期刊文献+
共找到68篇文章
< 1 2 4 >
每页显示 20 50 100
Research on the IL-Bagging-DHKELM Short-Term Wind Power Prediction Algorithm Based on Error AP Clustering Analysis
1
作者 Jing Gao Mingxuan Ji +1 位作者 Hongjiang Wang Zhongxiao Du 《Computers, Materials & Continua》 SCIE EI 2024年第6期5017-5030,共14页
With the continuous advancement of China’s“peak carbon dioxide emissions and Carbon Neutrality”process,the proportion of wind power is increasing.In the current research,aiming at the problem that the forecasting m... With the continuous advancement of China’s“peak carbon dioxide emissions and Carbon Neutrality”process,the proportion of wind power is increasing.In the current research,aiming at the problem that the forecasting model is outdated due to the continuous updating of wind power data,a short-term wind power forecasting algorithm based on Incremental Learning-Bagging Deep Hybrid Kernel Extreme Learning Machine(IL-Bagging-DHKELM)error affinity propagation cluster analysis is proposed.The algorithm effectively combines deep hybrid kernel extreme learning machine(DHKELM)with incremental learning(IL).Firstly,an initial wind power prediction model is trained using the Bagging-DHKELM model.Secondly,Euclidean morphological distance affinity propagation AP clustering algorithm is used to cluster and analyze the prediction error of wind power obtained from the initial training model.Finally,the correlation between wind power prediction errors and Numerical Weather Prediction(NWP)data is introduced as incremental updates to the initial wind power prediction model.During the incremental learning process,multiple error performance indicators are used to measure the overall model performance,thereby enabling incremental updates of wind power models.Practical examples show the method proposed in this article reduces the root mean square error of the initial model by 1.9 percentage points,indicating that this method can be better adapted to the current scenario of the continuous increase in wind power penetration rate.The accuracy and precision of wind power generation prediction are effectively improved through the method. 展开更多
关键词 short-term wind power prediction deep hybrid kernel extreme learning machine incremental learning error clustering
下载PDF
