The key manufacturing technologies associated with composition, microstructure, mechanical properties, casting quality and key process control for large martensitic stainless steel castings are involved in this paper....The key manufacturing technologies associated with composition, microstructure, mechanical properties, casting quality and key process control for large martensitic stainless steel castings are involved in this paper. The achievements fully satisfeid the technical requirements of the large 700 MW stainless steel hydraulic turbine runner for the Three Gorges Hydropower Station, and become the major technical support for the design and manufacture of the largest 700 MW hydraulic turbine generator unit in the world developed through our own efforts. The characteristics of a new high yield to tensile strength (R p0.2/R m ) ratio and high obdurability martensitic stainless steel with ultra low carbon and high cleanliness are also described. Over the next ten years, the large martensitic stainless steel castings and advanced manufacturing technologies will see a huge demand in clean energy industry such as nuclear power, hydraulic power at home and abroad. Therefore, the new high yield o tensile strength (R p0.2/R m ) ratio and high obdurability martensitic stainless steel materials, the fast and flexible manufacturing technologies of large size castings, and new environment friendly sustainable process will face new challenges and opportunities.展开更多
Through analyzing the development of large ultra-deep structural gas fields in China,strategies for the efficient development of such gas fields are proposed based on their geological characteristics and production pe...Through analyzing the development of large ultra-deep structural gas fields in China,strategies for the efficient development of such gas fields are proposed based on their geological characteristics and production performance.According to matrix properties,fracture development degree and configuration between matrix and fractures,the reservoirs are classified into three types:single porosity single permeability system,dual porosity dual permeability system,and dual porosity single permeability system.These three types of gas reservoirs show remarkable differences in different scales of permeability,the ratio of dynamic reserves to volumetric reserves and water invasion risk.It is pointed out that the key factors affecting development efficiency of these gas fields are determination of production scale and rapid identification of water invasion.Figuring out the characteristics of the gas fields and working out pertinent technical policies are the keys to achieve efficient development.The specific strategies include reinforcing early production appraisal before full scale production by deploying high precision development seismic survey,deploying development appraisal wells in batches and scale production test to get a clear understanding on the structure,reservoir type,distribution pattern of gas and water,and recoverable reserves,controlling production construction pace to ensure enough evaluation time and accurate evaluation results in the early stage,in line with the development program made according to the recoverable reserves,working out proper development strategies,optimizing pattern and proration of wells based on water invasion risk and gas supply capacity of matrix,and reinforcing research and development of key technologies.展开更多
Large aspheric mirrors are needed for the remote sensing and ground based telescope optical systems,these mirrors are made of hard and brittle materials which require ultra-precision grinding process to guarantee the ...Large aspheric mirrors are needed for the remote sensing and ground based telescope optical systems,these mirrors are made of hard and brittle materials which require ultra-precision grinding process to guarantee the high profile accuracy and machining efficiency. The ultra-precision aspheric CNC grinding machine( UAG900) is presented by this paper,as well as its grinding capability. The hydrostatic bearings of high accuracy and stiffness are adopted by the linear and rotary motions to guarantee the mirror accuracy,material removal rate and subsurface damage. Disk type grinding wheel with arc edge is used. The material removal rate can be up to 360 mm3/ min to guarantee the machining efficiency during rough grinding using D180 diamond grinding wheel while the fine grinding is performed using D15 grinding wheel. It indicates that the grinding wheel radius measuring error is proportional to the profile error induced by the grinding path. The grinding step size is better to be 0. 01 mm for the reduction of the grinding movement accelerations and program length. The grinding path is planned and expressed based on the grinding mode according to the mirror shape. One540 mm×450 mm× 100 mm zerodur mirror is ground and re-ground using the measuring data acquired by the Leitz CMM. The final surface accuracy of P-V value is less than 5 μm after compensation grinding.展开更多
In this paper, the factors of affecting surface roughness and profiles accuracy of the machined larege depth diamter ratio aspheric surfaces in ultra-precision grinding process are analyzed theoretically. An ultra-pre...In this paper, the factors of affecting surface roughness and profiles accuracy of the machined larege depth diamter ratio aspheric surfaces in ultra-precision grinding process are analyzed theoretically. An ultra-precision aspheric grinding system is then designed and manufactured. Aerostatic form is adopted to build the spindle of the workpiece, transverse guideway, longitudinal guideway and the spindle of the grinder in this system. The following specification is achieved, such as the turning accuracy of the spindle of the workpiece is 0.05 μm, radial rigidity of the spindle is GE 220N/μm, axial rigidity is GE 160 N/μm, radial rigidity of the guideway is GE 200N/μm, the highest rotational speed of the grinder is 80 000 rev/min and its turning accuracy is 0.1 μm, the resolution of linear displacement of the transverse and longitudinal guideway is 4.9 nm. Adjusting range of this adjusting mechanism is 2 mm in the Y direction, the adjusting accuracy of the precise adjusting mechanism is 0.1 μm. Micro displacement measuring system of this ultra-precision aspheric grinding adopts two-backfeed strategy, and angle displacement back-feed is realized by photoelectric encoder, it’s resolution is 655 360 pulse/rev. after 4 frequency multiplication, it’s angle displacement resolution is achieved 2 621 440 pulse/rev. Straight-line displacement is monitored by single frequency laser interferometer (DLSTAX LTM-20B, made in Japan). This CNC system adopts inimitable bi-arc step length flex CN interpolation algorithm, it’s CN system resolution is 5 nm.So this aspheric grinding system ensures profile accuracy of the machined part. The resolution of this interferometer is 5 nm. Finally, lots of ultra-precision grinding experiments are carried out on this grinding system. Some optical aspheric parts, with profiles accuracy of 0.3 μm, surface roughness less than 0.01 μm, are obtained.展开更多
