gap welding (UNGW) process and the overlaying process with CO 2 as protective atmosphere and laser welding process. The experimental results show when the heat input changed from 1.65 kJ/cm to 5.93 kJ/cm, the width of its HAZ ranged from 0.6 mm to 2.1 mm.The average grain size grew up from 2~5 μm of base metal to 20~70 μm and found no obvious soften phenomenon in overheated zone. The width of normalized zone was generally wide as 2/3 as that of the whole HAZ, and the grain size in this zone is smaller than that in base metal. Under the circumstance of equal heat input, the HAZ width of UNGW is narrower than that of the laser welding.展开更多
In the present research Monte Carlo technique was used to simulate the grain growth in heat-affected zone(HAZ) of an ultrafine grain steel. An experimental data based (EBD) model proposed by Gao was used to establish ...In the present research Monte Carlo technique was used to simulate the grain growth in heat-affected zone(HAZ) of an ultrafine grain steel. An experimental data based (EBD) model proposed by Gao was used to establish the relation between tMCS and real time temperature kinetics in our simulation. The simulations give out the evolution of grain structure and grain size distribution in HAZ of the ultrafine grain steel. A Microsoft Window based on computer program for the simulation of grain growth in the HAZ of weldment in three dimensions has been developed using Monte Carlo technique. For the system, inputting the temperature field data and material properties, the evolution of grain structure, both image of simulated grain structure and numerical datum reflecting grain size distribution can be produced by the program. The system was applied to the ultrafine grain steel welding, and the simulated results show that the ultrafine grain steel has large tendency of grain growth.展开更多
The ultra-fine grain (UFG) steel is welded by using resistance spot welding technique with or without requirement of upsetting force. Metallographic inspection shows that the grain size of weld nugget is larger than...The ultra-fine grain (UFG) steel is welded by using resistance spot welding technique with or without requirement of upsetting force. Metallographic inspection shows that the grain size of weld nugget is larger than that of the base metal and the microstructure is altered significantly. In addition, contracting defects such as air holes can be found in the nugget center. The experiments show that the defects can be effectively avoided by the technique of adding upsetting force during the nugget cooling and crystallizing processes. In tensile shear tests, the welding joint starts to crack from the inner edge of the corona bond. The results of micro-hardness tests show that the newly born martensite structure dramatically improves the hardness of the joint. Under the interactions between residual stresses and regenerated fine grains, the micro-hardness of the heat-affected zone ( HAZ ) is lower than that of the nugget, but evidently higher than that of the base metal.展开更多
Ultra-fine austenite grains with size of i-3 μm were prepared in a Nb-V-Ti steel through repetitive treatment of rapid heating and quenching. A model for the growth kinetics of these ultra-fine austenite grains was s...Ultra-fine austenite grains with size of i-3 μm were prepared in a Nb-V-Ti steel through repetitive treatment of rapid heating and quenching. A model for the growth kinetics of these ultra-fine austenite grains was successfully created through successive 2 processes, and the activation energy Q for growth was estimated to be about 693.2 kJ/mol, which directly shows the inhibition effect of microalloy elements on the growth of ultra-fine austenite grains.展开更多
The temperature field and thermal cycling curve in the heat-affected zone during welding 400 MPa ultra fine grained steel by plasma arc were simulated using finite element method. The principle of grain growth kinetic...The temperature field and thermal cycling curve in the heat-affected zone during welding 400 MPa ultra fine grained steel by plasma arc were simulated using finite element method. The principle of grain growth kinetics was used to predict the grain size in the heat-affected zone under different welding parameters. The simulation results show that the growing tendency of HAZ grain could be controlled by adjusting the welding parameters, but the growth of HAZ grain could not be eliminated at all. The HAZ grain size became small with increasing of the cooling rate and added with increasing of welding current, arc voltage and welding speed.展开更多
The welded joints of 400 MPa ultra fine grained steel in manual arc welding were treated by mechanical surface hardening. Microstructure and mechanical properties of the treated joints were compared with those of the ...The welded joints of 400 MPa ultra fine grained steel in manual arc welding were treated by mechanical surface hardening. Microstructure and mechanical properties of the treated joints were compared with those of the untreated joints, based on which, primary study on the process and principle of mechanical surface hardening was carried out. The results shows that: Grain size of HAZ increases greatly and mechanical properties of welded joint decrease obviously compared with those of base martial, but grain size in the surface layer of HAZ can be refined (the grain size is about 100 nm or so) and mechanical properties of welded joints can be improved greatly by mechanical surface hardening.展开更多
