Styrene-acrylate latex with high glass transition temperature (T), low minimum film forming temperature(MFT) and good stability was prepared via core-shell emulsion polymerization. With semicontinuous process, hig...Styrene-acrylate latex with high glass transition temperature (T), low minimum film forming temperature(MFT) and good stability was prepared via core-shell emulsion polymerization. With semicontinuous process, high conversion rate of monomer and low gel rate were achieved. The weight ratio of core monomer to shell monomer was approximately 1.35. It is found that many factors such as emulsifiers, initiators, reaction temperature, pH value and polymerization technology have influences on the permormance of styrene-acrylate latex. The prepared latex was characterized by TEM and FTIR. The obtained latex with T of 20.57 ℃, MFT or5.0 ℃, and good stability, had good stability of film forming.展开更多
The construction of relevant standards for building carbon emission assessment in China has just started,and the quantitative analysis method and evaluation system are still imperfect,which hinders the development of ...The construction of relevant standards for building carbon emission assessment in China has just started,and the quantitative analysis method and evaluation system are still imperfect,which hinders the development of low-carbon building design.Therefore,the use of intelligent energy management system is very necessary.The purpose of this paper is to explore the design optimization of low-carbon buildings based on intelligent energy management systems.Based on the proposed quantitative method of building carbon emission,this paper establishes the quota theoretical system of building carbon emission analysis,and develops the quota based carbon emission calculation software.Smart energy management system is a low-carbon energy-saving system based on the reference of large-scale building energy-saving system and combined with energy consumption.It provides a fast and effective calculation tool for the quantitative evaluation of carbon emission of construction projects,so as to realize the carbon emission control and optimization in the early stage of architectural design and construction.On this basis,the evaluation,analysis and calculation method of building structure based on carbon reduction target is proposed,combined with the carbon emission quota management standard proposed in this paper.Taking small high-rise residential buildings as an example,this paper compares and analyzes different building structural systems from the perspectives of structural performance,economy and carbon emission level.It provides a reference for the design and evaluation of low-carbon building structures.The smart energy management system collects user energy use parameters.It uses time period and time sequence to obtain a large amount of data for analysis and integration,which provides users with intuitive energy consumption data.Compared with the traditional architectural design method,the industrialized construction method can save 589.22 megajoules(MJ)per square meter.Based on 29270 megajoules(MJ)per ton of standard coal,the construction area of the case is about 8000 m2,and the energy saving of residential buildings is 161.04 tons of standard coal.This research is of great significance in reducing the carbon emission intensity of buildings.展开更多
In the urban residential building stock, a major proportion is constituted by low-rise individual buildings. In addition to cost, quality and duration, energy consumed for the project needs to be accounted in the deci...In the urban residential building stock, a major proportion is constituted by low-rise individual buildings. In addition to cost, quality and duration, energy consumed for the project needs to be accounted in the decision making process. Minimizing the cost of construction without compromising on the architectural and structural requirements is the primary objective of the residential buildings of stake-holders, especially the owners. The choice of structural system and the materials used for construction play a crucial role in this effort. This means that the use of expensive and/or voluminous materials such as cement, steel, masonry etc. is optimized. This could lead to significant reduction in embodied energy as well, if the choice of the structural system is prudently made. In this paper, an attempt has been made to quantify the cost and embodied energy benefits for a low-rise residential building by choosing two different structural systems, namely moment resisting framed (MRF) construction system and the partly load-bearing (PLB) system. The influence of choice of materials, contributing to reduction of cost and/or energy is discussed. It is clearly noticed that, when the structural system is re-configured as a PLB system from the existing MRF system there is significant reduction in cost and embodied energy without changing the architectural form.展开更多
The potential to conserve energy in an apartment building in Toronto,Ontario,Canada through the implementation of an advanced envelope system was explored in this study.This paper illustrates the possibility in reduci...The potential to conserve energy in an apartment building in Toronto,Ontario,Canada through the implementation of an advanced envelope system was explored in this study.This paper illustrates the possibility in reducing energy demand through an integrated design process(IDP),where research outcomes were incorporated into the architectural design.Using the floor plan and schematics provided by the designer,a building energy model was established in an advanced simulation program to evaluate the performances of nine low-energy envelope design strategies in reducing the heating and cooling energy consumption.Through this study,it can be concluded that performing detailed energy simulations early in the design process to identify which low-energy envelope strategies can be omitted or substituted in the final envelope design is crucial in identifying the most effective strategies for improving energy performance.This study also demonstrates the potential of collaboration between academia and industry in generating high performance buildings.展开更多
