期刊文献+
共找到324篇文章
< 1 2 17 >
每页显示 20 50 100
Research advances on the mechanisms of reservoir formation and hydrocarbon accumulation and the oil and gas development methods of deep and ultra-deep marine carbonates
1
作者 MA Yongsheng CAI Xunyu +9 位作者 LI Maowen LI Huili ZHU Dongya QIU Nansheng PANG Xiongqi ZENG Daqian KANG Zhijiang MA Anlai SHI Kaibo ZHANG Juntao 《Petroleum Exploration and Development》 SCIE 2024年第4期795-812,共18页
Based on the new data of drilling, seismic, logging, test and experiments, the key scientific problems in reservoir formation, hydrocarbon accumulation and efficient oil and gas development methods of deep and ultra-d... Based on the new data of drilling, seismic, logging, test and experiments, the key scientific problems in reservoir formation, hydrocarbon accumulation and efficient oil and gas development methods of deep and ultra-deep marine carbonate strata in the central and western superimposed basin in China have been continuously studied.(1) The fault-controlled carbonate reservoir and the ancient dolomite reservoir are two important types of reservoirs in the deep and ultra-deep marine carbonates. According to the formation origin, the large-scale fault-controlled reservoir can be further divided into three types:fracture-cavity reservoir formed by tectonic rupture, fault and fluid-controlled reservoir, and shoal and mound reservoir modified by fault and fluid. The Sinian microbial dolomites are developed in the aragonite-dolomite sea. The predominant mound-shoal facies, early dolomitization and dissolution, acidic fluid environment, anhydrite capping and overpressure are the key factors for the formation and preservation of high-quality dolomite reservoirs.(2) The organic-rich shale of the marine carbonate strata in the superimposed basins of central and western China are mainly developed in the sedimentary environments of deep-water shelf of passive continental margin and carbonate ramp. The tectonic-thermal system is the important factor controlling the hydrocarbon phase in deep and ultra-deep reservoirs, and the reformed dynamic field controls oil and gas accumulation and distribution in deep and ultra-deep marine carbonates.(3) During the development of high-sulfur gas fields such as Puguang, sulfur precipitation blocks the wellbore. The application of sulfur solvent combined with coiled tubing has a significant effect on removing sulfur blockage. The integrated technology of dual-medium modeling and numerical simulation based on sedimentary simulation can accurately characterize the spatial distribution and changes of the water invasion front.Afterward, water control strategies for the entire life cycle of gas wells are proposed, including flow rate management, water drainage and plugging.(4) In the development of ultra-deep fault-controlled fractured-cavity reservoirs, well production declines rapidly due to the permeability reduction, which is a consequence of reservoir stress-sensitivity. The rapid phase change in condensate gas reservoir and pressure decline significantly affect the recovery of condensate oil. Innovative development methods such as gravity drive through water and natural gas injection, and natural gas drive through top injection and bottom production for ultra-deep fault-controlled condensate gas reservoirs are proposed. By adopting the hierarchical geological modeling and the fluid-solid-thermal coupled numerical simulation, the accuracy of producing performance prediction in oil and gas reservoirs has been effectively improved. 展开更多
关键词 deep and ultra-deep marine carbonate mechanisms of hydrocarbon accumulation reef-beach facies high-sulfur sour gas reservoirs ultra-deep fault-controlled fractured-cavity reservoir wellbore sulfur deposition fluid-solid-thermal numerical simulation
下载PDF
Electrical structure identification of deep shale gas reservoir in complex structural area using wide field electromagnetic method
2
作者 Gu Zhi-Wen Li Yue-Gang +6 位作者 Yu Chang-Heng Zou Zhong-Ping Hu Ai-Guo Yin Xue-Bo Wang Qinag Ye Heng Tan Zhang-Kun 《Applied Geophysics》 SCIE CSCD 2024年第3期564-578,619,620,共17页
