The aim and scope of the present study were to determine the efficacy of UFFA in evaluating the workability,static and dynamic stabilization properties,retention period,and slump loss of SCC systems in their fresh sta...The aim and scope of the present study were to determine the efficacy of UFFA in evaluating the workability,static and dynamic stabilization properties,retention period,and slump loss of SCC systems in their fresh state,as well as their compressive strength at various ages.Microstructure(SEM and XRD)of blended SCC systems were studied.Also,the thermogravimetry behavior of blended SCC specimens were researched.According to the evaluated results,incorporating up to 20%UFFA into fresh concrete improved its performance due to its engineered fine particle size and spherical geometry,both of which contribute to the enhancement of characteristics.Blends of 25%and 30%of UFFA show effect on the water-binder ratio and chemical enhancer dosage,resulting in a loss of homogeneity in fresh SCC systems.The reduced particle size,increased amorphous content,and increased surface area all contribute to the pozzolanic reactivity of the early and later ages,resulting in denser packing and thus an increase in compressive strength.The experimental results indicate that UFFA enhances the properties of SCC in both its fresh and hardened states,which can be attributed to the particles’fineness and their relative effect on SCC.展开更多
The disposal of waste has become an environmental issue due to the limited available landfilling space. This paper aims to compare the characteristics of hydrated lime with fine sewage sludge ash (FSSA) and coal fly a...The disposal of waste has become an environmental issue due to the limited available landfilling space. This paper aims to compare the characteristics of hydrated lime with fine sewage sludge ash (FSSA) and coal fly ash (CFA). Multiple techniques, X-ray fluorescence (XRF), X-ray diffraction (XRD), the Fourier transform infrared (FTIR), compressive strengths, thermophysical properties, and setting time were used to assess the physicochemical characteristics of the lime-based materials. X-ray fluorescence and X-ray diffraction were used to determine the chemical composition and phases of ashes, lime and binders. The results showed that the chemical composition of ashes is similar to that of cement. Besides glass, the main minerals identified in CFA and FSSA are quartz (SiO<sub>2</sub>) and anhydrite (CaSO<sub>4</sub>). Moreover, calcium aluminium oxide (Ca<sub>3</sub>Al<sub>2</sub>O<sub>6</sub>) was detected for CFA and phosphorus calcium silicate (Ca<sub>2</sub>SiO<sub>4</sub>-Ca<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>) for FSSA and minor phases were detected for both. FTIR measurements were carried out to characterize the inorganics components of different samples. Compressive strengths of mortars with different formulations have shown that both have a long-term positive effect which might be related to a pozzolanic activity. For the CFA the L<sub>3</sub> binder consisting of 60% of coal fly ash and 40% lime has a higher compressive strength than the others while for the FSSA the L<sub>4</sub> binder consisting of 80% fine ash and 20% lime has a higher compressive strength than the others. Both binders setting start times are greater than that of cement but shorter than that of lime. The study of the thermophysical properties of binders shows that they have a higher thermal resistance than cement mortar. Moreover, binders heat up less quickly because of their low effusivity compared to cement. Lime-based materials system could be a promising option to both relieve the waste disposal pressure and provide a potential sustainable construction material.展开更多
To decrease the cement and SF content of RPC by using ultra-fine fly ash (UFFA) and steel slag powder (SS), the effect of these mineral admixtures on compressive strength of RPC were investigated. The experimental...To decrease the cement and SF content of RPC by using ultra-fine fly ash (UFFA) and steel slag powder (SS), the effect of these mineral admixtures on compressive strength of RPC were investigated. The experimental results indicate that the utilization of UFFA and SS in RPC is feasible and has prominent mechanical performance. The microstructure analysis (SEM and TG-DTG-DSC) demonstrated that the excellent mechanical properties of RPC containing SS and UFFA were mainly attributed to the sequential hydration filling effect of the compound system.展开更多
At present, coal is mainly consumed as fuel. In fact, coal is also a kind of precious raw material in chemical industry on the premise that some harmful minerals should be removed from coal. The paper presents the res...At present, coal is mainly consumed as fuel. In fact, coal is also a kind of precious raw material in chemical industry on the premise that some harmful minerals should be removed from coal. The paper presents the results of the research on producing low ash (<2%) coal with triboelectrostatic separator used for producing high-grade active carbon. The test is conducted in bench-scale system, whose capacity is 30~100 kg/h. The results indicate that: 1) the ash content of clean coal increases with the increase of solid content of feedstock, on the contrary, the yield of clean coal is declining; 2) a high velocity may result in a good separation efficiency; 3) for the same solid content, the reunion caused by intermolecular force makes the separation efficiency drop down when the ultra-fine coal is separated; 4) the separation efficiency is improved with the increase of electric field intensity, but there is a good optimized match between the electric field intensity and yield of clean coal; 5) a low rank coal is easy-to-wash in triboelectrostatic separation process; 6) the yield of clean coal can be enhanced and the ash decreased through adapting optimized conditions according to various coals.展开更多
文摘The aim and scope of the present study were to determine the efficacy of UFFA in evaluating the workability,static and dynamic stabilization properties,retention period,and slump loss of SCC systems in their fresh state,as well as their compressive strength at various ages.Microstructure(SEM and XRD)of blended SCC systems were studied.Also,the thermogravimetry behavior of blended SCC specimens were researched.According to the evaluated results,incorporating up to 20%UFFA into fresh concrete improved its performance due to its engineered fine particle size and spherical geometry,both of which contribute to the enhancement of characteristics.Blends of 25%and 30%of UFFA show effect on the water-binder ratio and chemical enhancer dosage,resulting in a loss of homogeneity in fresh SCC systems.The reduced particle size,increased amorphous content,and increased surface area all contribute to the pozzolanic reactivity of the early and later ages,resulting in denser packing and thus an increase in compressive strength.The experimental results indicate that UFFA enhances the properties of SCC in both its fresh and hardened states,which can be attributed to the particles’fineness and their relative effect on SCC.