https://www.sciencedirect.com/journal/energy-and-buildings/vol/204/suppl/C Volume 204,1 December 2019(1)The heat transfer enhancement of low temperature airflow foam effect in the ice storage charging process,by Zhaol...https://www.sciencedirect.com/journal/energy-and-buildings/vol/204/suppl/C Volume 204,1 December 2019(1)The heat transfer enhancement of low temperature airflow foam effect in the ice storage charging process,by Zhaolei Ding,Zhaoliang Jiang,Jiamin Wang,Ding Wang,Article 109477 Abstract:Phase change cold storage,as an energy-saving application,was widely used in central air-conditioning system of commercial building to fit the intermittent and the changing cooling load.Ice storage with different container structures was developed.展开更多
Architecture is defined as a symbiosis of function, aesthetics, technology and economics. This paper introduces the concept of development of technology in architecture for a sustainable society. The concept is based ...Architecture is defined as a symbiosis of function, aesthetics, technology and economics. This paper introduces the concept of development of technology in architecture for a sustainable society. The concept is based on a systemic link building-climate-energy. The scientific analysis of this link allows us to define three technical levels of modern architecture. The lowest level is represented by low energy architecture that gives priority to the element of energy. Climate is defined only by physical parameters here. It is characterized by the production of emissions that deplete the Biocapacity of the Earth. Higher level of architecture is represented by green architecture which gives equal priority to both energy and ecology. Climate is defined by physical and chemical parameters here. It is characterized by the tendency of reduction of emissions production and move towards environmentally clean energy, material and water sources. Sustainable architecture represents the target program of development of human settlements in the interaction of society-energy-ecology. It is characterized by the balance of categories nature-man-technology and by minimizing the emissions production to the extent of their coverage by the Earth's ecosystems. This paper introduces design strategy for green building. The basic structure of the strategy defines, and internal structure of the strategy emphasizes, principles and concepts of green buildings. In this strategy, the vital role is played by renewable energy sources as a production technology of the capital provided to man by nature.展开更多
As the national buildings in each climate zone and passive low energy consumption building demonstration projects expand,there has been a wave of innovation across the construction industry.China is also becoming a ho...As the national buildings in each climate zone and passive low energy consumption building demonstration projects expand,there has been a wave of innovation across the construction industry.China is also becoming a hot zone for energy-efficient and high-performance passive buildings.Along with the traditional passive building structure,steel structure passive construction,assembled PC structure passive construction such as the emergence of various types of passive construction,as well as a variety of new building materials,doors and Windows,and air conditioning air equipment,put forward a new challenge for building electrical engineering design personnel and requirements.展开更多
Energy saving is the crucial task of green architecture,energy-saving design and evaluation should be interactive.Low Energy Certificate(LEC),an interactive computer program for energy efficiency and certification of ...Energy saving is the crucial task of green architecture,energy-saving design and evaluation should be interactive.Low Energy Certificate(LEC),an interactive computer program for energy efficiency and certification of building envelope,is briefly introduced in this paper in aspects of certification standards,procedure,methods etc.Through the evaluation report of Innovation-pavilion PoI features,reference values of LEC are presented.展开更多
Einstein derived the energy-momentum relationship which holds in an isolated system in free space. However, this relationship is not applicable in the space inside a hydrogen atom where there is potential energy. Ther...Einstein derived the energy-momentum relationship which holds in an isolated system in free space. However, this relationship is not applicable in the space inside a hydrogen atom where there is potential energy. Therefore, in 2011, the author derived an energy-momentum relationship applicable to the electron constituting a hydrogen atom. This paper derives that relationship in a simpler way using another method. From this relationship, it is possible to derive the formula for the energy levels of a hydrogen atom. The energy values obtained from this formula almost match the theoretical values of Bohr. However, the relationship derived by the author includes a state that cannot be predicted with Bohr’s theory. In the hydrogen atom, there is an energy level with n = 0. Also, there are energy levels where the relativistic energy of the electron becomes negative. An electron with this negative energy (mass) exists near the atomic nucleus (proton). The name “dark hydrogen atom” is given to matter formed from one electron with this negative mass and one proton with positive mass. Dark hydrogen atoms, dark hydrogen molecules, other types of dark atoms, and aggregates made up of dark molecules are plausible candidates for dark matter, the mysterious type of matter whose true nature is currently unknown.展开更多
文摘Styrene-acrylate latex with high glass transition temperature (T), low minimum film forming temperature(MFT) and good stability was prepared via core-shell emulsion polymerization. With semicontinuous process, high conversion rate of monomer and low gel rate were achieved. The weight ratio of core monomer to shell monomer was approximately 1.35. It is found that many factors such as emulsifiers, initiators, reaction temperature, pH value and polymerization technology have influences on the permormance of styrene-acrylate latex. The prepared latex was characterized by TEM and FTIR. The obtained latex with T of 20.57 ℃, MFT or5.0 ℃, and good stability, had good stability of film forming.
