Taking the Lower Cretaceous Qingshuihe Formation in the southern margin of Junggar Basin as an example,the influences of the burial process in a foreland basin on the diagenesis and the development of high-quality res...Taking the Lower Cretaceous Qingshuihe Formation in the southern margin of Junggar Basin as an example,the influences of the burial process in a foreland basin on the diagenesis and the development of high-quality reservoirs of deep and ultra-deep clastic rocks were investigated using thin section,scanning electron microscope,electron probe,stable isotopic composition and fluid inclusion data.The Qingshuihe Formation went through four burial stages of slow shallow burial,tectonic uplift,progressive deep burial and rapid deep burial successively.The stages of slow shallow burial and tectonic uplift not only can alleviate the mechanical compaction of grains,but also can maintain an open diagenetic system in the reservoirs for a long time,which promotes the dissolution of soluble components by meteoric freshwater and inhibits the precipitation of dissolution products in the reservoirs.The late rapid deep burial process contributed to the development of fluid overpressure,which effectively inhibits the destruction of primary pores by compaction and cementation.The fluid overpressure promotes the development of microfractures in the reservoir,which enhances the dissolution effect of organic acids.Based on the quantitative reconstruction of porosity evolution history,it is found that the long-term slow shallow burial and tectonic uplift processes make the greatest contribution to the development of deep-ultra-deep high-quality clastic rock reservoirs,followed by the late rapid deep burial process,and the progressive deep burial process has little contribution.展开更多
A systematic sedimentological and chronological study of typical Paleogene basins in eastcentral Tibet suggests that the depositional characteristics of extensively developed huge-bedded, purplish-red coarse clastic r...A systematic sedimentological and chronological study of typical Paleogene basins in eastcentral Tibet suggests that the depositional characteristics of extensively developed huge-bedded, purplish-red coarse clastic rocks formed in a tectonic setting of regional thrusting and strike-slipping represent a typical dry and hot subaerial alluvial fan environment formed in a proximal and rapidaccumulating sediment body in debris flows and a fan-surface braided river. Combining results from basin-fill sequences, sequences of coarse clastic rocks, fauna and sporo-pollen associations and thermochronological data, it is conduded that the coarse clastic rocks formed in the period of 54.2- 24.1 Ma, nearly coeval with the formation of Paleogene basins in the northern (Nangqen-Yushu thrust belt), middle (Batang-Lijiang fault belt), and disintegration of large basins in the southern (LanpingSimao fold belt) segments of Tibet. The widespread massive-bedded coarse clastic rocks, fold thrusting and strike-slip, thrust shortening, and igneous activities in the Paleogene basins of eastcentral Tibet indicate that an early diachronous tectonic uplift might have occurred in the Tibetan Plateau from Middle Eocene to Oligocene, related to the initial stage of collision of the Indian and Asian plates.展开更多
Based on core observation, thin section examination, fluid inclusions analysis, carbon and oxygen isotopic composition analysis, and other approaches, the structural and burial evolution histories were investigated, a...Based on core observation, thin section examination, fluid inclusions analysis, carbon and oxygen isotopic composition analysis, and other approaches, the structural and burial evolution histories were investigated, and the diagenetic evolution process and genetic/development models were systematically discussed of the Upper Paleozoic Permian clastic rock reservoirs in the Bohai Bay Basin, East China. The Bohai Bay Basin underwent three stages of burial and two stages of uplifting in the Upper Paleozoic. Consequently, three stages of acid dissolution generated by the thermal evolution of kerogen, and two stages of meteoric freshwater leaching occurred. Dissolution in deeply buried, nearly closed diagenetic system was associated with the precipitation of authigenic clay and