To fully exploit the technical advantages of the large-depth and high-precision artificial source electromagnetic method in the complex structure area of southern Sichuan and compensate for the shortcomings of the con... To fully exploit the technical advantages of the large-depth and high-precision artificial source electromagnetic method in the complex structure area of southern Sichuan and compensate for the shortcomings of the conventional electromagnetic method in exploration depth,precision,and accuracy,the large-depth and high-precision wide field electromagnetic method is applied to the complex structure test area of the Luochang syncline and Yuhe nose anticline in the southern Sichuan.The advantages of the wide field electromagnetic method in detecting deep,low-resistivity thin layers are demonstrated.First,on the basis of the analysis of physical property data,a geological–geoelectric model is established in the test area,and the wide field electromagnetic method is numerically simulated to analyze and evaluate the response characteristics of deep thin shale gas layers on wide field electromagnetic curves.Second,a wide field electromagnetic test is conducted in the complex structure area of southern Sichuan.After data processing and inversion imaging,apparent resistivity logging data are used for calibration to develop an apparent resistivity interpretation model suitable for the test area.On the basis of the results,the characteristics of the electrical structure change in the shallow longitudinal formation of 6 km are implemented,and the transverse electrical distribution characteristics of the deep shale gas layer are delineated.In the prediction area near the well,the subsequent data verification shows that the apparent resistivity obtained using the inversion of the wide field electromagnetic method is consistent with the trend of apparent resistivity revealed by logging,which proves that this method can effectively identify the weak response characteristics of deep shale gas formations in complex structural areas.This experiment,it is shown shows that the wide field electromagnetic method with a large depth and high precision can effectively characterize the electrical characteristics of deep,low-resistivity thin layers in complex structural areas,and a new set of low-cost evaluation technologies for shale gas target layers based on the wide field electromagnetic method is explored. 展开更多
关键词 complex tectonic area in southern Sichuan wide field electromagnetic method deep exploration shale gas reservoir electrical structure
下载PDF
Crude oil cracking in deep reservoirs:A review of the controlling factors and estimation methods 被引量:1
3
作者 Yu Qi Chun-Fang Cai +2 位作者 Peng Sun Dao-Wei Wang Hong-Jian Zhu 《Petroleum Science》 SCIE EI CAS CSCD 2023年第4期1978-1997,共20页
The natural cracking of crude oils in deep reservoirs has gained great interest due to continuously increasing depth of petroleum exploration and exploitation.Complex oil compositions and surroundings as well as compl... The natural cracking of crude oils in deep reservoirs has gained great interest due to continuously increasing depth of petroleum exploration and exploitation.Complex oil compositions and surroundings as well as complicated geological evolutions make oil cracking in nature much more complex than industrial pyrolysis.So far,numerous studies,focused on this topic,have made considerable progress although there still exist some drawbacks.However,a comprehensive review on crude oil cracking is yet to be conducted.This article systematically reviews the controlling factors of oil cracking from six aspects,namely,oil compositions,temperature and time,pressure,water,minerals and solid organic matter.We compare previous experimental and modelling results and present new field cases.In the following,we evaluate the prevailing estimation methods for the extent of oil cracking,and elucidate other factors that may interfere with the application of these estimation methods.This review will be helpful for further investigations of crude oil cracking and provides a guide for estimation of the cracking extent of crude oils. 展开更多
关键词 Oil cracking deep reservoir Controlling factor gas to oil ratio Diamondoid
下载PDF
Analysis of Reservoir Forming Conditions and Prediction of Continuous Tight Gas Reservoirs for the Deep Jurassic in the Eastern Kuqa Depression,Tarim Basin 被引量:15
4
作者 ZOU Caineng JIA Jinhua +1 位作者 TAO Shizhen TAO Xiaowan 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2011年第5期1173-1186,共14页
The exploration targets in the Kuqa Depression at present are mainly structure traps in Cretaceous-Tertiary.Due to the complexity of mountain distribution and reservoir forming conditions, the exploration of Jurassic ... The exploration targets in the Kuqa Depression at present are mainly structure traps in Cretaceous-Tertiary.Due to the complexity of mountain distribution and reservoir forming conditions, the exploration of Jurassic in the eastern Kuqa Depression has been in a state of semi-stagnation since the discovery of the Yinan-2 gas reservoir.According to the concept and theory of 'continuous petroleum reservoirs' and the re-analysis of the forming conditions of the Yinan-2 gas reservoir and regional natural gas in the eastern Kuqa Depression,it