基金supported by“Key Technology Research on Operational Performance Improvement of the Green Building”(2020YFS0060)Key Project of Science and Technology Department of Sichuan Province+2 种基金supported by“Creative VR Teaching and Learning Research Based on‘PBL+’and Multidimensional Collaboration”(JG2021-721)“Reform in the Mode and Practice of Architecture Education with the Characteristics of Geology”(JG2021-672)Education Quality and Teaching Reform Project of Higher Education in Sichuan Province in 2021–2023.
文摘The construction of relevant standards for building carbon emission assessment in China has just started,and the quantitative analysis method and evaluation system are still imperfect,which hinders the development of low-carbon building design.Therefore,the use of intelligent energy management system is very necessary.The purpose of this paper is to explore the design optimization of low-carbon buildings based on intelligent energy management systems.Based on the proposed quantitative method of building carbon emission,this paper establishes the quota theoretical system of building carbon emission analysis,and develops the quota based carbon emission calculation software.Smart energy management system is a low-carbon energy-saving system based on the reference of large-scale building energy-saving system and combined with energy consumption.It provides a fast and effective calculation tool for the quantitative evaluation of carbon emission of construction projects,so as to realize the carbon emission control and optimization in the early stage of architectural design and construction.On this basis,the evaluation,analysis and calculation method of building structure based on carbon reduction target is proposed,combined with the carbon emission quota management standard proposed in this paper.Taking small high-rise residential buildings as an example,this paper compares and analyzes different building structural systems from the perspectives of structural performance,economy and carbon emission level.It provides a reference for the design and evaluation of low-carbon building structures.The smart energy management system collects user energy use parameters.It uses time period and time sequence to obtain a large amount of data for analysis and integration,which provides users with intuitive energy consumption data.Compared with the traditional architectural design method,the industrialized construction method can save 589.22 megajoules(MJ)per square meter.Based on 29270 megajoules(MJ)per ton of standard coal,the construction area of the case is about 8000 m2,and the energy saving of residential buildings is 161.04 tons of standard coal.This research is of great significance in reducing the carbon emission intensity of buildings.
文摘In the urban residential building stock, a major proportion is constituted by low-rise individual buildings. In addition to cost, quality and duration, energy consumed for the project needs to be accounted in the decision making process. Minimizing the cost of construction without compromising on the architectural and structural requirements is the primary objective of the residential buildings of stake-holders, especially the owners. The choice of structural system and the materials used for construction play a crucial role in this effort. This means that the use of expensive and/or voluminous materials such as cement, steel, masonry etc. is optimized. This could lead to significant reduction in embodied energy as well, if the choice of the structural system is prudently made. In this paper, an attempt has been made to quantify the cost and embodied energy benefits for a low-rise residential building by choosing two different structural systems, namely moment resisting framed (MRF) construction system and the partly load-bearing (PLB) system. The influence of choice of materials, contributing to reduction of cost and/or energy is discussed. It is clearly noticed that, when the structural system is re-configured as a PLB system from the existing MRF system there is significant reduction in cost and embodied energy without changing the architectural form.