Ultra-short-term Interval Prediction of Wind Power Based on Graph Neural Network and Improved Bootstrap Technique 被引量:3
2
作者 Wenlong Liao Shouxiang Wang +3 位作者 Birgitte Bak-Jensen Jayakrishnan Radhakrishna Pillai Zhe Yang Kuangpu Liu 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2023年第4期1100-1114,共15页
Reliable and accurate ultra-short-term prediction of wind power is vital for the operation and optimization of power systems.However,the volatility and intermittence of wind power pose uncertainties to traditional poi... Reliable and accurate ultra-short-term prediction of wind power is vital for the operation and optimization of power systems.However,the volatility and intermittence of wind power pose uncertainties to traditional point prediction,resulting in an increased risk of power system operation.To represent the uncertainty of wind power,this paper proposes a new method for ultra-short-term interval prediction of wind power based on a graph neural network(GNN)and an improved Bootstrap technique.Specifically,adjacent wind farms and local meteorological factors are modeled as the new form of a graph from the graph-theoretic perspective.Then,the graph convolutional network(GCN)and bi-directional long short-term memory(Bi-LSTM)are proposed to capture spatiotemporal features between nodes in the graph.To obtain highquality prediction intervals(PIs),an improved Bootstrap technique is designed to increase coverage percentage and narrow PIs effectively.Numerical simulations demonstrate that the proposed method can capture the spatiotemporal correlations from the graph,and the prediction results outperform popular baselines on two real-world datasets,which implies a high potential for practical applications in power systems. 展开更多
关键词 wind power graph neural network(GNN) bidirectional long short-term memory(Bi-LSTM) prediction interval Bootstrap technique
原文传递
A physical approach of the short-term wind power prediction based on CFD pre-calculated flow fields 被引量:6
3
作者 LI Li LIU Yong-qian +2 位作者 YANG Yong-ping HAN Shuang WANG Yi-mei 《Journal of Hydrodynamics》 SCIE EI CSCD 2013年第1期56-61,共6页
