Mutual coupling reduction or isolation enhancement in antenna arrays is an important area of research as it severely affects the performance of an antenna.In this paper,a new type of compact and highly isolated Multip...Mutual coupling reduction or isolation enhancement in antenna arrays is an important area of research as it severely affects the performance of an antenna.In this paper,a new type of compact and highly isolated Multiple-Input-Multiple-Output(MIMO)antenna for ultra-wideband(UWB)applications is presented.The design consists of four radiators that are orthogonally positioned and confined to a compact 40×40×0.8 mm3 space.The final antenna design uses an inverted L shape partial ground to produce an acceptable reflection coefficient(S11<−10 dB)in an entire UWB band(3.1–10.6)giga hertz(GHz).Moreover,the inter-element isolation has also been enhanced to>20 db for majority of the UWB band.The antenna was fabricated and tested with the vector network analyzer(VNA)and in an anechoic chamber for scattering parameters and radiation patterns.Furthermore,different MIMO diversity performance metrics are also measured to validate the proposed model.The simulation results and the experimental results from the constructed model agree quite well.The proposed antenna is compared with similar designs in recently published literature for various performance metrics.Because of its low envelope correlation coefficient(ECC<0.1),high diversity gain(DG>9.99 dB),peak gain of 4.6 dB,reduced channel capacity loss(CCL<0.4 b/s/Hz),and average radiation efficiency of over 85%,the proposed MIMO antenna is ideally suited for practical UWB applications.展开更多
A simple and compact microstrip-fed ultra wideband (UWB) printed monopole antenna is presented. The antenna is composed of a circular radiator and a finitely grounded plane. The antenna occupies about 16.62 GHz abso...A simple and compact microstrip-fed ultra wideband (UWB) printed monopole antenna is presented. The antenna is composed of a circular radiator and a finitely grounded plane. The antenna occupies about 16.62 GHz absolute bandwidth and 142.7% relative bandwidth covering from 3.38 GHz to 20 GHz with voltage standing wave ratio (VSWR) below two. A quasi-omnidirectional and quasi-symmetrical radiation pattern in H plane is obtained in the whole bandwidth. The high performance of the antenna is validated with measured and simulated results given. The antenna can be applied for the system design of UWB wireless communication.展开更多
In order to broaden the bandwidth of a tapered slot- line antenna (TSA), a bilateral tapered slot-line antenna (BTSA) with a new feeding structure of coplanar waveguide (CPW) is developed. Based on the fact that...In order to broaden the bandwidth of a tapered slot- line antenna (TSA), a bilateral tapered slot-line antenna (BTSA) with a new feeding structure of coplanar waveguide (CPW) is developed. Based on the fact that the bandwidth limitation of TSA mainly depends on its feeding structure, an improved CPW-based feed structure etched on the backboard of the BTSA is adopted to perform traveling-wave transition. Both the simulation results and measurement data verify that the proposed feeding structure results in "high-pass" frequency response for antenna impedance matching. The voltage standing wave ratio (VSWR) is less than 2:1 when the frequency is higher than 3 GHz. The antenna gain exceeds 7 dBi with good radiation patterns when the bandwidth is from 4 to 16 GHz. This ultra wideband (UWB) antenna with a compact size is specially available for the electronic systems of counter-measure and microwave imaging.展开更多
A kind of compact ultra wideband (UWB) monopole antenna with dual-band notched function is presented.The proposed antenna,using "C" and "L" apertures embedded in the annular ring patch and ground patch,gets two ...A kind of compact ultra wideband (UWB) monopole antenna with dual-band notched function is presented.The proposed antenna,using "C" and "L" apertures embedded in the annular ring patch and ground patch,gets two bandnotched characteristics in WiMAX3.5 GHz and WLAN 5.5 GHz.The size of antenna is 24 mm × 36 mm × 1.6 mm.The simulation results show that waveband range of the antenna is 2.7-10.6 GHz for S11 <-10 dB and the band-notched wavebands are 3.2-3.8 GHz and 5.1-6 GHz.So it has miniaturization,ultra-band and band-notched characteristics.Meanwhile,the radition pattern,directivety and gain are perfect,which meets the practical need.展开更多