is believed that the deep Jurassic has good natural gas accumulation conditions as well as geological conditions for forming continuous tight gas reservoirs.The boundary of the Yinan-2 gas reservoir is not controlled by a structural spillpoint.The downdip part of the structure is dominated by gas,while the hanging wall of the fault is filled by water and forming obvious inverted gas and water.The gas reservoir has the normal temperature and ultrahigh pressure which formed in the near source or inner-source.All of these characteristics indicate that the Yinan-2 gas reservoir is different from conventional gas reservoirs.The deep Jurassic in the eastern Kuqa Depression has multisets of source-reservoir-cap assemblages,which comprise interbedded sandstones and mudstones.These assemblages are characterized by a self-generation,self-preserving and self-coverage model.Reservoir sandstones and coal measure mudstones are interbedded with each other at a large scale.As the source rocks,Triassic-Jurassic coal measure mudstones distribute continuously at a large scale and can generate and expel hydrocarbon.Source rocks contact intimately with the overlying sandstone reservoirs.During the late stage of hydrocarbon expulsion,natural gas charged continuously and directly into the neighboring reservoirs.Petroleum migrated mainly in a vertical direction over short distances.With ultra-high pressure and strong charging intensity,natural gas accumulated continuously.Reservoirs are dominated by sandstones of braided delta facies.The sand bodies distribute continuously horizontal.With low porosity and low permeability,the reservoirs are featured by strong heterogeneity.It is hypothesized that the sandstones of the interior depression tend to be relatively tight with increasing depth and structure stress weakness.Thus,it is predicted that continuous tight gas reservoirs of ultra-high pressure may exist in the deep formations of the eastern and even the whole Kuqa Depression.So,it is worth evaluating the exploration potential. 展开更多
关键词 forming condition continuous tight gas reservoir deep Jurassic eastern Kuqa Depression
下载PDF
Theoretical Progress and Key Technologies of Onshore Ultra-Deep Oil/Gas Exploration 被引量:23
5
作者 Xusheng Guo Dongfeng Hu +5 位作者 Yuping Li Jinbao Duan Xuefeng Zhang Xiaojun Fan Hua Duan Wencheng Li 《Engineering》 SCIE EI 2019年第3期458-470,共13页
Oil/gas exploration around the world has extended into deep and ultra-deep strata because it is increasingly difficult to find new large-scale oil/gas reservoirs in shallow–middle buried strata. In recent years, Chin... Oil/gas exploration around the world has extended into deep and ultra-deep strata because it is increasingly difficult to find new large-scale oil/gas reservoirs in shallow–middle buried strata. In recent years, China has made remarkable achievements in oil/gas exploration in ultra-deep areas including carbonate and clastic reservoirs. Some (ultra) large-scale oil and gas fields have been discovered. The oil/gas accumulation mechanisms and key technologies of oil/gas reservoir exploration and development are summarized in this study in order to share China’s experiences. Ultra-deep oil/gas originates from numerous sources of hydrocarbons and multiphase charging. Liquid hydrocarbons can form in ultradeep layers due to low geothermal gradients or overpressures, and the natural gas composition in ultra-deep areas is complicated by the reactions between deep hydrocarbons, water, and rock or by the addition of mantle- or crust-sourced gases. These oils/gases are mainly stored in the original highenergy reef/shoal complexes or in sand body sediments. They usually have high original porosity. Secondary pores are often developed by dissolution, dolomitization, and fracturing in the late stage. The early pores have been preserved by retentive diageneses such as the early charging of hydrocarbons. Oil/gas accumulation in ultra-deep areas generally has the characteristics of near-source accumulation and sustained preservation. The effective exploration and development of ultra-deep oil/gas reservoirs depend on the support of key technologies. Use of the latest technologies such as seismic signal acquisition and processing, low porosity and permeability zone prediction, and gas–water identification has enabled the discovery of ultra-deep oil/gas resources. In addition, advanced technologies for drilling, completion, and oil/gas testing have ensured the effective development of these fields. 展开更多
关键词 Oil/gas EXPLORATION ultra-deep sources reservoir Petroleum accumulation EXPLORATION and EXPLOITATION technologies
下载PDF
Geologic Features of Wangjiatun Deep Gas Reservoirs of Volcanic Rock in Songliao Basin