The critical crack dimensions of both base-metal specimen and HAZ specimen are measured via wide-plate tensile tests. Based on the “fitness for purpose” principle, the fracture behavior of the ultra-fine grain steel...The critical crack dimensions of both base-metal specimen and HAZ specimen are measured via wide-plate tensile tests. Based on the “fitness for purpose” principle, the fracture behavior of the ultra-fine grain steel SS400 welded joint HAZ is assessed. The test results indicate that overmatching is benefit for the whole capability’s improvement of ultra-fine grain steel SS400. The test results are confirmed by using finite element method (FEM).展开更多
Thermomechanical processing as a combination of cold rolling and annealing was performed on austenitic stainless steels 301,304 and 304L. Two cold rolling steps each one up to a reduction of 75% were combined with an ...Thermomechanical processing as a combination of cold rolling and annealing was performed on austenitic stainless steels 301,304 and 304L. Two cold rolling steps each one up to a reduction of 75% were combined with an intermediate annealing at 800℃ for 20 min. The final annealing was performed at.the same temperature and time. Cold rolling contributed to martensite formation at the expense of metastable austenite in the studied materials. Austenite in 301 was found to be less stable than that in 304 and 304L. Hence, higher strength characteristics in the as-quenched 301 stainless steels were attributed to the higher volume fraction of martensite. Both α′-martensite and ε-martensite were found to form as induced by deformation. However, the intensity of ε-martensite increased as the stability of austenite decreased. Annealing after cold rolling led to the reversion of austenite with an ultra fine grained structure in the order of 0.5-1 μm from the strain induced martensite. The final grain size was found to be an inverse function of the amount of strain induced martensite. The thermomechanical processing considerably improved the strength characteristics while the simultaneous decrease of elongation was rather low.展开更多
Two kinds of 980MPa grade cold rolled dual phase steels have been developed by designing C-Si-Mn and C-Si-Mn-Nb alloy systems.The microstructure of martensite in Nb-free steel is consisted of lath martensite and twine...Two kinds of 980MPa grade cold rolled dual phase steels have been developed by designing C-Si-Mn and C-Si-Mn-Nb alloy systems.The microstructure of martensite in Nb-free steel is consisted of lath martensite and twined martensite with the volume fraction of 67%.However,the main hard phase in Nb-containing one is twined martensit with the volume percent of 59%.The size of martensite islands in Nb-containing steel is from 1μm to 3μm,and the size of NbC precipitates is from 15nm to 40nm.As to Nb-containing steel,the yield strength,tensile strength,yield ratio and elongation are 501MPa,1035MPa,0.48 and 17.5% respectively.Futhermore,Nb-containing steel has higher working hardening rate value above the critical strain 6.5%.And it decreases slowly with increasing the strain.This is mainly because of ultrafine grain size and nano-precipitates in ferrite,which improves the compatibility of phases and reduces the stress concentration at the phase interface.展开更多
文摘In this essay, we studied how heat input affected the microstructure, hardness, grain size and heat-affected zone(HAZ) dimension of WCX355 ultra-fine grain steel which was welded respectively by the ultra narrow-gap welding (UNGW) process and the overlaying process with CO 2 as protective atmosphere and laser welding process. The experimental results show when the heat input changed from 1.65 kJ/cm to 5.93 kJ/cm, the width of its HAZ ranged from 0.6 mm to 2.1 mm.The average grain size grew up from 2~5 μm of base metal to 20~70 μm and found no obvious soften phenomenon in overheated zone. The width of normalized zone was generally wide as 2/3 as that of the whole HAZ, and the grain size in this zone is smaller than that in base metal. Under the circumstance of equal heat input, the HAZ width of UNGW is narrower than that of the laser welding.
文摘In the present research Monte Carlo technique was used to simulate the grain growth in heat-affected zone(HAZ) of an ultrafine grain steel. An experimental data based (EBD) model proposed by Gao was used to establish the relation between tMCS and real time temperature kinetics in our simulation. The simulations give out the evolution of grain structure and grain size distribution in HAZ of the ultrafine grain steel. A Microsoft Window based on computer program for the simulation of grain growth in the HAZ of weldment in three dimensions has been developed using Monte Carlo technique. For the system, inputting the temperature field data and material properties, the evolution of grain structure, both image of simulated grain structure and numerical datum reflecting grain size distribution can be produced by the program. The system was applied to the ultrafine grain steel welding, and the simulated results show that the ultrafine grain steel has large tendency of grain growth.