In this paper, a compact coplanar epsilon.negative(ENG) antenna is proposed with ultra.wide operation band and small size of 18×11.5 mm2. The proposed antenna is designed based on a coplanar.waveguide(CPW) feedin...In this paper, a compact coplanar epsilon.negative(ENG) antenna is proposed with ultra.wide operation band and small size of 18×11.5 mm2. The proposed antenna is designed based on a coplanar.waveguide(CPW) feeding antenna, and thus the via.free structure is employed to realize the ENG unit cell, which is convenient to tune the frequency of zeroth.order resonance(ZOR) and extends the ZOR bandwidth. The high.order resonant frequencies are achieved and mainly determined by the separate slots that are located between the radiating patch and the ground plane. Adding the left.handed inductance between the radiating patch and ground has slight impact on the high.order resonant frequencies, and then the ultra.wide band is achieved by merging the ZOR bandwidth with the high.order resonant bandwidths. The ground plane primarily works as a matching network for the proposed antenna. Although it generates a low.frequency resonance, the performance is undesirable due to the impedance mismatching. The measured results show that the reflection coefficient, |S11| <.10 d B, is in a wide frequency range from 5.25 to 13 GHz, which covers the upper operation band of UWB communication. Also, the antenna contains relatively stable gains and omni.directional radiation patterns.展开更多
This paper introduces the advances of ultra-wideband (UWB) and super-wideband (SWB) planar antennas based on the printed monopole, microstrip slot and other planar antenna designs in the last decade. A brief histo...This paper introduces the advances of ultra-wideband (UWB) and super-wideband (SWB) planar antennas based on the printed monopole, microstrip slot and other planar antenna designs in the last decade. A brief history of the ultrawideband antennas is first provided. Several types of planar antennas for UWB systems with band-notched designs are reviewed. Special SWB planar antenna designs with the bandwidth ratio greater than 10:1 including metal-plate and printed monopole antennas and tapered slot antennas are presented and compared.展开更多
In this letter, a simple monopole antenna with variable band-notched characteristic for ultra wide band (UWB) function is proposed. Two L-shaped quarter-waveguide resonators coupled to the ground plane with two shorti...In this letter, a simple monopole antenna with variable band-notched characteristic for ultra wide band (UWB) function is proposed. Two L-shaped quarter-waveguide resonators coupled to the ground plane with two shorting tracks at the sides of the antenna are used to generate stop-band performance around 5.5 GHz (WLAN). The proposed antenna is fabricated on the substrate FR4 (relative permittivity of 4.7) and has a compact size of 16 × 28.5 × 1.6 mm. The designed antenna has a good impedance matching in 3.1 - 11.4 GHz frequency range with VSWR < 2, except the band 5 - 5.85 GHz.展开更多
A new type of ultra-wideband (UWB) printed monopole antennas is presented, which is composed of a circular or armular patch and a trapeziform ground plane with a tapered CPW feeder in the middle. Both simulated and ...A new type of ultra-wideband (UWB) printed monopole antennas is presented, which is composed of a circular or armular patch and a trapeziform ground plane with a tapered CPW feeder in the middle. Both simulated and experimental results are presented, showing good agreement and therefore verifying validity of the design. The proposed antenna with a circular monopole patch achieves an 11.6: 1 measured ratio bandwidth of VSWR ≤2 ( from 0,79 GHz to 9.16 GHz), while that with an annular patch obtains a measured ratio impedance bandwidth of 10.6:1 (from 0.87 GHz to 9.47 GHz). In addition, these designs exhibit nearly omnidirectional radiation patterns with simple compact structures, which axe attractive in communications and others UWB applications.展开更多