6
作者 SHAN Xuanlong (College of Earth Science, Jilin University, Changchun, 130061, P.R.China) CHEN Shumin (Daqing Petroleum Bureau Prospecting and Exploration Institute, Daqing, 163712, P.R.China) WU Dawei and Zang Yudong (Qianan Oil Product Factory of Ji 《Global Geology》 2001年第2期120-128,共9页
Wangjiatun gas pool is located at the north part of Xujiaweizi in Songliao basin. Commercial gas flow has been found in the intermediate and acid volcanic rock of upper Jurassic-lower Cretaceous, which makes a breakth... Wangjiatun gas pool is located at the north part of Xujiaweizi in Songliao basin. Commercial gas flow has been found in the intermediate and acid volcanic rock of upper Jurassic-lower Cretaceous, which makes a breakthrough in deep nature gas prospecting in Songliao basin. The deep natural gas entrapment regularity is discussed in the paper by the study of deep strata, structure and reservoir. Andesite, rhyolite and little pyroclastic rock are the main reservoirs. There are two types of volcanic reservoir space assemblage in this area: the pore and fissure and the pure fissure. Changes had taken place for volcanic reservoir space during long geologic time, which was controlled by tectonic movement and geologic environment. The developed degree of reservoir space was controlled by tectonic movement, weathering and filtering, corrosion and Filling. There are three types of source-reservoir-caprock assemblage in this area: lower source- upper reservoir model, upper source-lower reservoir model and lateral change model. Mudstone in Dengluoku formation and the compacted volcanic rock of upper Jurassic-lower Cretaceous are the caprock for deep gas reservoirs. Dark mudstone of deep lacustrine facies in Shahezi formation and lower part of Dengluoku formation are the source rock of deep gas. It can be concluded that deep gas pools are mainly volcanic lithologic reservoirs. 展开更多
关键词 Wangjiatun deep gas reservoirs VOLCANIC rock Upper JURASSIC - lower Cretaceous Songliao basin
下载PDF
The construction of technical standard system for ultra deep and high sour gas fields in Northeast Sichuan
7
作者 Liu Yintao Liao Chengrui Yang Yukun 《Engineering Sciences》 2012年第4期68-75,共8页
To deal with the exploitation difficulties of gas fields in Northeast Sichuan with deep marine strata, after researching the relative standards domestic and abroad extensively, summarizing and promoting the successful... To deal with the exploitation difficulties of gas fields in Northeast Sichuan with deep marine strata, after researching the relative standards domestic and abroad extensively, summarizing and promoting the successful experiences and failure lessons of project construction technology application scientifically, Sinopec has established an integrated technical standard system for the exploration and development of ultra deep and high sour gas fields. The system consists of 51 enterprise standards and covers 7 professions including geophysical prospecting, drilling, drilling log, well logging, gas formation test and production, sour gas gathering and transferring system, and HSE (health,safety,environment). It guides and guarantees the safe, high-quality and high-efficiency project construction effectively by means of enhancing the engineering design criterion, recommending the data processing and interpretation methods, identifying the requirements of operation and field inspection and standardizing the application of technical equipments. 展开更多
关键词 ultra deep high sulfur content natural gas exploration and development enterprise standard
下载PDF
Efficient development strategies for large ultra-deep structural gas fields in China
8
作者 LI Xizhe GUO Zhenhua +7 位作者 HU Yong LUO Ruilan SU Yunhe SUN Hedong LIU Xiaohua WAN Yujin ZHANG Yongzhong LI Lei 《Petroleum Exploration and Development》 2018年第1期118-126,共9页
Through analyzing the development of large ultra-deep structural gas fields in China,strategies for the efficient development of such gas fields are proposed based on their geological characteristics and production pe... Through analyzing the development of large ultra-deep structural gas fields in China,strategies for the efficient development of such gas fields are proposed based on their geological characteristics and production performance.According to matrix properties,fracture development degree and configuration between matrix and fractures,the reservoirs are classified into three types:single porosity single permeability system,dual porosity dual permeability system,and dual porosity single permeability system.These three types of gas reservoirs show remarkable differences in different scales of permeability,the ratio of dynamic reserves to volumetric