文摘The disposal of waste has become an environmental issue due to the limited available landfilling space. This paper aims to compare the characteristics of hydrated lime with fine sewage sludge ash (FSSA) and coal fly ash (CFA). Multiple techniques, X-ray fluorescence (XRF), X-ray diffraction (XRD), the Fourier transform infrared (FTIR), compressive strengths, thermophysical properties, and setting time were used to assess the physicochemical characteristics of the lime-based materials. X-ray fluorescence and X-ray diffraction were used to determine the chemical composition and phases of ashes, lime and binders. The results showed that the chemical composition of ashes is similar to that of cement. Besides glass, the main minerals identified in CFA and FSSA are quartz (SiO<sub>2</sub>) and anhydrite (CaSO<sub>4</sub>). Moreover, calcium aluminium oxide (Ca<sub>3</sub>Al<sub>2</sub>O<sub>6</sub>) was detected for CFA and phosphorus calcium silicate (Ca<sub>2</sub>SiO<sub>4</sub>-Ca<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>) for FSSA and minor phases were detected for both. FTIR measurements were carried out to characterize the inorganics components of different samples. Compressive strengths of mortars with different formulations have shown that both have a long-term positive effect which might be related to a pozzolanic activity. For the CFA the L<sub>3</sub> binder consisting of 60% of coal fly ash and 40% lime has a higher compressive strength than the others while for the FSSA the L<sub>4</sub> binder consisting of 80% fine ash and 20% lime has a higher compressive strength than the others. Both binders setting start times are greater than that of cement but shorter than that of lime. The study of the thermophysical properties of binders shows that they have a higher thermal resistance than cement mortar. Moreover, binders heat up less quickly because of their low effusivity compared to cement. Lime-based materials system could be a promising option to both relieve the waste disposal pressure and provide a potential sustainable construction material.
基金Funded by the Guide Project in National Science & Technology Pillar Program during the 10th Five-Year Plan Period (2003BA652C)
文摘To decrease the cement and SF content of RPC by using ultra-fine fly ash (UFFA) and steel slag powder (SS), the effect of these mineral admixtures on compressive strength of RPC were investigated. The experimental results indicate that the utilization of UFFA and SS in RPC is feasible and has prominent mechanical performance. The microstructure analysis (SEM and TG-DTG-DSC) demonstrated that the excellent mechanical properties of RPC containing SS and UFFA were mainly attributed to the sequential hydration filling effect of the compound system.
基金National Development Programs of Major Basic Research Project(G19990 2 2 2 0 5 -0 3 )
文摘At present, coal is mainly consumed as fuel. In fact, coal is also a kind of precious raw material in chemical industry on the premise that some harmful minerals should be removed from coal. The paper presents the results of the research on producing low ash (<2%) coal with triboelectrostatic separator used for producing high-grade active carbon. The test is conducted in bench-scale system, whose capacity is 30~100 kg/h. The results indicate that: 1) the ash content of clean coal increases with the increase of solid content of feedstock, on the contrary, the yield of clean coal is declining; 2) a high velocity may result in a good separation efficiency; 3) for the same solid content, the reunion caused by intermolecular force makes the separation efficiency drop down when the ultra-fine coal is separated; 4) the separation efficiency is improved with the increase of electric field intensity, but there is a good optimized match between the electric field intensity and yield of clean coal; 5) a low rank coal is easy-to-wash in triboelectrostatic separation process; 6) the yield of clean coal can be enhanced and the ash decreased through adapting optimized conditions according to various coals.