quartz, leading to a limited increase in storage space. Different structural uplifting–subsidence processes of tectonic zones resulted in varying diagenetic–reservoir-forming processes of the Permian clastic reservoirs. Three genetic models of reservoirs are recognized. The Model I reservoirs with pores formed in shallow strata and buried in shallow to medium strata underwent two stages of exposure to long-term open environment and two stages of meteoric freshwater leaching to enhance pores near the surface, and were shallowly buried in the late stage, exhibiting the dominance of secondary pores and the best physical properties. The Model Ⅱ reservoirs with pores formed in shallow strata and preserved due to modification after deep burial experienced an early exposure-open to late burial-closed environment, where pore types were modified due to dissolution, exhibiting the dominance of numerous secondary solution pores in feldspar and the physical properties inferior to Model I. The Model Ⅲ reservoirs with pores formed after being regulated after multiple periods of burial and dissolution experienced a dissolution of acidic fluids of organic origin under a near-closed to closed environment, exhibiting the dominance of intercrystalline micropores in kaolinite and the poorest physical properties. The target reservoirs lied in the waterflood area in the geological period of meteoric freshwater leaching, and are now the Model Ⅱ deep reservoirs in the slope zone–depression zone. They are determined as favorable options for subsequent exploration.展开更多
Terrigenous clastic reservoir rocks are widespread in China, and nearly all the industrial oil and gas accumulations in eastern China occur in the clastic rocks. The study shows that organic inclusions are mostly dist...Terrigenous clastic reservoir rocks are widespread in China, and nearly all the industrial oil and gas accumulations in eastern China occur in the clastic rocks. The study shows that organic inclusions are mostly distributed in the secondary fissures and pores which were formed in the process of oil-rock interaction, rather than in the cements or secondary enlargements.The organic inclusions are dominantly organic gas-rich or are composed of pure hydrocarbons.Homogenization temperatures range mainly from 120℃ to 130℃, which shows a relatively high maturity of organic matter. Vertical and horizontal temperature changes provide the grounds for the investigation of hasin evolution and thermal fluid-kinetics model. Fluorescence spectral characteristics of the organic inclusions indicate that oils and gases in the area studied probably have experienced two-stage or two-time migration. Micro-fluorescence research is one of the effective approaches to oil/source correlation and oil migration-stage determination. The abundance and occurrence of organic inclusions is one of the indicators of oil and gas abundance and accumulation in rock layers. With the help of other information, organic inclusions can provide the basis for the prospective assessment of oil and gas in clastic reservoir rocks.展开更多
There are many fracture zones crossing the dam foundation of the Xiangjiaba Hydropower Project in southwestern China. Clastic rock is the main media of the fracture zone and has poor physical and mechanical properties...There are many fracture zones crossing the dam foundation of the Xiangjiaba Hydropower Project in southwestern China. Clastic rock is the main media of the fracture zone and has poor physical and mechanical properties. In order to investigate the creep behavior of clastic rock, triaxial creep tests were conducted using a rock servo-controlling rheological testing machine. The results show that the creep behavior of clastic rock is significant at a high level of deviatoric stress, and less time-dependent deformation occurs at high confining pressure. Based on the creep test results, the relationship between axial strain and time under different confining pressures was investigated, and the relationship between axial strain rate and deviatoric stress was also discussed. The strain rate increases rapidly, and the rock sample fails eventually under high deviatoric stress. Moreover, the creep failure mechanism under different confining pressures was analyzed. The main failure mechanism of clastic rock is plastic shear, accompanied by a significant compression and ductile dilatancy. On the other band, with the determined parameters, the Burgers creep model was used to fit the creep curves. The results indicate that the Burgers model can exactly describe the creep behavior of clastic rock in the Xiangjiaba Hydropower Project.展开更多