reserves and water invasion risk.It is pointed out that the key factors affecting development efficiency of these gas fields are determination of production scale and rapid identification of water invasion.Figuring out the characteristics of the gas fields and working out pertinent technical policies are the keys to achieve efficient development.The specific strategies include reinforcing early production appraisal before full scale production by deploying high precision development seismic survey,deploying development appraisal wells in batches and scale production test to get a clear understanding on the structure,reservoir type,distribution pattern of gas and water,and recoverable reserves,controlling production construction pace to ensure enough evaluation time and accurate evaluation results in the early stage,in line with the development program made according to the recoverable reserves,working out proper development strategies,optimizing pattern and proration of wells based on water invasion risk and gas supply capacity of matrix,and reinforcing research and development of key technologies. 展开更多
关键词 ultra-deep formation large STRUCTURAL gas field gas reservoir characteristics reservoir efficient development water invasion risk development strategies
下载PDF
Enrichment characteristics and exploration directions of deep shale gas of Ordovician-Silurian in the Sichuan Basin and its surrounding areas,China 被引量:7
9
作者 NIE Haikuan LI Pei +8 位作者 DANG Wei DING Jianghui SUN Chuanxiang LIU Mi WANG Jin DU Wei ZHANG Peixian LI Donghui SU Haikun 《Petroleum Exploration and Development》 CSCD 2022年第4期744-757,共14页
The enrichment characteristics of deep shale gas in the Ordovician Wufeng-Silurian Longmaxi formations in the Sichuan Basin and its surrounding areas are investigated through experiments under high temperature and hig... The enrichment characteristics of deep shale gas in the Ordovician Wufeng-Silurian Longmaxi formations in the Sichuan Basin and its surrounding areas are investigated through experiments under high temperature and high pressure,including petrophysical properties analyses,triaxial stress test and isothermal adsorption of methane experiment.(1)The deep shale reservoirs drop significantly in porosity and permeability compared with shallower shale reservoirs,and contain mainly free gas.(2)With higher deviatoric stress and axial strain,the deep shale reservoirs have higher difficulty fracturing.(3)Affected by structural location and morphology,fracture characteristics,geofluid activity stages and intensity,deep shale gas reservoirs have more complicated preservation conditions.(4)To achieve the commercial development of deep shale gas reservoirs,deepening geological understanding is the basis,and exploring reservoir simulation technology befitting the geological features is the key.(5)The siliceous shale and limestone-bearing siliceous shale in the Metabolograptus persculptus-Parakidograptus acuminatus zones(LM1-LM3 graptolite zones)are the high-production intervals for deep shale gas and the most favorable landing targets for horizontal drilling.Deeps water areas such as Jiaoshiba,Wulong,Luzhou and Changning with deep shale reservoirs over 10 m thickness are the most favorable areas for deep shale gas enrichment.It is recommended to carry out exploration and development practice in deep-water shale gas areas deposited deep with burial depth no more than 5000 m where the geological structure is simple and the shale thickness in the LM1-LM3 graptolite zone is greater than 10 m.It is better to increase the lateral length of horizontal wells,and apply techniques including high intensity of perforations,large volume of proppant,far-field and near-wellbore diversions to maximize the stimulated deep reservoir volume. 展开更多
关键词 deep shale gas enrichment conditions reservoir characteristics exploration direction Ordovician Wufeng Formation Silurian Longmaxi Formation Sichuan Basin
下载PDF
Enrichment Mechanism and Prospects of Deep Oil and Gas 被引量:4
10
作者 HAO Fang 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2022年第3期742-756,共15页