Circularly polarized (CP) lens antenna has been applied to numerous wireless communication systems based on its unique advantages such as high antenna gain, low manufacturing cost, especially stable data transmissio...Circularly polarized (CP) lens antenna has been applied to numerous wireless communication systems based on its unique advantages such as high antenna gain, low manufacturing cost, especially stable data transmission between the transmitter and the receiver. Unfortunately, current available CP lens antennas mostly suffer from high profile, low aperture efficiency as well as complex design. In this paper, we propose an ultra-thin CP lens antenna based on the designed single- layered Pancharatnam-Berry (PB) transparent metasurface with focusing property. The PB metasurface exhibits a high transmissivity, which ensures a high efficiency of the focusing property. Launched the metasurface with a CP patch antenna at its focal point, a low-profile lens antenna is simulated and measured. The experimental results show that our lens antenna exhibits a series of advantages including high radiation gain of 20.7 dB, aperture efficiency better than 41.3%, and also narrow half power beam width (HPBW) of 13°at about 14GHz. Our finding opens a door to realize ultra-thin transparent metasurface with other functionalities or at other working frequencies.展开更多
Ultra-wideband (UWB) is one of the recent topics that received a great concern from academia and industry. However, UWB found many difficulties to be standardized due to the overlay working that made UWB an important ...Ultra-wideband (UWB) is one of the recent topics that received a great concern from academia and industry. However, UWB found many difficulties to be standardized due to the overlay working that made UWB an important potential interference source to many licensed and unlicensed spectrum throughout the band 3.1 to 10.6 GHz. This paper demonstrates the design of integrated triple band notched for UWB Microstrip antenna. We simulated UWB short range systems which require low power and these are built using inexpensive digital components. We proposed a compact triple band notched CPW (Co-planar Waveguide) fed Micro strip Antenna (MSA) for UWB. This band-notched antenna has rejection characteristics at 3.2 GHz (for Wi-MAX band 3.16 to 3.32 GHz), at 5.5 GHz (for WLAN 2 band—5.3 to 5.72 GHz) and at 7.9 GHz (for ITU band 7.72 GHz to 8.13 GHz). The simulation was done using IE3D simulator.展开更多
A CPW-fed ultra-wideband antenna was designed. The antenna was etched on a single-layer copper-cladding substrate, of which the material was FR4 with relative permittivity of 4.4, and the magnitude was 40.0 mm × ...A CPW-fed ultra-wideband antenna was designed. The antenna was etched on a single-layer copper-cladding substrate, of which the material was FR4 with relative permittivity of 4.4, and the magnitude was 40.0 mm × 50.0 mm × 1.6 mm. The parameters of the antenna are simulated and optimized with HFSS. This paper proposes a new trapezoidal CPW-fed UWB antenna that the bandwidth (return loss ≤ ?10 dB) covers 2.7 - 9.3 GHz range, which means a relative bandwidth of 110% with good radiation patterns and gain. Simulated and measured results for return loss, radiation pattern and gain were presented. A good agreement has been obtained between the simulation and experiment and the proposed antenna meets the requirements of the ultra-wideband antenna.展开更多
A simple and compact microstrip-fed Ultra WideBand(UWB) printed monopole antenna with band-notched characteristic is proposed in this paper.The antenna is composed of a square ring with a small strip bar,so that the a...A simple and compact microstrip-fed Ultra WideBand(UWB) printed monopole antenna with band-notched characteristic is proposed in this paper.The antenna is composed of a square ring with a small strip bar,so that the antenna occupies about 7.69 GHz bandwidth covering 3.11~10.8 GHz with expected band rejection from 5.12 GHz to 5.87 GHz.A quasi-omnidirectional and quasi-sym-metrical radiation pattern is also obtained.This kind of band-notched UWB antenna requires no ex-ternal filters and thus greatly simplifies the system design of UWB wireless communication.展开更多