A physical approach of the wind power prediction based on the CFD pre-calculated flow fields is proposed in this paper. The flow fields are obtained based on a steady CFD model with the discrete inflow wind conditions... A physical approach of the wind power prediction based on the CFD pre-calculated flow fields is proposed in this paper. The flow fields are obtained based on a steady CFD model with the discrete inflow wind conditions as the boundary conditions, and a database is established containing the important parameters including the inflow wind conditions, the flow fields and the corresponding wind power for each wind turbine. The power is predicted via the database by taking the Numerical Weather Prediction (NWP) wind as the input data. In order to evaluate the approach, the short-term wind power prediction for an actual wind farm is conducted as an example during the period of the year 2010. Compared with the measured power, the predicted results enjoy a high accuracy with the annual Root Mean Square Error (RMSE) of 15.2% and the annual MAE of 10.80%. A good performance is shown in predicting the wind power's changing trend. This approach is independent of the historical data and can be widely used for all kinds of wind farms including the newly-built wind farms. At the same time, it does not take much computation time while it captures the local air flows more precisely by the CFD model. So it is especially practical for engineering projects. 展开更多
关键词 short-term wind power prediction physical approach CFD model flow field DATABASE
原文传递
基于低风速功率修正和损失函数改进的超短期风电功率预测
4
作者 臧海祥 赵勇凯 +3 位作者 张越 程礼临 卫志农 秦雪妮 《电力系统自动化》 EI CSCD 北大核心 2024年第7期248-257,共10页
风电功率具有较强的波动性和随机性。为进一步提升风电功率的预测精度,提出一种基于低风速功率修正和损失函数改进的超短期风电功率预测模型。该模型采用卷积神经网络、自注意力机制和双向门控循环单元捕获风电功率序列的长期时序依赖... 风电功率具有较强的波动性和随机性。为进一步提升风电功率的预测精度,提出一种基于低风速功率修正和损失函数改进的超短期风电功率预测模型。该模型采用卷积神经网络、自注意力机制和双向门控循环单元捕获风电功率序列的长期时序依赖关系。为了解决低风速下待风状态神经网络难以精确拟合的问题,模型通过预测风速并结合当前时段的风电功率对低风速段的预测功率进行修正。针对参数训练的稳定性问题,模型通过改进预测策略和共享权重,引入一种多元非线性的损失函数来提取序列间的关联性。结果表明,所提模型在多项误差指标中均优于对比模型,能够有效提升超短期风电功率的预测效果。 展开更多
关键词 超短期风电功率预测 功率修正 损失函数改进 神经网络模型
下载PDF
基于DCGCN模型的海上风电场超短期功率预测
5
作者 黄玲玲 石孝华 +2 位作者 符杨 刘阳 应飞祥 《电力系统自动化》 EI CSCD 北大核心 2024年第15期64-72,共9页
图卷积网络(GCN)具有很强的数据关联挖掘能力,近年来在风电功率预测领域获得了广泛关注。然而,传统的基于GCN模型的超短期风电功率预测难以同时处理影响风电功率的两大核心因素(风速与机组状态信息)的双模态问题,基于此,提出了一种基于... 图卷积网络(GCN)具有很强的数据关联挖掘能力,近年来在风电功率预测领域获得了广泛关注。然而,传统的基于GCN模型的超短期风电功率预测难以同时处理影响风电功率的两大核心因素(风速与机组状态信息)的双模态问题,基于此,提出了一种基于双通道图卷积网络(DCGCN)的海上风电场超短期功率预测模型。首先,建立以理论功率曲线为基准的机组状态指标模型,定量表征机组状态变化对其发电能力的影响;其次,构建海上风电场图拓扑,建立基于风速和状态邻接矩阵的风电场各机组捕获的风速与机组状态信息的关联关系模型;最后,建立基于DCGCN的风电场超短期功率预测方法。算例结果表明,所提模型有助于提高风电场功率预测模型的训练效率和预测精度。 展开更多