With the deepening of oil and gas exploration,the importance of depth is increasingly highlighted.The risk of preservation of storage space in deep reservoirs is greater than that in shallow and medium layers.Deep lay... With the deepening of oil and gas exploration,the importance of depth is increasingly highlighted.The risk of preservation of storage space in deep reservoirs is greater than that in shallow and medium layers.Deep layers mean older strata,more complex structural evolution and more complex hydrocarbon accumulation processes,and even adjustment and transformation of oil and gas reservoirs.This paper systematically investigates the current status and research progress of deep oil and gas exploration around the world and looks forward to the future research focus of deep oil and gas.In the deep,especially the ultra-deep layers,carbonate reservoirs play a more important role than clastic rocks.Karst,fault-karst and dolomite reservoirs are the main types of deep and ultra-deep reservoirs.The common feature of most deep large and medium-sized oil and gas reservoirs is that they formed in the early with shallow depth.Fault activity and evolution of trap highs are the main ways to cause physical adjustment of oil and gas reservoirs.Crude oil cracking and thermochemical sulfate reduction(TSR)are the main chemical modification effects in the reservoir.Large-scale high-quality dolomite reservoirs is the main direction of deep oil and gas exploration.Accurate identification of oil and gas charging,adjustment and reformation processes is the key to understanding deep oil and gas distribution.High-precision detection technology and high-precision dating technology are an important guarantee for deep oil and gas research. 展开更多
关键词 deep oil and gas carbonate reservoir main accumulation period reservoir adjustment and reconstruction enrichment mechanism
下载PDF
Fault Systems and their Control of Deep Gas Accumulations in Xujiaweizi Area 被引量:2
11
作者 SUN Yonghe KANG Lin +2 位作者 BAI Haifeng FU Xiaofei HU Ming 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2012年第6期1547-1558,共12页
A study of faults and their control of deep gas accumulations has been made on the basis of dividing fault systems in the Xujiaweizi area. The study indicates two sets of fault systems are developed vertically in the ... A study of faults and their control of deep gas accumulations has been made on the basis of dividing fault systems in the Xujiaweizi area. The study indicates two sets of fault systems are developed vertically in the Xujiaweizi area, including a lower fault system and an upper fault system. Formed in the period of the Huoshiling Formation to Yingcheng Formation, the lower fault system consists of five fault systems including Xuxi strike-slip extensional fault system, NE-trending extensional fault system, near-EW-trending regulating fault system, Xuzhong strike-slip fault system and Xudong strike-slip fault system. Formed in the period of Qingshankou Formation to Yaojia Formation, the upper fault system was affected mainly by the boundary conditions of the lower fault system, and thus plenty of muiti-directionally distributed dense fault zones were formed in the T2 reflection horizon. The Xuxi fault controlled the formation and distribution of Shahezi coal-measure source rocks, and Xuzhong and Xndong faults controlled the formation and distribution of volcanic reservoirs of Y1 Member and Y3 Member, respectively. In the forming period of the upper fault system, the Xuzhong fault was of successive strong activities and directly connected gas source rock reservoirs and volcanic reservoirs, so it is a strongly-charged direct gas source fault. The volcanic reservoir development zones of good physical properties that may be found near the Xuzhong fault are the favorable target zones for the next exploration of deep gas accumulations in Xujiaweizi area. 展开更多
关键词 deep gas accumulation fault system gas source fault volcanic reservoir XUJIAWEIZI
下载PDF
Geological characteristics and high production control factors of shale gas reservoirs in Silurian Longmaxi Formation, southern Sichuan Basin, SW China 被引量:7
12
作者 MA Xinhua XIE Jun +1 位作者 YONG Rui ZHU Yiqing 《Petroleum Exploration and Development》 2020年第5期901-915,共15页
Marine shale gas resources have great potential in the south of the Sichuan Basin in China.At present,the high-quality shale gas resources at depth of 2000–3500 m are under effective development,and strategic breakth... Marine shale gas resources have great potential in the south of the Sichuan Basin in China.At present,the high-quality shale gas resources at depth of 2000–3500 m are under effective development,and strategic breakthroughs have been made in deeper shale gas resources at depth of 3500–4500 m.To promote the effective production of shale gas in this area,this study examines key factors controlling high shale gas production and presents the next exploration direction in the southern Sichuan Basin based on summarizing the geological understandings from the Lower Silurian Longmaxi Formation shale gas exploration combined with the latest results of geological evaluation.The results show that:(1)The relative sea depth in marine shelf sedimentary environment controls the development and distribution of reservoirs.In the relatively deep water area in deep-water shelf,grade-I reservoirs with a larger continuous thickness develop.The relative depth of sea in marine shelf sedimentary environment can be determined by redox conditions.The research shows that the uranium to thorium mass ratio greater than 1.25 indicates relatively deep water in anoxic reduction environment,and the uranium to thorium mass ratio of 0.75–1.25 indicates semi-deep water in weak reduction and weak oxidation environment,and the uranium to thorium mass ratio less than 0.75 indicates relatively shallow water in strong oxidation environment.