In this paper, on-body radio channel performance of a compact ultra wideband (UWB) antenna is investigated for body-centric wireless communications. Measurement campaigns were first done in the chamber and then repeat...In this paper, on-body radio channel performance of a compact ultra wideband (UWB) antenna is investigated for body-centric wireless communications. Measurement campaigns were first done in the chamber and then repeated in an indoor environment for comparison. The path loss parameter for eight different on-body radio channels has been characterized and analyzed. In addition, the path loss was modeled as a function of distance for 34 different receiver locations for propagation along the front part of the body. Results and analysis show that, compared with anechoic chamber, a reduction of 16.34% path loss exponent is noticed in indoor environment. The antenna shows very good on-body radio channel performance and will be a suitable candidate for future efficient and reliable body-centric wireless communications.展开更多
Multiband orthogonal frequency division multiplexing (MB-OFDM) ultra wide-band (UWB) is a novel wireless communication technology. It has many advantages and is being actively researhed. In this study, we constructed ...Multiband orthogonal frequency division multiplexing (MB-OFDM) ultra wide-band (UWB) is a novel wireless communication technology. It has many advantages and is being actively researhed. In this study, we constructed and implemented a simulation model of UWB communication systems in Simulink. We found the MB-OFDM UWB system has the best performance in distance between 4 m to 10 m without the line-of-sight requirement.展开更多
This paper proposes a printed log-periodic dipole antenna (LPDA) for ultra wide bandwidth (UWB) applications. The antenna comprises of cascading four U shaped elements of different line lengths with balun circuit to i...This paper proposes a printed log-periodic dipole antenna (LPDA) for ultra wide bandwidth (UWB) applications. The antenna comprises of cascading four U shaped elements of different line lengths with balun circuit to improve the antenna impedance matching. The proposed antenna dimensions are 50 × 50 mm2 with FR4 substrate thickness 0.8 mm. Full-wave EM solver HFSS (High Frequency Structure Simulator) is used for modeling the proposed antenna. The pulse distortion is verified by the measured the proposed antenna performance with virtually steady group delay. The simulation and experimental results show that the proposed antenna exhibits good impedance matching, stable radiation patterns throughout the whole operating frequency bands, acceptable gain and stable group delay over the entire operating band. An UWB extended from 1.85 GHz to 11 GHz is obtained, and the average antenna gain is about 5.5 dBi over the operating band with peak gain around 6.5 dBi and 70% average radiation efficiency.展开更多
A new kind of ultra wideband antenna,which consists of a leaf-like dipole and a dielectric block,is proposed and analyzed.The dielectric block is attached in parallel with the dipole near its feed point.Thus,the near ...A new kind of ultra wideband antenna,which consists of a leaf-like dipole and a dielectric block,is proposed and analyzed.The dielectric block is attached in parallel with the dipole near its feed point.Thus,the near field is attracted to the side where the dielectric block is located.It leads to a focusing effect of the energy in the far zone.The finite-difference time-domain(FDTD)method combined with the perfectly matched layers(PML)technique is used in the simulation of the antenna radiation characteristics.The research shows that,with proper dielectric loading and 50 Ω feeding line,the bandwidth of the antenna can be up to 6.5 GHz,from 3.5 GHz to 10 GHz with VSWR(voltage standing wave ratio)less than 2.5.展开更多
In this paper, an ultra-compact single negative(SNG) electric waveguided metamaterial(WG-MTM) is first investigated and used to reduce the mutual coupling in E & H planes of a dual-band microstrip antenna array. ...In this paper, an ultra-compact single negative(SNG) electric waveguided metamaterial(WG-MTM) is first investigated and used to reduce the mutual coupling in E & H planes of a dual-band microstrip antenna array. The proposed SNG electric WG-MTM unit cell is designed by etching two different symmetrical spiral lines on the ground, and has two stopbands operating at 1.86 GHz and 2.40 GHz. The circuit size is very compact, which is only λ_0/33.6 ×λ_0/15.1(where λ_0 is the wavelength at 1.86 GHz in free space). Taking advantage of the dual-stopband property of the proposed SNG electric WG-MTM, a dual-band microstrip antenna array operating at 1.86 GHz and 2.40 GHz with very low mutual coupling is designed by embedding a cross shaped array of the proposed SNG electric WG-MTM. The measured and simulated results of the designed dual-band antenna array are in good agreement with each other, indicating that the mutual coupling of the fabricated dual-band antenna array realizes 9.8/11.1 d B reductions in the H plane, 8.5/7.9 d B reductions in the E plane at1.86 GHz and 2.40 GHz, respectively. Besides, the distance of the antenna elements in the array is only 0.35 λ_0(where λ_0 is the wavelength at 1.86 GHz in free space). The proposed strategy is used for the first time to reduce the mutual coupling in E & H planes of the dual-band microstrip antenna array by using ultra-compact SNG electric WG-MTM.展开更多
