A computational method of rock pressure applied to an ultra-shallow tunnel is presented by key block theory, and its mathematical formula is proposed according to a mechanical tunnel model with super-shallow depth. Th...A computational method of rock pressure applied to an ultra-shallow tunnel is presented by key block theory, and its mathematical formula is proposed according to a mechanical tunnel model with super-shallow depth. Theoretical analysis shows that the tunnel is subject to asymmetric rock pressure due to oblique topography. The rock pressure applied to the tunnel crown and sidewall is closely related to the surrounding rock bulk density, tunnel size, depth and angle of oblique ground slope. The rock pressure applied to the tunnel crown is much greater than that to the sidewalls, and the load applied to the left side-wall is also greater than that to the right sidewall. Mean-while, the safety of the lining for an ultra-shallow tunnel in strata with inclined surface is affected by rock pressure and tunnel support parameters. Steel pipe grouting from ground surface is used to consolidate the unfavorable surrounding rock before tunnel excavation, and the reinforcing scope is proposed according to the analysis of the asymmetric load induced by tunnel excavation in weak rock with inclined ground surface. The tunneling procedure of bench cut method with pipe roof protection is still discussed and carried out in this paper according to the special geological condition. The method and tunneling procedure have been successfully utilized to design and drive a real expressway tunnel. The practice in building the super-shallow tunnel has proved the feasibility of the calculation method and tunneling procedure presented in this paper.展开更多
At present,there is less theoretical research and practical experience in the aspect of ultrashallow seismic exploration to the target layers at depths of only tens of meters both at home and abroad. Seismic explorati...At present,there is less theoretical research and practical experience in the aspect of ultrashallow seismic exploration to the target layers at depths of only tens of meters both at home and abroad. Seismic exploration plays an important role in the location of faults and active structures,but the depth dozens of meters below the ground surface is the blind area of any kind of deep and shallow seismic exploration. Starting from the point of view of detecting urban active faults,and using related theories and methods of geology,geophysics and mathematics,the paper discusses the preconditions for acquiring efficient ultra-shallow seismic survey results in complicated geological backgrounds in Qingdao.Taking the Qingdao area as an example in this paper,we study the depth condition of Quaternary deposits,and apply 4-8 stacking folds to satisfy the requirement to get the exploration results with high-resolution and high-SNR. Preliminary results reveal that selecting a proper surveillance layout is one of the keys to acquire authentic exploration results in ultra-shallow P-wave reflection exploration. Our results also show that ultrashallow seismic reflection method in detecting faults in the Qingdao area has good application prospects.展开更多
基金financially supported by the National Natural Science Foundation of China (No. 51378436)the Fundamental Research Funds for the Central Universities (SWJTU11ZT33).
文摘A computational method of rock pressure applied to an ultra-shallow tunnel is presented by key block theory, and its mathematical formula is proposed according to a mechanical tunnel model with super-shallow depth. Theoretical analysis shows that the tunnel is subject to asymmetric rock pressure due to oblique topography. The rock pressure applied to the tunnel crown and sidewall is closely related to the surrounding rock bulk density, tunnel size, depth and angle of oblique ground slope. The rock pressure applied to the tunnel crown is much greater than that to the sidewalls, and the load applied to the left side-wall is also greater than that to the right sidewall. Mean-while, the safety of the lining for an ultra-shallow tunnel in strata with inclined surface is affected by rock pressure and tunnel support parameters. Steel pipe grouting from ground surface is used to consolidate the unfavorable surrounding rock before tunnel excavation, and the reinforcing scope is proposed according to the analysis of the asymmetric load induced by tunnel excavation in weak rock with inclined ground surface. The tunneling procedure of bench cut method with pipe roof protection is still discussed and carried out in this paper according to the special geological condition. The method and tunneling procedure have been successfully utilized to design and drive a real expressway tunnel. The practice in building the super-shallow tunnel has proved the feasibility of the calculation method and tunneling procedure presented in this paper.
基金sponsored by the PhD Research Foundation of Hebei GEO University(BQ2017027)
文摘At present,there is less theoretical research and practical experience in the aspect of ultrashallow seismic exploration to the target layers at depths of only tens of meters both at home and abroad. Seismic exploration plays an important role in the location of faults and active structures,but the depth dozens of meters below the ground surface is the blind area of any kind of deep and shallow seismic exploration. Starting from the point of view of detecting urban active faults,and using related theories and methods of geology,geophysics and mathematics,the paper discusses the preconditions for acquiring efficient ultra-shallow seismic survey results in complicated geological backgrounds in Qingdao.Taking the Qingdao area as an example in this paper,we study the depth condition of Quaternary deposits,and apply 4-8 stacking folds to satisfy the requirement to get the exploration results with high-resolution and high-SNR. Preliminary results reveal that selecting a proper surveillance layout is one of the keys to acquire authentic exploration results in ultra-shallow P-wave reflection exploration. Our results also show that ultrashallow seismic reflection method in detecting faults in the Qingdao area has good application prospects.