(2)The propped fractures in shale reservoirs subject to fracturing treatment are generally 10–12 m high,if grade-I reservoirs are more than 10 m in continuous thickness,then all the propped section would be high-quality reserves;in this case,the longer the continuous thickness of penetrated grade-I reservoirs,the higher the production will be.(3)The shale gas reservoirs at 3500–4500 m depth in southern Sichuan are characterized by high formation pressure,high pressure coefficient,well preserved pores,good pore structure and high proportion of free gas,making them the most favorable new field for shale gas exploration;and the pressure coefficient greater than 1.2 is a necessary condition for shale gas wells to obtain high production.(4)High production wells in the deep shale gas reservoirs are those in areas where Long11-Long13 sub-beds are more than 10 m thick,with 1500 m long horizontal section,grade-I reservoirs penetration rate of over 90%,and fractured by dense cutting+high intensity sand injection+large displacement+large liquid volume.(5)The relatively deep-water area in the deep-water shelf and the area at depth of 3500–4500 m well overlap in the southern Sichuan,and the overlapping area is the most favorable shale gas exploration and development zones in the southern Sichuan in the future.With advancement in theory and technology,annual shale gas production in the southern Sichuan is expected to reach 450×108 m3. 展开更多
关键词 southern Sichuan Basin Lower Silurian Longmaxi Formation deeply buried shale gas high production control factors deep water and deep burial shale gas reservoir
下载PDF
Improvement of reservoir quality of ultra-deep tight sandstones by tectonism and fluid:A case study of Keshen gas field in Tarim Basin,western China 被引量:2
13
作者 Junpeng Wang Hongyan Wang +3 位作者 Ronghu Zhang Li Dong Ke Wang Zhiyuan Zhang 《Petroleum》 EI CSCD 2023年第1期124-134,共11页
The Keshen gas field is one of the most important natural gas supply sources in the Tarim basin,western China.The main gas producing interval there is the Lower Cretaceous Bashijiqike Formation(K1bs),it is an ultra-de... The Keshen gas field is one of the most important natural gas supply sources in the Tarim basin,western China.The main gas producing interval there is the Lower Cretaceous Bashijiqike Formation(K1bs),it is an ultra-deep tight reservoir whose buried depth exceeds 6000 m,and it shows a low matrix porosity(<10%)and extremely low matrix permeability(<0.1mD).However,this reservoir can supply extremely high and stable gas production due to improvement of reservoir quality by tectonism and fluid.Based on tectonic evolution analysis by plenty of lab data of core plugs or thin sections,the enhancement models of tectonism and fluid are built,evidence suggests both tectonism and fluid improve the reservoir quality greatly.Tectonic evolution produces lots of natural fractures in 3stages which promote the ultra-deep tight reservoir permeability 10–200 times,then,testing results of new boreholes without fracturing show reservoir permeability underground can reach 20 mD.Furthermore,fluid dissolution increases reservoir porosity 1–2 times,the main dissolved mineral is feldspar,all fluid dissolution came from the unconformity controlling the dissolution distance.Tectonism and fluid interact on each other:Tectonism controls fracture distribution and types of diagenic fluid in reservoir,but fluids influence fracture cements and dissolution.Both tectonic folding and the fluid flow control the sweet point reservoir located in upper 150 m formation. 展开更多
关键词 reservoir quality Fluid interaction TECTONISM DIAGENESIS deep gas
原文传递
中国深层、超深层气藏开发关键技术与对策建议 被引量:1
14
作者 贾爱林 闫海军 +2 位作者 唐海发 王忠楠 刘群明 《天然气工业》 EI CAS CSCD 北大核心 2024年第1期119-127,共9页
中国在深层、超深层油气勘探开发方面已经取得了重要进展,中国石油天然气集团有限公司(以下简称中国石油)已在塔里木盆地和四川盆地建成两大深层、超深层天然气生产基地,但目前仍存在制约此类气藏高效开发的核心问题。为促进深层、超深... 中国在深层、超深层油气勘探开发方面已经取得了重要进展,中国石油天然气集团有限公司(以下简称中国石油)已在塔里木盆地和四川盆地建成两大深层、超深层天然气生产基地,但目前仍存在制约此类气藏高效开发的核心问题。为促进深层、超深层气藏实现高效开发,回顾了中国石油在不同类型深层、超深层典型气藏的开发实践历程,系统梳理了气藏开发过程中面临的问题与挑战,总结了气藏开发的关键技术,最后提出了深层、超深层气藏开发对策与建议。研究结果表明:①形成了深层、超深层岩溶型碳酸盐岩气藏小洞微缝储层量化表征技术和裂缝—孔隙型碎屑岩气藏多尺度裂缝动静态描述技术,实现了储层孔隙结构特征参数的量化表征和不同尺度裂缝的精细刻画与空间预测,提高了开发井的成功率,确保了储量高效动用;②形成了开发单元划分与水侵通道刻画技术和裂缝非均匀水侵动态评价技术,实现了不同开发阶段水侵动态评价和水侵状况准确预报,为不同开发单元制订差异化的开发技术政策奠定了基础;③建立了岩溶型碳酸盐岩气藏全生命周期递进式控水开发模式和裂缝—孔隙型碎屑岩气藏控排水协同提高采收率技术,实现了气藏均衡开发,整体提高了气藏采收率。结论认为,深层、超深层气藏地质、工程环境复杂,储层非均质性强,需进一步加强气藏前期评价、布井模式攻关、不同区块水侵规律等方面研究,且需做好气田群协同开发的整体研究。 展开更多