Using the wire construction technique, a conical monopole antenna is fabricated. With the method of moments, the dependences of the voltage standing wave ratio (VSWR) on the number of the trapezoid wire elements, co...Using the wire construction technique, a conical monopole antenna is fabricated. With the method of moments, the dependences of the voltage standing wave ratio (VSWR) on the number of the trapezoid wire elements, conical angles, wire radius, etc. are investigated. The calculation and the experiment show that the designed wire conical antenna has the ultra-wideband property and can be used for the engineering.展开更多
基金Deanship of ScientificResearch,King Abdulaziz University for providing financial vide grant number (KEP-MSc-41-135-1443).
文摘Mutual coupling reduction or isolation enhancement in antenna arrays is an important area of research as it severely affects the performance of an antenna.In this paper,a new type of compact and highly isolated Multiple-Input-Multiple-Output(MIMO)antenna for ultra-wideband(UWB)applications is presented.The design consists of four radiators that are orthogonally positioned and confined to a compact 40×40×0.8 mm3 space.The final antenna design uses an inverted L shape partial ground to produce an acceptable reflection coefficient(S11<−10 dB)in an entire UWB band(3.1–10.6)giga hertz(GHz).Moreover,the inter-element isolation has also been enhanced to>20 db for majority of the UWB band.The antenna was fabricated and tested with the vector network analyzer(VNA)and in an anechoic chamber for scattering parameters and radiation patterns.Furthermore,different MIMO diversity performance metrics are also measured to validate the proposed model.The simulation results and the experimental results from the constructed model agree quite well.The proposed antenna is compared with similar designs in recently published literature for various performance metrics.Because of its low envelope correlation coefficient(ECC<0.1),high diversity gain(DG>9.99 dB),peak gain of 4.6 dB,reduced channel capacity loss(CCL<0.4 b/s/Hz),and average radiation efficiency of over 85%,the proposed MIMO antenna is ideally suited for practical UWB applications.
文摘A simple and compact microstrip-fed ultra wideband (UWB) printed monopole antenna is presented. The antenna is composed of a circular radiator and a finitely grounded plane. The antenna occupies about 16.62 GHz absolute bandwidth and 142.7% relative bandwidth covering from 3.38 GHz to 20 GHz with voltage standing wave ratio (VSWR) below two. A quasi-omnidirectional and quasi-symmetrical radiation pattern in H plane is obtained in the whole bandwidth. The high performance of the antenna is validated with measured and simulated results given. The antenna can be applied for the system design of UWB wireless communication.
基金The National High Technology Research and Development Program of China(863 Program)(No.2007AA01Z264)
文摘In order to broaden the bandwidth of a tapered slot- line antenna (TSA), a bilateral tapered slot-line antenna (BTSA) with a new feeding structure of coplanar waveguide (CPW) is developed. Based on the fact that the bandwidth limitation of TSA mainly depends on its feeding structure, an improved CPW-based feed structure etched on the backboard of the BTSA is adopted to perform traveling-wave transition. Both the simulation results and measurement data verify that the proposed feeding structure results in "high-pass" frequency response for antenna impedance matching. The voltage standing wave ratio (VSWR) is less than 2:1 when the frequency is higher than 3 GHz. The antenna gain exceeds 7 dBi with good radiation patterns when the bandwidth is from 4 to 16 GHz. This ultra wideband (UWB) antenna with a compact size is specially available for the electronic systems of counter-measure and microwave imaging.