关键词 超短期功率预测 图卷积网络 海上风电场 功率曲线 双通道神经网络
下载PDF
基于BP-AHP风机状态评估的超短期风电功率动态预测研究
6
作者 杨国清 王文坤 +2 位作者 王德意 刘世林 戚相成 《大电机技术》 2024年第1期29-39,共11页
针对传统风电功率预测仅考虑气象因素,且无法计及风电机组真实出力状态导致预测精度较差问题,本文提出一种计及风机状态的超短期风电功率动态预测方法。首先,为能够精确评估风机状态,将BP(error back propagation, BP)算法引入层次分析... 针对传统风电功率预测仅考虑气象因素,且无法计及风电机组真实出力状态导致预测精度较差问题,本文提出一种计及风机状态的超短期风电功率动态预测方法。首先,为能够精确评估风机状态,将BP(error back propagation, BP)算法引入层次分析法(analytic hierarchy process, AHP)的评估结构中,构建BP-AHP风机状态评估模型,实现单台风机状态评估;然后,综合考虑地形及机组排布等因素,将风电场所有风机的状态取均值作为风电场状态,利用皮尔逊相关系数衡量所评估状态与功率之间的相关性以验证评估模型合理性,并采用XGBoost构建计及风机状态的动态预测模型;最后,以陕西地区某风电场实测数据进行算例分析,验证了所提方法的可行性及有效性。 展开更多
关键词 风电机组 状态评估 风电功率预测 超短期预测
下载PDF
CEEMDAN-WPE-CLSA超短期风电功率预测方法研究
7
作者 李杰 孟凡熙 +1 位作者 牛明博 张懿璞 《大连交通大学学报》 CAS 2024年第2期101-108,共8页
提出了一种结合自适应噪声完全集合经验模态分解、加权排列熵、卷积神经网络、长短期记忆网络和自注意力机制的超短期风电功率预测方法。首先,利用自适应噪声完全集合经验模态分解将原始风电功率时间序列自适应分解为一系列的模态分量,... 提出了一种结合自适应噪声完全集合经验模态分解、加权排列熵、卷积神经网络、长短期记忆网络和自注意力机制的超短期风电功率预测方法。首先,利用自适应噪声完全集合经验模态分解将原始风电功率时间序列自适应分解为一系列的模态分量,降低原始序列的非线性和波动性;其次,根据加权排列熵计算各模态分量间的相似性并对相似的分量进行重组,以修正自适应噪声完全集合经验模态分解的过度分解问题,使得修正后的模态分量更具规律性;最后,将重组后的分量输入卷积长短期记忆网络进行时序建模,并利用自注意力机制对卷积长短期记忆网络的神经元权重进行重新分配,提高了卷积长短期记忆网络对输入特征不确定性的适应能力。在此基础上,明确了自注意力机制和自适应噪声完全集合经验模态分解、加权排列熵在风电功率预测中的作用机制,以及风电功率信号包含的重要物理信息,证明了自适应噪声完全集合经验模态分解、加权排列熵以及自注意力机制在风电功率信号模态分解和长短期记忆网络隐层输出权重分配中的有效性。 展开更多
关键词 超短期风电功率预测 自适应噪声完全集合经验模态分解 加权排列熵 卷积长短期记忆网络 自注意力机制
下载PDF
一种改进组合神经网络的超短期风速预测方法研究 被引量:1
8
作者 邵宜祥 刘剑 +3 位作者 胡丽萍 过亮 方渊 李睿 《发电技术》 CSCD 2024年第2期323-330,共8页
超短期风速预测是保障风电机组桨距角前馈控制实施效果的关键,对提高风电机组环境适应性具有重要影响。为了提高预测精度,提出了一种改进组合神经网络的超短期风速预测方法。该方法选择适合时间序列预测且具有较强非线性学习能力的BP神... 超短期风速预测是保障风电机组桨距角前馈控制实施效果的关键,对提高风电机组环境适应性具有重要影响。为了提高预测精度,提出了一种改进组合神经网络的超短期风速预测方法。该方法选择适合时间序列预测且具有较强非线性学习能力的BP神经网络和长短期记忆(long short-term memory,LSTM)神经网络进行加权组合,以消除单个神经网络可能存在的较大误差;同时,为了提高组合效果,采用差分进化算法对组合权重进行优化。将该方法应用于某风场超短期风速预测中,通过与单神经网络预测、等权重组合神经网络预测的结果对比,验证了所提方法在提高预测精度上的有效性。 展开更多
关键词 风力发电 超短期风速预测 BP神经网络 长短期记忆(LSTM)神经网络 差分进化(DE)算法
下载PDF
基于改进Cao算法的SSA与误差修正的超短期风电功率预测
9
作者 张开伟 文中 +2 位作者 杨生鹏 胡梓涵 丁剑 《国外电子测量技术》 2024年第8期37-46,共10页