Under the requirement of everything over IP, network service shows the following characteristics:(1) network service increases its richness;(2) broadband streaming media becomes the mainstream. To achieve unified mult...Under the requirement of everything over IP, network service shows the following characteristics:(1) network service increases its richness;(2) broadband streaming media becomes the mainstream. To achieve unified multi-service bearing in the IP network, the largescale access convergence network architecture is proposed. This flat access convergence structure with ultra-small hops, which shortens the service transmission path, reduces the complexity of the edge of the network, and achieves IP strong waist model with the integration of computation, storage and transmission. The key technologies are also introduced in this paper, including endto-end performance guarantee for real time interactive services, fog storing mechanism, and built-in safety transmission with integration of aggregation and control.展开更多
Some tube hydroforming process tests and further research work were conducted to manufacture hollow guide vane liners( made of super alloy GH3030).The relative thickness( t0/ OD) of the tubular blank is approximately ...Some tube hydroforming process tests and further research work were conducted to manufacture hollow guide vane liners( made of super alloy GH3030).The relative thickness( t0/ OD) of the tubular blank is approximately 0. 01,and the maximum expansion ratio( Dmax/ OD) of the needed part is more than 40%,and the length to diameter ratio of the expansion regionis more than 3. 0. It is very hard to manufacture this kind of ultra-thin-wall,curved axis and large expansion ratio tubular part without fracture and wrinkles. The success of the process is highly dependent on useful wrinkles with appropriate internal pressure and axial feeding. A simplified finite element model and a theoretical model are used for detecting the deformation behavior and forming laws. Further study results demonstrate that the useful wrinkles do not appear at the same time and middle-wrinkles need bigger axial force than tube-end-wrinkles and feeding-wrinkles. The wrinkles can transfer bigger axial force after its wave peak has come into contact with the die inner surface. The thickness thinning rate of the element at the peak is bigger than that at the trough. With the increase of the axial and hoop stress ratio,the critical buckling stress also increases. Microstructure examination results show that the grain size in the maximum thinning zone has been stretched and refined after the large deformation and annealing treatment.The process is feasible and the finished part is qualified.展开更多
文摘The key manufacturing technologies associated with composition, microstructure, mechanical properties, casting quality and key process control for large martensitic stainless steel castings are involved in this paper. The achievements fully satisfeid the technical requirements of the large 700 MW stainless steel hydraulic turbine runner for the Three Gorges Hydropower Station, and become the major technical support for the design and manufacture of the largest 700 MW hydraulic turbine generator unit in the world developed through our own efforts. The characteristics of a new high yield to tensile strength (R p0.2/R m ) ratio and high obdurability martensitic stainless steel with ultra low carbon and high cleanliness are also described. Over the next ten years, the large martensitic stainless steel castings and advanced manufacturing technologies will see a huge demand in clean energy industry such as nuclear power, hydraulic power at home and abroad. Therefore, the new high yield o tensile strength (R p0.2/R m ) ratio and high obdurability martensitic stainless steel materials, the fast and flexible manufacturing technologies of large size castings, and new environment friendly sustainable process will face new challenges and opportunities.
文摘Through analyzing the development of large ultra-deep structural gas fields in China,strategies for the efficient development of such gas fields are proposed based on their geological characteristics and production performance.According to matrix properties,fracture development degree and configuration between matrix and fractures,the reservoirs are classified into three types:single porosity single permeability system,dual porosity dual permeability system,and dual porosity single permeability system.These three types of gas reservoirs show remarkable differences in different scales of permeability,the ratio of dynamic reserves to volumetric reserves and water invasion risk.It is pointed out that the key factors affecting development efficiency of these gas fields are determination of production scale and rapid identification of water invasion.Figuring out the characteristics of the gas fields and working out pertinent technical policies are the keys to achieve efficient development.The specific strategies include reinforcing early production appraisal before full scale production by deploying high precision development seismic survey,deploying development appraisal wells in batches and scale production test to get a clear understanding on the structure,reservoir type,distribution pattern of gas and water,and recoverable reserves,controlling production construction pace to ensure enough evaluation time and accurate evaluation results in the early stage,in line with the development program made according to the recoverable reserves,working out proper development strategies,optimizing pattern and proration of wells based on water invasion risk and gas supply capacity of matrix,and reinforcing research and development of key technologies.