文摘A kind of compact ultra wideband (UWB) monopole antenna with dual-band notched function is presented.The proposed antenna,using "C" and "L" apertures embedded in the annular ring patch and ground patch,gets two bandnotched characteristics in WiMAX3.5 GHz and WLAN 5.5 GHz.The size of antenna is 24 mm × 36 mm × 1.6 mm.The simulation results show that waveband range of the antenna is 2.7-10.6 GHz for S11 <-10 dB and the band-notched wavebands are 3.2-3.8 GHz and 5.1-6 GHz.So it has miniaturization,ultra-band and band-notched characteristics.Meanwhile,the radition pattern,directivety and gain are perfect,which meets the practical need.
基金supported by the National Natural Science Foundation of China (NNSF) under Grant 61531016National Natural Science Foundation of China (NNSF) under Grant 61271090+1 种基金Sichuan province science and technology support project under Grant 2016GZ0059Sichuan province science and technology support project under Grant 2017GZ0110
文摘In this paper, a compact coplanar epsilon.negative(ENG) antenna is proposed with ultra.wide operation band and small size of 18×11.5 mm2. The proposed antenna is designed based on a coplanar.waveguide(CPW) feeding antenna, and thus the via.free structure is employed to realize the ENG unit cell, which is convenient to tune the frequency of zeroth.order resonance(ZOR) and extends the ZOR bandwidth. The high.order resonant frequencies are achieved and mainly determined by the separate slots that are located between the radiating patch and the ground plane. Adding the left.handed inductance between the radiating patch and ground has slight impact on the high.order resonant frequencies, and then the ultra.wide band is achieved by merging the ZOR bandwidth with the high.order resonant bandwidths. The ground plane primarily works as a matching network for the proposed antenna. Although it generates a low.frequency resonance, the performance is undesirable due to the impedance mismatching. The measured results show that the reflection coefficient, |S11| <.10 d B, is in a wide frequency range from 5.25 to 13 GHz, which covers the upper operation band of UWB communication. Also, the antenna contains relatively stable gains and omni.directional radiation patterns.
基金Project supported by the National Natural Science Foundation of China (Grant No.60571053), and the Shanghai Leading Academic Discipline Project (Grant No.T0102).
文摘This paper introduces the advances of ultra-wideband (UWB) and super-wideband (SWB) planar antennas based on the printed monopole, microstrip slot and other planar antenna designs in the last decade. A brief history of the ultrawideband antennas is first provided. Several types of planar antennas for UWB systems with band-notched designs are reviewed. Special SWB planar antenna designs with the bandwidth ratio greater than 10:1 including metal-plate and printed monopole antennas and tapered slot antennas are presented and compared.
文摘In this letter, a simple monopole antenna with variable band-notched characteristic for ultra wide band (UWB) function is proposed. Two L-shaped quarter-waveguide resonators coupled to the ground plane with two shorting tracks at the sides of the antenna are used to generate stop-band performance around 5.5 GHz (WLAN). The proposed antenna is fabricated on the substrate FR4 (relative permittivity of 4.7) and has a compact size of 16 × 28.5 × 1.6 mm. The designed antenna has a good impedance matching in 3.1 - 11.4 GHz frequency range with VSWR < 2, except the band 5 - 5.85 GHz.
文摘A new type of ultra-wideband (UWB) printed monopole antennas is presented, which is composed of a circular or armular patch and a trapeziform ground plane with a tapered CPW feeder in the middle. Both simulated and experimental results are presented, showing good agreement and therefore verifying validity of the design. The proposed antenna with a circular monopole patch achieves an 11.6: 1 measured ratio bandwidth of VSWR ≤2 ( from 0,79 GHz to 9.16 GHz), while that with an annular patch obtains a measured ratio impedance bandwidth of 10.6:1 (from 0.87 GHz to 9.47 GHz). In addition, these designs exhibit nearly omnidirectional radiation patterns with simple compact structures, which axe attractive in communications and others UWB applications.