针对风电历史信息运用不充分和未充分挖掘机器学习模型潜力的问题,提出一种特征奇异谱分析和模型误差修正的超短期功率预测。首先,利用随机森林分析不同特征对输出功率的影响程度,并利用累积贡献率进行特征提取。其次,通过改进的Cao算... 针对风电历史信息运用不充分和未充分挖掘机器学习模型潜力的问题,提出一种特征奇异谱分析和模型误差修正的超短期功率预测。首先,利用随机森林分析不同特征对输出功率的影响程度,并利用累积贡献率进行特征提取。其次,通过改进的Cao算法确定奇异谱分析最佳嵌入维数,对提取的特征实现降噪处理,从而构建风电功率预测模型。最后,利用预测值与真实值的误差构建误差预测模型,通过预测的误差来修正功率预测的结果。以国内某小型风电场算例结果表明,所提方法较卷积神经网络-长短期记忆(CNN-LSTM)预测模型均方根误差(RSME)和均方误差(MSE)分别降低45%和53%,验证了所提模型的有效性。 展开更多
关键词 奇异谱分析 超短期功率预测 随机森林 累积贡献率 Cao算法 误差修正
下载PDF
基于VMD-PE-MulitiBiLSTM的超短期风电功率预测
10
作者 陈烨烨 李瑶 李捍东 《分布式能源》 2024年第2期1-7,共7页
为减少超短期风电功率预测的误差,提出基于变分模态分解(variational mode decomposition,VMD)-排列熵(permutation entropy,PE)和多层双向长短时记忆(multilayer bidirectional long short-term memory,MultiBiLSTM)组合的超短期风电... 为减少超短期风电功率预测的误差,提出基于变分模态分解(variational mode decomposition,VMD)-排列熵(permutation entropy,PE)和多层双向长短时记忆(multilayer bidirectional long short-term memory,MultiBiLSTM)组合的超短期风电功率预测模型。首先,利用VMD分解算法将历史风电功率序列分解成若干个子模态分量,根据计算的PE值重构分解的子模态风电分量;然后,使用特征注意力(feature attention,FA)机制和深度残差级联网络(deep residual cascade network,DRCnet)构建MulitiBiLSTM预测模型,预测重构后的子序列;最后,重构子序列预测值,得到最终风电功率预测结果。使用贵州某风场的数据集对所提出的方法进行验证,并和其他预测模型进行对比。结果表明,使用VMD-PE-MultiBiLSTM模型能显著降低风电功率预测误差。 展开更多
关键词 风电功率超短期预测 变分模态分解(VMD) 排列熵(PE) 多层双向长短时记忆(MultiBiLSTM)
下载PDF
风电集群短期及超短期功率预测精度改进方法综述 被引量:88
11
作者 彭小圣 熊磊 +4 位作者 文劲宇 程时杰 邓迪元 冯双磊 王勃 《中国电机工程学报》 EI CSCD 北大核心 2016年第23期6315-6326,6596,共12页
风电集群短期及超短期功率预测是提升电网健壮性的有力手段。该文总结国内外风电集群短期与超短期功率预测技术的现状,从集群和单个风电场两个方面,归纳风电功率预测技术的分类;从预测流程、数据来源、数据流向、物理层次4个方面论述风... 风电集群短期及超短期功率预测是提升电网健壮性的有力手段。该文总结国内外风电集群短期与超短期功率预测技术的现状,从集群和单个风电场两个方面,归纳风电功率预测技术的分类;从预测流程、数据来源、数据流向、物理层次4个方面论述风电集群功率预测系统的整体框架;提出具有泛化意义的风电功率预测的物理层次结构,并从数据层、映射层、特征层、模型层、反馈层5个不同的层面讨论风电功率预测技术的精度提升方法及其发展方向,对短期、超短期风电功率预测、集群功率预测的研究具有一定参考价值。 展开更多
关键词 风电集群预测 短期功率预测 超短期功率 预测物理层次 预测精度
下载PDF
考虑预测功率变化趋势的风电有功分群控制策略 被引量:16
12
作者 陈宁 谢杨 +4 位作者 汤奕 钱敏慧 姜达军 汪宁渤 朱凌志 《电网技术》 EI CSCD 北大核心 2014年第10期2752-2758,共7页
风电随机性和波动性导致有功功率调节难度大,为此提出了考虑功率预测趋势的风电有功动态分群控制策略。该策略利用风电超短期功率预测信息和风电场实时运行状态将风电场动态划分6类机群,给出了对风电功率先降后升和先升后降2种非单调变... 风电随机性和波动性导致有功功率调节难度大,为此提出了考虑功率预测趋势的风电有功动态分群控制策略。该策略利用风电超短期功率预测信息和风电场实时运行状态将风电场动态划分6类机群,给出了对风电功率先降后升和先升后降2种非单调变化趋势风电场群的功率预处理方法。在此基础上,确定了各类风电场群的控制原则,通过分析有功功率调节能力给出具体分配方法。利用国内某风电基地超短期功率预测数据进行仿真,验证了所提策略的有效性,结果表明通过风电场动态分群和优化控制,能够实现风电场有功功率的平滑控制,减少输出功率的波动次数。 展开更多
关键词 风力发电 动态分群 有功功率控制 超短期功率预测
下载PDF
基于GA优化SVM的风电功率的超短期预测 被引量:101
13
作者 刘爱国 薛云涛 +1 位作者 胡江鹭 刘路平 《电力系统保护与控制》 EI CSCD 北大核心 2015年第2期90-95,共6页