基金funded by National Sciences and Engineering Research Council of Canada(NSERC)through Discovery Grant(project reference numbers:313375-07)MITACS ACCELERATE Internship program。
文摘The potential to conserve energy in an apartment building in Toronto,Ontario,Canada through the implementation of an advanced envelope system was explored in this study.This paper illustrates the possibility in reducing energy demand through an integrated design process(IDP),where research outcomes were incorporated into the architectural design.Using the floor plan and schematics provided by the designer,a building energy model was established in an advanced simulation program to evaluate the performances of nine low-energy envelope design strategies in reducing the heating and cooling energy consumption.Through this study,it can be concluded that performing detailed energy simulations early in the design process to identify which low-energy envelope strategies can be omitted or substituted in the final envelope design is crucial in identifying the most effective strategies for improving energy performance.This study also demonstrates the potential of collaboration between academia and industry in generating high performance buildings.
文摘https://www.sciencedirect.com/journal/energy-and-buildings/vol/204/suppl/C Volume 204,1 December 2019(1)The heat transfer enhancement of low temperature airflow foam effect in the ice storage charging process,by Zhaolei Ding,Zhaoliang Jiang,Jiamin Wang,Ding Wang,Article 109477 Abstract:Phase change cold storage,as an energy-saving application,was widely used in central air-conditioning system of commercial building to fit the intermittent and the changing cooling load.Ice storage with different container structures was developed.
文摘Architecture is defined as a symbiosis of function, aesthetics, technology and economics. This paper introduces the concept of development of technology in architecture for a sustainable society. The concept is based on a systemic link building-climate-energy. The scientific analysis of this link allows us to define three technical levels of modern architecture. The lowest level is represented by low energy architecture that gives priority to the element of energy. Climate is defined only by physical parameters here. It is characterized by the production of emissions that deplete the Biocapacity of the Earth. Higher level of architecture is represented by green architecture which gives equal priority to both energy and ecology. Climate is defined by physical and chemical parameters here. It is characterized by the tendency of reduction of emissions production and move towards environmentally clean energy, material and water sources. Sustainable architecture represents the target program of development of human settlements in the interaction of society-energy-ecology. It is characterized by the balance of categories nature-man-technology and by minimizing the emissions production to the extent of their coverage by the Earth's ecosystems. This paper introduces design strategy for green building. The basic structure of the strategy defines, and internal structure of the strategy emphasizes, principles and concepts of green buildings. In this strategy, the vital role is played by renewable energy sources as a production technology of the capital provided to man by nature.
文摘As the national buildings in each climate zone and passive low energy consumption building demonstration projects expand,there has been a wave of innovation across the construction industry.China is also becoming a hot zone for energy-efficient and high-performance passive buildings.Along with the traditional passive building structure,steel structure passive construction,assembled PC structure passive construction such as the emergence of various types of passive construction,as well as a variety of new building materials,doors and Windows,and air conditioning air equipment,put forward a new challenge for building electrical engineering design personnel and requirements.
文摘Energy saving is the crucial task of green architecture,energy-saving design and evaluation should be interactive.Low Energy Certificate(LEC),an interactive computer program for energy efficiency and certification of building envelope,is briefly introduced in this paper in aspects of certification standards,procedure,methods etc.Through the evaluation report of Innovation-pavilion PoI features,reference values of LEC are presented.
文摘Einstein derived the energy-momentum relationship which holds in an isolated system in free space. However, this relationship is not applicable in the space inside a hydrogen atom where there is potential energy. Therefore, in 2011, the author derived an energy-momentum relationship applicable to the electron constituting a hydrogen atom. This paper derives that relationship in a simpler way using another method. From this relationship, it is possible to derive the formula for the energy levels of a hydrogen atom. The energy values obtained from this formula almost match the theoretical values of Bohr. However, the relationship derived by the author includes a state that cannot be predicted with Bohr’s theory. In the hydrogen atom, there is an energy level with n = 0. Also, there are energy levels where the relativistic energy of the electron becomes negative. An electron with this negative energy (mass) exists near the atomic nucleus (proton). The name “dark hydrogen atom” is given to matter formed from one electron with this negative mass and one proton with positive mass. Dark hydrogen atoms, dark hydrogen molecules, other types of dark atoms, and aggregates made up of dark molecules are plausible candidates for dark matter, the mysterious type of matter whose true nature is currently unknown.