基金Project supported by the National Natural Science Foundation of China(Grant No.61372034)
文摘Circularly polarized (CP) lens antenna has been applied to numerous wireless communication systems based on its unique advantages such as high antenna gain, low manufacturing cost, especially stable data transmission between the transmitter and the receiver. Unfortunately, current available CP lens antennas mostly suffer from high profile, low aperture efficiency as well as complex design. In this paper, we propose an ultra-thin CP lens antenna based on the designed single- layered Pancharatnam-Berry (PB) transparent metasurface with focusing property. The PB metasurface exhibits a high transmissivity, which ensures a high efficiency of the focusing property. Launched the metasurface with a CP patch antenna at its focal point, a low-profile lens antenna is simulated and measured. The experimental results show that our lens antenna exhibits a series of advantages including high radiation gain of 20.7 dB, aperture efficiency better than 41.3%, and also narrow half power beam width (HPBW) of 13°at about 14GHz. Our finding opens a door to realize ultra-thin transparent metasurface with other functionalities or at other working frequencies.
文摘Ultra-wideband (UWB) is one of the recent topics that received a great concern from academia and industry. However, UWB found many difficulties to be standardized due to the overlay working that made UWB an important potential interference source to many licensed and unlicensed spectrum throughout the band 3.1 to 10.6 GHz. This paper demonstrates the design of integrated triple band notched for UWB Microstrip antenna. We simulated UWB short range systems which require low power and these are built using inexpensive digital components. We proposed a compact triple band notched CPW (Co-planar Waveguide) fed Micro strip Antenna (MSA) for UWB. This band-notched antenna has rejection characteristics at 3.2 GHz (for Wi-MAX band 3.16 to 3.32 GHz), at 5.5 GHz (for WLAN 2 band—5.3 to 5.72 GHz) and at 7.9 GHz (for ITU band 7.72 GHz to 8.13 GHz). The simulation was done using IE3D simulator.
文摘A CPW-fed ultra-wideband antenna was designed. The antenna was etched on a single-layer copper-cladding substrate, of which the material was FR4 with relative permittivity of 4.4, and the magnitude was 40.0 mm × 50.0 mm × 1.6 mm. The parameters of the antenna are simulated and optimized with HFSS. This paper proposes a new trapezoidal CPW-fed UWB antenna that the bandwidth (return loss ≤ ?10 dB) covers 2.7 - 9.3 GHz range, which means a relative bandwidth of 110% with good radiation patterns and gain. Simulated and measured results for return loss, radiation pattern and gain were presented. A good agreement has been obtained between the simulation and experiment and the proposed antenna meets the requirements of the ultra-wideband antenna.
文摘A simple and compact microstrip-fed Ultra WideBand(UWB) printed monopole antenna with band-notched characteristic is proposed in this paper.The antenna is composed of a square ring with a small strip bar,so that the antenna occupies about 7.69 GHz bandwidth covering 3.11~10.8 GHz with expected band rejection from 5.12 GHz to 5.87 GHz.A quasi-omnidirectional and quasi-sym-metrical radiation pattern is also obtained.This kind of band-notched UWB antenna requires no ex-ternal filters and thus greatly simplifies the system design of UWB wireless communication.
文摘In this paper, on-body radio channel performance of a compact ultra wideband (UWB) antenna is investigated for body-centric wireless communications. Measurement campaigns were first done in the chamber and then repeated in an indoor environment for comparison. The path loss parameter for eight different on-body radio channels has been characterized and analyzed. In addition, the path loss was modeled as a function of distance for 34 different receiver locations for propagation along the front part of the body. Results and analysis show that, compared with anechoic chamber, a reduction of 16.34% path loss exponent is noticed in indoor environment. The antenna shows very good on-body radio channel performance and will be a suitable candidate for future efficient and reliable body-centric wireless communications.