研究风电功率预测技术对于减轻其输出电能的随机性对电力系统的影响具有重要意义。首先结合风电监控系统数据库中的历史功率数据和环境参数形成样本数据,同时采用遗传算法优化该模型的核函数类型、核函数参数及错误惩罚因子等参数,建立... 研究风电功率预测技术对于减轻其输出电能的随机性对电力系统的影响具有重要意义。首先结合风电监控系统数据库中的历史功率数据和环境参数形成样本数据,同时采用遗传算法优化该模型的核函数类型、核函数参数及错误惩罚因子等参数,建立了GA-SVM模型,提高了模型参数组合优化选择的效率和预测精度。最后结合实例验证,并与标准SVM方法和BP神经网络方法比较。预测效果表明:所提出的GA-SVM优化模型在超短期风电功率预测上具有更优的学习能力和泛化能力。 展开更多
关键词 风电场功率预测 支持向量机 遗传算法 超短期预测
下载PDF
风电场超短期风速预测的相空间优化邻域局域法 被引量:9
14
作者 王扬 张金江 +3 位作者 温柏坚 郭创新 曹一家 吴栋梁 《电力系统自动化》 EI CSCD 北大核心 2011年第24期39-43,58,共5页
基于相空间重构技术和局域预测法,提出一种风电场超短期风速预测的新方法。该方法通过优化的相空间邻域寻找预测状态点在相空间中的邻域点,并建立支持向量回归(SVR)模型。通过考察伪近邻点的比重来选取合适的邻域半径,保证了邻域点与预... 基于相空间重构技术和局域预测法,提出一种风电场超短期风速预测的新方法。该方法通过优化的相空间邻域寻找预测状态点在相空间中的邻域点,并建立支持向量回归(SVR)模型。通过考察伪近邻点的比重来选取合适的邻域半径,保证了邻域点与预测状态点的高度相似性,而SVR模型则具有很强的高维非线性拟合能力。实例分析表明,该方法与其他方法相比具有较好的超短期风速预测效果。 展开更多
关键词 风力发电 超短期风速预测 局域预测法 支持向量回归(SVR) 相空间重构 伪近邻点
下载PDF
含超短期风功率预测增强处理的风储系统超前滚动优化控制策略 被引量:16
15
作者 李滨 邓有雄 陈碧云 《电网技术》 EI CSCD 北大核心 2021年第6期2280-2287,共8页
因风电固有的高不确定性与强随机性的特点,在电力市场中难以与传统机组相竞争,影响其大规模地接入电网。为提高风电跟踪计划出力能力与市场竞争力,首先结合电池储能系统,考虑风储系统运行约束,建立了以区域发电机组并网要求下惩罚电量... 因风电固有的高不确定性与强随机性的特点,在电力市场中难以与传统机组相竞争,影响其大规模地接入电网。为提高风电跟踪计划出力能力与市场竞争力,首先结合电池储能系统,考虑风储系统运行约束,建立了以区域发电机组并网要求下惩罚电量与电池吞吐量最小为目标的优化模型;其次利用卡尔曼滤波算法对超短期风电功率预测数据进行增强处理,提高预测功率的时间分辨率与预测精度;在此基础上,将预测增强处理与超前滚动优化结合,提出了一种含超短期风功率预测增强处理的风储系统超前滚动优化控制策略。仿真结果表明,所提优化控制策略可在满足传统机组并网要求下,提高风储系统市场竞争力与经济性。 展开更多
关键词 风储联合系统 超短期风电功率预测 预测增强处理 滚动优化 控制策略
下载PDF
基于超短期风电功率预测的混合储能控制策略研究 被引量:5
16
作者 李燕青 袁燕舞 +3 位作者 郭通 王子睿 仝年 史依茗 《电测与仪表》 北大核心 2017年第15期50-57,共8页
为了改善风机出力特性,提出了一种基于超短期风电功率预测的混合储能控制策略。首先,利用解析模态分解方法从风电信号中提取低频信号,采用了一种改进布谷鸟方法优化支持向量机的惩罚因子参数和核函数参数进行超短期功率预测;然后,对低... 为了改善风机出力特性,提出了一种基于超短期风电功率预测的混合储能控制策略。首先,利用解析模态分解方法从风电信号中提取低频信号,采用了一种改进布谷鸟方法优化支持向量机的惩罚因子参数和核函数参数进行超短期功率预测;然后,对低频预测信号建立1 min时间尺度和30 min时间尺度的功率波动并网指标,判断是否触发蓄电池动作,若动作,采用AMD分解自适应调整低频预测信号的截止频率,直到满足并网要求,确定蓄电池补偿功率指令。最后根据蓄电池荷电状态和补偿功率指令自适应调节原始风电信号截止频率,高频信号通过模糊控制由超级电容器补偿。仿真算例表明,该方法可以有效平滑功率波动,减少蓄电池的循环次数,同时保证了蓄电池储能的平滑能力,避免过充过放,延长蓄电池的寿命。 展开更多
关键词 混合储能 解析模态分解 改进布谷鸟 超短期功率预测 功率波动 自适应调节
下载PDF
基于时间模式注意力机制的BiLSTM多风电机组超短期功率预测 被引量:39
17
作者 王渝红 史云翔 +3 位作者 周旭 曾琦 方飚 毕悦 《高电压技术》 EI CAS CSCD 北大核心 2022年第5期1884-1892,共9页
针对现有预测方法难以批量处理多风机间不同特征的问题,提出了基于时间模式注意力(temporal pattern attention,TPA)机制的双向长短时记忆(bidirectional long short-term memory,BiLSTM)网络多风电机组超短期功率预测方法。首先,基于... 针对现有预测方法难以批量处理多风机间不同特征的问题,提出了基于时间模式注意力(temporal pattern attention,TPA)机制的双向长短时记忆(bidirectional long short-term memory,BiLSTM)网络多风电机组超短期功率预测方法。首先,基于集合经验模态分解(ensemble empirical mode decomposition,EEMD)获得风机原始功率信号的不同模态分量,以降低神经网络预测难度。其次,基于TPA机制,从Bi LSTM网络得到的隐藏行向量中提取多风机之间的复杂联系,从而使得具有不同特征的模态可以从不同时间步选择相关信息,进而降低各模态的预测误差。最后,将TPA机制与传统注意力机制应用于分散分布的14台风机区域功率预测任务。研究结果表明:基于本方法的多风电机组超短期功率预测的标准均方根误差仅为0.0546,证明TPA机制能有效提高多风电机组的超短期功率预测精度。 展开更多