文摘The ultra-fine grain (UFG) steel is welded by using resistance spot welding technique with or without requirement of upsetting force. Metallographic inspection shows that the grain size of weld nugget is larger than that of the base metal and the microstructure is altered significantly. In addition, contracting defects such as air holes can be found in the nugget center. The experiments show that the defects can be effectively avoided by the technique of adding upsetting force during the nugget cooling and crystallizing processes. In tensile shear tests, the welding joint starts to crack from the inner edge of the corona bond. The results of micro-hardness tests show that the newly born martensite structure dramatically improves the hardness of the joint. Under the interactions between residual stresses and regenerated fine grains, the micro-hardness of the heat-affected zone ( HAZ ) is lower than that of the nugget, but evidently higher than that of the base metal.
基金supported by the National Natural Science Foundation of China(No.50527402)
文摘Ultra-fine austenite grains with size of i-3 μm were prepared in a Nb-V-Ti steel through repetitive treatment of rapid heating and quenching. A model for the growth kinetics of these ultra-fine austenite grains was successfully created through successive 2 processes, and the activation energy Q for growth was estimated to be about 693.2 kJ/mol, which directly shows the inhibition effect of microalloy elements on the growth of ultra-fine austenite grains.
文摘The temperature field and thermal cycling curve in the heat-affected zone during welding 400 MPa ultra fine grained steel by plasma arc were simulated using finite element method. The principle of grain growth kinetics was used to predict the grain size in the heat-affected zone under different welding parameters. The simulation results show that the growing tendency of HAZ grain could be controlled by adjusting the welding parameters, but the growth of HAZ grain could not be eliminated at all. The HAZ grain size became small with increasing of the cooling rate and added with increasing of welding current, arc voltage and welding speed.
文摘The welded joints of 400 MPa ultra fine grained steel in manual arc welding were treated by mechanical surface hardening. Microstructure and mechanical properties of the treated joints were compared with those of the untreated joints, based on which, primary study on the process and principle of mechanical surface hardening was carried out. The results shows that: Grain size of HAZ increases greatly and mechanical properties of welded joint decrease obviously compared with those of base martial, but grain size in the surface layer of HAZ can be refined (the grain size is about 100 nm or so) and mechanical properties of welded joints can be improved greatly by mechanical surface hardening.
文摘The critical crack dimensions of both base-metal specimen and HAZ specimen are measured via wide-plate tensile tests. Based on the “fitness for purpose” principle, the fracture behavior of the ultra-fine grain steel SS400 welded joint HAZ is assessed. The test results indicate that overmatching is benefit for the whole capability’s improvement of ultra-fine grain steel SS400. The test results are confirmed by using finite element method (FEM).
文摘Thermomechanical processing as a combination of cold rolling and annealing was performed on austenitic stainless steels 301,304 and 304L. Two cold rolling steps each one up to a reduction of 75% were combined with an intermediate annealing at 800℃ for 20 min. The final annealing was performed at.the same temperature and time. Cold rolling contributed to martensite formation at the expense of metastable austenite in the studied materials. Austenite in 301 was found to be less stable than that in 304 and 304L. Hence, higher strength characteristics in the as-quenched 301 stainless steels were attributed to the higher volume fraction of martensite. Both α′-martensite and ε-martensite were found to form as induced by deformation. However, the intensity of ε-martensite increased as the stability of austenite decreased. Annealing after cold rolling led to the reversion of austenite with an ultra fine grained structure in the order of 0.5-1 μm from the strain induced martensite. The final grain size was found to be an inverse function of the amount of strain induced martensite. The thermomechanical processing considerably improved the strength characteristics while the simultaneous decrease of elongation was rather low.
文摘Two kinds of 980MPa grade cold rolled dual phase steels have been developed by designing C-Si-Mn and C-Si-Mn-Nb alloy systems.The microstructure of martensite in Nb-free steel is consisted of lath martensite and twined martensite with the volume fraction of 67%.However,the main hard phase in Nb-containing one is twined martensit with the volume percent of 59%.The size of martensite islands in Nb-containing steel is from 1μm to 3μm,and the size of NbC precipitates is from 15nm to 40nm.As to Nb-containing steel,the yield strength,tensile strength,yield ratio and elongation are 501MPa,1035MPa,0.48 and 17.5% respectively.Futhermore,Nb-containing steel has higher working hardening rate value above the critical strain 6.5%.And it decreases slowly with increasing the strain.This is mainly because of ultrafine grain size and nano-precipitates in ferrite,which improves the compatibility of phases and reduces the stress concentration at the phase interface.