文摘Multiband orthogonal frequency division multiplexing (MB-OFDM) ultra wide-band (UWB) is a novel wireless communication technology. It has many advantages and is being actively researhed. In this study, we constructed and implemented a simulation model of UWB communication systems in Simulink. We found the MB-OFDM UWB system has the best performance in distance between 4 m to 10 m without the line-of-sight requirement.
文摘This paper proposes a printed log-periodic dipole antenna (LPDA) for ultra wide bandwidth (UWB) applications. The antenna comprises of cascading four U shaped elements of different line lengths with balun circuit to improve the antenna impedance matching. The proposed antenna dimensions are 50 × 50 mm2 with FR4 substrate thickness 0.8 mm. Full-wave EM solver HFSS (High Frequency Structure Simulator) is used for modeling the proposed antenna. The pulse distortion is verified by the measured the proposed antenna performance with virtually steady group delay. The simulation and experimental results show that the proposed antenna exhibits good impedance matching, stable radiation patterns throughout the whole operating frequency bands, acceptable gain and stable group delay over the entire operating band. An UWB extended from 1.85 GHz to 11 GHz is obtained, and the average antenna gain is about 5.5 dBi over the operating band with peak gain around 6.5 dBi and 70% average radiation efficiency.
基金Sponsored by National Nature Science Foundation of China(60471053)the Program for New Century Excellent Talents in University of MOE,China
文摘A new kind of ultra wideband antenna,which consists of a leaf-like dipole and a dielectric block,is proposed and analyzed.The dielectric block is attached in parallel with the dipole near its feed point.Thus,the near field is attracted to the side where the dielectric block is located.It leads to a focusing effect of the energy in the far zone.The finite-difference time-domain(FDTD)method combined with the perfectly matched layers(PML)technique is used in the simulation of the antenna radiation characteristics.The research shows that,with proper dielectric loading and 50 Ω feeding line,the bandwidth of the antenna can be up to 6.5 GHz,from 3.5 GHz to 10 GHz with VSWR(voltage standing wave ratio)less than 2.5.
基金Project supported by the National Natural Science Foundation of China(Grant No.61372034)
文摘In this paper, an ultra-compact single negative(SNG) electric waveguided metamaterial(WG-MTM) is first investigated and used to reduce the mutual coupling in E & H planes of a dual-band microstrip antenna array. The proposed SNG electric WG-MTM unit cell is designed by etching two different symmetrical spiral lines on the ground, and has two stopbands operating at 1.86 GHz and 2.40 GHz. The circuit size is very compact, which is only λ_0/33.6 ×λ_0/15.1(where λ_0 is the wavelength at 1.86 GHz in free space). Taking advantage of the dual-stopband property of the proposed SNG electric WG-MTM, a dual-band microstrip antenna array operating at 1.86 GHz and 2.40 GHz with very low mutual coupling is designed by embedding a cross shaped array of the proposed SNG electric WG-MTM. The measured and simulated results of the designed dual-band antenna array are in good agreement with each other, indicating that the mutual coupling of the fabricated dual-band antenna array realizes 9.8/11.1 d B reductions in the H plane, 8.5/7.9 d B reductions in the E plane at1.86 GHz and 2.40 GHz, respectively. Besides, the distance of the antenna elements in the array is only 0.35 λ_0(where λ_0 is the wavelength at 1.86 GHz in free space). The proposed strategy is used for the first time to reduce the mutual coupling in E & H planes of the dual-band microstrip antenna array by using ultra-compact SNG electric WG-MTM.
基金the Natural Science Foundation Program of the Department of Education of Jiangsu Province (No. 05KJD510248)
文摘Using the wire construction technique, a conical monopole antenna is fabricated. With the method of moments, the dependences of the voltage standing wave ratio (VSWR) on the number of the trapezoid wire elements, conical angles, wire radius, etc. are investigated. The calculation and the experiment show that the designed wire conical antenna has the ultra-wideband property and can be used for the engineering.