关键词 超短期风电功率预测 多风电机组 时间模式注意力机制 双向长短时记忆 集合经验模态分解
下载PDF
基于动态集成LSSVR的超短期风电功率预测 被引量:3
18
作者 刘荣胜 彭敏放 +2 位作者 张海燕 万勋 沈美娥 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2017年第4期79-86,共8页
针对最小二乘支持向量回归(Least Square Support Vector Regression,LSSVR)建模风电功率时变特性的局限性,提出了一种基于动态集成LSSVR的超短期风电功率预测模型.首先利用风电场监测控制与数据采集(Supervisory Control And Data Acqu... 针对最小二乘支持向量回归(Least Square Support Vector Regression,LSSVR)建模风电功率时变特性的局限性,提出了一种基于动态集成LSSVR的超短期风电功率预测模型.首先利用风电场监测控制与数据采集(Supervisory Control And Data Acquisition,SCADA)与数值天气预报(Numerical Weather Prediction,NWP)系统的历史数据建立离线单体LSSVR模型库,然后根据预测时段与训练时段NWP序列的相似度从单体LSSVR模型库中动态选择候选集成成员,再后综合考虑正确性与多样性确定集成成员.最后由预测时段与训练时段NWP序列间的相似度分配集成LSSVR成员的权重.通过对湖南省某风电场输出功率进行预测,验证了动态集成LSSVR预测模型的有效性,与持续法、自回归求和移动平均法、单体LSSVR模型、常权重LSSVR组合模型及BPNN动态集成模型相比,动态集成LSSVR模型具有更高的精度,在天气非平稳变化阶段更加明显. 展开更多
关键词 超短期风电功率预测 最小二乘支持向量回归 动态集成 动态时间弯曲距离 数值天气预报
下载PDF
基于粒子群优化的SVR风电功率超短期预测 被引量:3
19
作者 徐炜君 裴欢 魏勇 《东北师大学报(自然科学版)》 CAS CSCD 北大核心 2017年第1期73-77,共5页
建立了风电功率预测系统并提高其预测精度和预测速度.分析影响风机出力的主要因素并结合风电场实测风速数据和环境参数,提出了一种基于粒子群优化的SVR风电功率超短期预测模型,该模型可以有效地优化支持向量回归机(SVR)的主要参数.通过... 建立了风电功率预测系统并提高其预测精度和预测速度.分析影响风机出力的主要因素并结合风电场实测风速数据和环境参数,提出了一种基于粒子群优化的SVR风电功率超短期预测模型,该模型可以有效地优化支持向量回归机(SVR)的主要参数.通过与遗传算法优化的预测模型(GA-SVR)进行比较,发现该预测模型在超短期风电功率预测上有较高的预测精度和运算速度. 展开更多
关键词 风力发电 超短期预测 支持向量回归机(SVR) 粒子群优化算法
下载PDF
基于VMD-SE-IPSO-BNN的超短期风电功率预测 被引量:8
20
作者 殷豪 董朕 孟安波 《电测与仪表》 北大核心 2018年第2期45-51,共7页
准确预测风电功率对风电规模化并网至关重要。为了更精确的对风电功率进行预测,提出一种基于可变模式分解(Variational Mode Decomposition,VMD)-样本熵(Sample Entropy,SE)和改进粒子群算法(Improved Particle Swarm Optimization,IPSO... 准确预测风电功率对风电规模化并网至关重要。为了更精确的对风电功率进行预测,提出一种基于可变模式分解(Variational Mode Decomposition,VMD)-样本熵(Sample Entropy,SE)和改进粒子群算法(Improved Particle Swarm Optimization,IPSO)优化贝叶斯神经网络(Bayesian Neural Network,BNN)的超短期风电功率组合预测模型。首先采用VMD-SE将原始风电功率时间序列分解为一系列不同带宽的模式分量以降低其非线性,然后对全部分量分别建立贝叶斯神经网络模型进行预测,并采用IPSO对神经网络的权值和阈值进行寻优,以求获得最佳的预测效果。实验结果表明,基于VMD-SE的预测模型较采用其他常规分解方式时预测精度明显提高,所提组合预测模型具有较高的预测精度。 展开更多
关键词 超短期风电功率预测 可变模式分解 样本熵 改进粒子群算法 贝叶斯神经网络 预测精度
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部