基金Sponsored by the National High Technology Research and Development Program(Grant No.2008AA042503)the National Science and Technology Major Project(Grant No.2013ZX04006011-201)
文摘Large aspheric mirrors are needed for the remote sensing and ground based telescope optical systems,these mirrors are made of hard and brittle materials which require ultra-precision grinding process to guarantee the high profile accuracy and machining efficiency. The ultra-precision aspheric CNC grinding machine( UAG900) is presented by this paper,as well as its grinding capability. The hydrostatic bearings of high accuracy and stiffness are adopted by the linear and rotary motions to guarantee the mirror accuracy,material removal rate and subsurface damage. Disk type grinding wheel with arc edge is used. The material removal rate can be up to 360 mm3/ min to guarantee the machining efficiency during rough grinding using D180 diamond grinding wheel while the fine grinding is performed using D15 grinding wheel. It indicates that the grinding wheel radius measuring error is proportional to the profile error induced by the grinding path. The grinding step size is better to be 0. 01 mm for the reduction of the grinding movement accelerations and program length. The grinding path is planned and expressed based on the grinding mode according to the mirror shape. One540 mm×450 mm× 100 mm zerodur mirror is ground and re-ground using the measuring data acquired by the Leitz CMM. The final surface accuracy of P-V value is less than 5 μm after compensation grinding.
文摘In this paper, the factors of affecting surface roughness and profiles accuracy of the machined larege depth diamter ratio aspheric surfaces in ultra-precision grinding process are analyzed theoretically. An ultra-precision aspheric grinding system is then designed and manufactured. Aerostatic form is adopted to build the spindle of the workpiece, transverse guideway, longitudinal guideway and the spindle of the grinder in this system. The following specification is achieved, such as the turning accuracy of the spindle of the workpiece is 0.05 μm, radial rigidity of the spindle is GE 220N/μm, axial rigidity is GE 160 N/μm, radial rigidity of the guideway is GE 200N/μm, the highest rotational speed of the grinder is 80 000 rev/min and its turning accuracy is 0.1 μm, the resolution of linear displacement of the transverse and longitudinal guideway is 4.9 nm. Adjusting range of this adjusting mechanism is 2 mm in the Y direction, the adjusting accuracy of the precise adjusting mechanism is 0.1 μm. Micro displacement measuring system of this ultra-precision aspheric grinding adopts two-backfeed strategy, and angle displacement back-feed is realized by photoelectric encoder, it’s resolution is 655 360 pulse/rev. after 4 frequency multiplication, it’s angle displacement resolution is achieved 2 621 440 pulse/rev. Straight-line displacement is monitored by single frequency laser interferometer (DLSTAX LTM-20B, made in Japan). This CNC system adopts inimitable bi-arc step length flex CN interpolation algorithm, it’s CN system resolution is 5 nm.So this aspheric grinding system ensures profile accuracy of the machined part. The resolution of this interferometer is 5 nm. Finally, lots of ultra-precision grinding experiments are carried out on this grinding system. Some optical aspheric parts, with profiles accuracy of 0.3 μm, surface roughness less than 0.01 μm, are obtained.
基金supported by The National Key Technology R&D Program (Grant No. 2011BAH19B00)The National Basic Research Program of China (973) (Grant No. 2012CB315900)The National High Technology Research and Development Program of China (863) (Grant No. 2015AA016102)
文摘Under the requirement of everything over IP, network service shows the following characteristics:(1) network service increases its richness;(2) broadband streaming media becomes the mainstream. To achieve unified multi-service bearing in the IP network, the largescale access convergence network architecture is proposed. This flat access convergence structure with ultra-small hops, which shortens the service transmission path, reduces the complexity of the edge of the network, and achieves IP strong waist model with the integration of computation, storage and transmission. The key technologies are also introduced in this paper, including endto-end performance guarantee for real time interactive services, fog storing mechanism, and built-in safety transmission with integration of aggregation and control.
基金Sponsored by the Major State BasicResearch Development Program(Grant No.613152)the International Cooperation of RFBR-NSFC(Grant No.51111120088)
文摘Some tube hydroforming process tests and further research work were conducted to manufacture hollow guide vane liners( made of super alloy GH3030).The relative thickness( t0/ OD) of the tubular blank is approximately 0. 01,and the maximum expansion ratio( Dmax/ OD) of the needed part is more than 40%,and the length to diameter ratio of the expansion regionis more than 3. 0. It is very hard to manufacture this kind of ultra-thin-wall,curved axis and large expansion ratio tubular part without fracture and wrinkles. The success of the process is highly dependent on useful wrinkles with appropriate internal pressure and axial feeding. A simplified finite element model and a theoretical model are used for detecting the deformation behavior and forming laws. Further study results demonstrate that the useful wrinkles do not appear at the same time and middle-wrinkles need bigger axial force than tube-end-wrinkles and feeding-wrinkles. The wrinkles can transfer bigger axial force after its wave peak has come into contact with the die inner surface. The thickness thinning rate of the element at the peak is bigger than that at the trough. With the increase of the axial and hoop stress ratio,the critical buckling stress also increases. Microstructure examination results show that the grain size in the maximum thinning zone has been stretched and refined after the large deformation and annealing treatment.The process is feasible and the finished part is qualified.