关键词 深层 超深层 岩溶型碳酸盐岩气藏 陆相碎屑岩气藏 开发实践 关键技术 对策建议
下载PDF
深层碳酸盐岩储层酸压进展与展望 被引量:2
15
作者 郭建春 苟波 +4 位作者 陆灯云 刘子豪 肖彬 徐科 任冀川 《钻采工艺》 CAS 北大核心 2024年第2期121-129,共9页
酸压改造是深层碳酸盐岩储层高效勘探开发的技术利器。随着勘探开发逐渐迈向特深层,厘清目前酸压技术发展现状与趋势至关重要。从酸压裂缝起裂与扩展、酸刻蚀水力裂缝与导流能力构建、酸压数值模拟技术3个方面阐释了酸压改造机理;分析... 酸压改造是深层碳酸盐岩储层高效勘探开发的技术利器。随着勘探开发逐渐迈向特深层,厘清目前酸压技术发展现状与趋势至关重要。从酸压裂缝起裂与扩展、酸刻蚀水力裂缝与导流能力构建、酸压数值模拟技术3个方面阐释了酸压改造机理;分析了黏度控制型、生酸时间控制型、H+屏蔽吸附型、非盐酸基型等4类耐高温缓速酸液体系特点;系统梳理了我国深层碳酸盐岩酸压工艺技术发展的4个历程,剖析了目前9000 m以深特深层碳酸岩酸压面临的4个挑战:能否压开储层、地层温度突破酸液体系耐温极限、高温高压测试手段缺乏、储集体靶向沟通难度大。基于此,提出了5个酸压研究展望:特深井破裂压力精准预测、耐220℃多功能酸液体系研发、超高温高压实验平台构建、全在线酸压技术、超临界CO_(2)酸压技术探索,力求实现特深层碳酸盐岩高效立体开发。 展开更多
关键词 深层超深层 特深层 碳酸盐岩 酸压机理 酸液体系 酸压工艺
下载PDF
深层-超深层致密储层天然裂缝分布特征及发育规律 被引量:1
16
作者 曾联波 巩磊 +1 位作者 宿晓岑 毛哲 《石油与天然气地质》 EI CAS CSCD 北大核心 2024年第1期1-14,共14页
天然裂缝是深层-超深层致密储层的有效储集空间和主要渗流通道,影响着致密储层油气的运移、富集、单井产能、开发方式及开发效果。通过对近年来致密储层裂缝研究成果总结和文献综述,分析了深层-超深层致密储层天然裂缝分布特征及发育规... 天然裂缝是深层-超深层致密储层的有效储集空间和主要渗流通道,影响着致密储层油气的运移、富集、单井产能、开发方式及开发效果。通过对近年来致密储层裂缝研究成果总结和文献综述,分析了深层-超深层致密储层天然裂缝分布特征及发育规律。将致密储层天然裂缝分为大尺度裂缝、中尺度裂缝、小尺度裂缝和微尺度裂缝4个级别。不同尺度裂缝分布具有幂律分布的特点,裂缝尺度越大,数量越少;裂缝尺度越小,数量越多。大、中尺度裂缝主要起渗流作用,小尺度裂缝主要起渗流和储集作用,而微尺度裂缝主要起储集作用。在地层埋藏过程中的应力体制演化决定了不同时期天然裂缝的类型、产状及其力学性质;构造应力大小、岩石力学层的力学性质和厚度差异控制了多尺度裂缝的形成分布及其发育程度。构造变形导致不同构造部位的局部应力和应变分布产生差异,增强了裂缝发育的非均质性。逆冲断层通过控制其上盘地层变形控制了“裂缝域”的分布规律;走滑断层的组合样式、活动方式和岩石力学层共同控制了相关裂缝的三维空间展布。裂缝形成演化过程中的开启-闭合规律决定了裂缝的储集空间,记录了裂缝有效性的演化历史。 展开更多
关键词 断裂带结构 有效性演化 天然裂缝 多尺度裂缝 致密储层 深层-超深层
下载PDF
准噶尔盆地沙湾凹陷二叠系上乌尔禾组流体相态及油气藏类型 被引量:2
17
作者 王金铎 曾治平 +5 位作者 徐冰冰 李超 刘德志 范婕 李松涛 张增宝 《岩性油气藏》 CAS CSCD 北大核心 2024年第1期23-31,共9页
准噶尔盆地腹部地区沙湾凹陷超深层蕴含丰富的油气资源。根据烃源岩热演化模拟实验分析了沙湾凹陷二叠系上乌尔禾组烃源岩生烃产物类型,结合地层流体高温高压物性实验数据,运用相图判别法和经验参数法对沙湾凹陷征10井地层流体相态进行... 准噶尔盆地腹部地区沙湾凹陷超深层蕴含丰富的油气资源。根据烃源岩热演化模拟实验分析了沙湾凹陷二叠系上乌尔禾组烃源岩生烃产物类型,结合地层流体高温高压物性实验数据,运用相图判别法和经验参数法对沙湾凹陷征10井地层流体相态进行深入研究。研究结果表明:①沙湾凹陷征10井上乌尔禾组油气主要来自于下乌尔禾组泥质烃源岩,其有机质类型为Ⅱ1型,镜质体反射率(Ro)为1.05%~1.46%,岩石热解峰温(T_(max))为433~446℃,处于成熟—高成熟演化阶段,目前处于生轻质油阶段。②上乌尔禾组地层流体成分表现为凝析气藏的流体组成,地层温度为166.0℃,介于临界温度和临界凝析温度之间,地层压力为155MPa,远高于露点压力,地-露压差大,表明地层条件下流体呈凝析气相特征,但地下油气相态与地表采出流体相态具有一定差异。相图判别法和经验参数法烃类流体相态分析结果均显示,征10井上乌尔禾组气藏为含大油环的凝析气藏。③沙湾凹陷上乌尔禾组具有优越的成藏条件,紧邻下乌尔禾组烃源岩,油气近源垂向输导,向局部隆起区运聚,巨厚的三叠系及上乌尔禾组中上部区域盖层起到重要的封盖作用,最终在局部隆起区形成岩性-构造凝析气藏。 展开更多
关键词 油气相态 超深层 凝析气藏 近源成藏 上乌尔禾组 征10井 二叠系 沙湾凹陷 准噶尔盆地
下载PDF
塔里木盆地顺北地区顺北84X井超千米含油气重大发现及其意义 被引量:1
18
作者 曹自成 云露 +7 位作者 漆立新 李海英 韩俊 耿锋 林波 陈菁萍 黄诚 毛庆言 《石油与天然气地质》 EI CAS CSCD 北大核心 2024年第2期341-356,共16页
塔里木盆地顺北中部北东向走滑断裂带长期处于油气运聚富集的优势区,顺北8号走滑断裂带实钻揭示沿断裂带发育断控缝洞型油气藏,顺北84X井纵向上沿断裂带含油气高度高达1088 m,揭示断控缝洞型油气藏含油气高度大、不受现今构造高低控制... 塔里木盆地顺北中部北东向走滑断裂带长期处于油气运聚富集的优势区,顺北8号走滑断裂带实钻揭示沿断裂带发育断控缝洞型油气藏,顺北84X井纵向上沿断裂带含油气高度高达1088 m,揭示断控缝洞型油气藏含油气高度大、不受现今构造高低控制。为查明断控缝洞型油气藏含油气高度的主控因素,立足顺北中部奥陶系碳酸盐岩油气藏的成藏地质条件和钻探成果,开展顺北84X井的储层、圈闭及成藏特征等石油地质条件分析,为深化断控缝洞型油气藏认识和向深层评价拓展提供支撑。研究表明:①走滑构造破碎是致密碳酸盐岩成储的关键,其储层发育深度不受碳酸盐岩地层埋深的控制,在近9000 m的埋深条件下仍发育断控缝洞型储集体;②上覆巨厚泥岩盖层顶封、两侧致密灰岩侧封、走滑断裂平面分段和纵向分层变形是形成断控缝洞型圈闭的关键;③油-源对比分析表明油气来自寒武系玉尔吐斯组烃源岩,证实了前期顺北中、东部“寒武多期供烃、构造破裂成储、原地垂向输导、晚期成藏为主、走滑断裂控富”的成藏模式的合理性。顺北84X井的发现揭示塔里木盆地超深层致密碳酸盐岩发育受走滑断裂控制,储层纵向深度大,油气充注足,超深层勘探潜力巨大。 展开更多
关键词 含油气高度 超深层 断控油气藏 顺北84X井 顺北地区 塔里木盆地
下载PDF
中国中西部含油气盆地超深层油气成藏条件与勘探潜力分析 被引量:2
19
作者 汪泽成 赵振宇 +3 位作者 黄福喜 施亦做 徐洋 张帅 《世界石油工业》 2024年第1期33-48,共16页
随着油气工业发展,向深层超深层领域进军已成为常规油气勘探开发的主要趋势。通过对中国中西部含油气盆地超深层油气勘探与研究进展的深入分析,明确深层超深层油气成藏的有利条件,指出中西部叠合盆地的海相碳酸盐岩、碎屑岩、基岩及火山... 随着油气工业发展,向深层超深层领域进军已成为常规油气勘探开发的主要趋势。通过对中国中西部含油气盆地超深层油气勘探与研究进展的深入分析,明确深层超深层油气成藏的有利条件,指出中西部叠合盆地的海相碳酸盐岩、碎屑岩、基岩及火山岩3大领域是未来超深层油气勘探重点领域,超深层元古界是值得勘探重视的潜在领域,并指出超深层油气地质理论与关键技术的攻关方向。研究表明:(1)克拉通盆地海相碳酸盐岩发育以多套海相烃源岩、白云岩和断控型缝洞体等规模储集层、3类有利成藏组合,是寻找碳酸盐岩大油气田的重点领域;(2)前陆盆地下组合发育以煤系为主的湖相优质烃源岩、(扇)三角洲砂体为主的规模储集层、大型构造圈闭,是寻找碎屑岩大油气田的重点领域;(3)以花岗岩和变质岩为主的基岩储集层不受埋深限制,源岩-基岩接触型成藏组合最有利,紧邻生烃凹陷及大型走滑断裂带的基岩潜山是深层-超深层基岩油气藏勘探的重点领域;(4)中新元古界受超大陆裂解及全球冰期影响,发育受陆内裂陷控制的优质烃源岩,资源潜力较大,未来勘探地位值得重视。 展开更多
关键词 超深层 油气成藏 构造分异 基岩油气藏 深层碎屑岩 叠合盆地
下载PDF
沉积微相对超深储层岩石力学性质的影响及其应用——以塔里木盆地库车坳陷BZ气田白垩系为例
20
作者 王志民 孙海涛 +4 位作者 张辉 王晨光 尹国庆 徐珂 钟大康 《石油实验地质》 CAS CSCD 北大核心 2024年第4期664-673,共10页
为了优选塔里木盆地库车坳陷白垩系超深致密砂岩储层单井天然裂缝发育的甜点层段,利用露头、岩石薄片、成像测井等资料系统分析了BZ气田不同沉积微相的储层岩石力学性质差异,并结合相关露头中不同沉积微相的几何参数模型,提出了一种优... 为了优选塔里木盆地库车坳陷白垩系超深致密砂岩储层单井天然裂缝发育的甜点层段,利用露头、岩石薄片、成像测井等资料系统分析了BZ气田不同沉积微相的储层岩石力学性质差异,并结合相关露头中不同沉积微相的几何参数模型,提出了一种优化储层岩石力学参数模型的方法,提高了井筒周围(<200 m)天然裂缝预测精度。研究结果表明:(1)BZ气田白垩系巴什基奇克组三段不同沉积微相、相同微相不同位置的储层中,岩石组构和岩石组合(包括碎屑含量、杂基含量、粒度分选、砂地比和砂泥岩组合等)具有差异,从而影响了储层的泊松比和杨氏模量,不同微相储层具有不同的岩石力学参数。(2)不同沉积微相砂体的裂缝发育程度有所差异,扇三角洲前缘水下分支河道砂岩的裂缝最发育,比扇三角洲前缘支流间湾微相及扇三角洲平原分支河道微相更容易形成裂缝。(3)进一步根据露头中沉积微相几何参数,建立不同微相的三维模型,即可建立和优化井筒周围的沉积微相模型及岩石力学参数模型,并应用到井筒周围的裂缝预测中。 展开更多
关键词 裂缝预测 储层地质力学 沉积微相 致密砂岩 超深储层 塔里木盆地
下载PDF
上一页 1 2 17 下一页 到第
使用帮助 返回顶部