The primary cracks in the rock block undergo series of steps and finally disintegrate,during this procession,the radius affects the impact force of rock block in clastic flow.Therefore,it is essential to figure out th...The primary cracks in the rock block undergo series of steps and finally disintegrate,during this procession,the radius affects the impact force of rock block in clastic flow.Therefore,it is essential to figure out the evolution mechanism of crack propagation for the design of engineering protection.In this study,based on fracture mechanics and Hertz contact theory,collision happened between rock block and slope surface is assumed to be elastic contact.Based on the above assumption,the critical impact force of crack propagation is obtained,and a model used to calculate the crack propagation length in a single collision is established.Besides,a rock fall site in Jiuzhai Valley was used to verify the calculation model.According to the model,several key factors were identified to influence crack propagation length including falling height,initial equivalent radius,and recovery coefficient of slope surface.Moreover,as a result of the orthogonal experiment,the influence of those factors on the crack propagation length was ranked,normal recovery coefficient>initial radius>initial falling height.In addition,the kinetic energy of the rock block in the compression stage is transformed into elastic deformation energy,angular kinetic energy,and dissipated energy of crack propagation.Due to the increase of collisions,the kinetic energy is gradually transformed into angular kinetic energy,and the dissipated energy of crack propagation weights is reduced.In conclusion,the crack propagation in rock block is a complicated progress,which is affected by multiple factors,especially falling height,initial equivalent radius,and recovery coefficient of slope surface.Our study may provide guidance for the design of protective structure of clastic flows.展开更多
At present,the main clastic rock reservoirs discovered in north Biru Basin are Xihu Formation, Lagongtang Formation,Duoni Formation and Jingzhushan Formation.Through the studies on petrology, reservoir properties and ...At present,the main clastic rock reservoirs discovered in north Biru Basin are Xihu Formation, Lagongtang Formation,Duoni Formation and Jingzhushan Formation.Through the studies on petrology, reservoir properties and diagenesis,it is concluded that diagenesis of these four layers are strong,most have entered the late diagenesis period.The main type of reservoir space is secondary-hole solution and the pore structure is micro-fine pore and micro展开更多
长城系是华北克拉通统一结晶基底形成后的首套沉积盖层,其碎屑锆石U-Pb年代学及其Hf同位素特征分析对探讨地层形成时代、源区特征以及基底演化均具重要研究意义。本文对华北克拉通中部黎城地区长城系下部地层的碎屑锆石进行了U-Pb年龄...长城系是华北克拉通统一结晶基底形成后的首套沉积盖层,其碎屑锆石U-Pb年代学及其Hf同位素特征分析对探讨地层形成时代、源区特征以及基底演化均具重要研究意义。本文对华北克拉通中部黎城地区长城系下部地层的碎屑锆石进行了U-Pb年龄和Hf同位素分析。结果表明,该区长城系碎屑锆石U-Pb年龄呈现了2.55~2.45Ga、2.15~2.0Ga和~1.92Ga等三个主峰期,同时存在3.5~3.1Ga和2.9~2.7Ga的年龄次峰期。最年轻碎屑锆石的207 Pb/206 Pb加权平均年龄限定了该区长城系沉积发生于1.76Ga之后。碎屑锆石的年龄分布和Hf同位素特征与华北克拉通中、南部基底物质记录的地质事件高度相似,区内长城系地层与南部熊耳地区长城系地层可对比性强,证明太行山南段在1.76Ga后已与南部熊耳裂谷盆地相连,其沉积物质均主要来自华北克拉通中、南部地区。其中,3.5~3.4Ga的古老碎屑锆石εHf(t)=-8.6~-4.6,揭示中、南部地区存在古太古代地壳物质。新太古代早期2.9~2.7Ga的锆石εHf(t)以正值为主(占比85%),它们的t C DM=3190~2774Ma,与其结晶年龄相同或接近,证明华北克拉通南部在新太古代早期以新生地壳生长为主。新太古代晚期2.55~2.45Ga峰期的锆石也以正的εHf(t)值为主(占比69%),而2.15~2.0Ga峰期锆石的εHf(t)值大多偏负(占比56%),说明华北克拉通南部地区从新太古代末期的新生地壳增生为主伴有陆壳再造转变为古元古代中期以古老陆壳物质再造为主,并有少量新生陆壳增生;古元古代晚期~1.92Ga年龄峰期的碎屑锆石εHf(t)=-11.9~+2.0,揭示至古元古代末期华北克拉通中南部进入到以古老陆壳物质再造为主的演化阶段。展开更多
基金Supported by the National Natural Science Foundation of China(41872113,42172109,42172108)CNPC-China University of Petroleum(Beijing)Strategic Cooperation Project(ZLZX2020-02)+1 种基金National Key R&D Program Project(2018YFA0702405)China University of Petroleum(Beijing)Research Project(2462020BJRC002,2462020YXZZ020)。
文摘Taking the Lower Cretaceous Qingshuihe Formation in the southern margin of Junggar Basin as an example,the influences of the burial process in a foreland basin on the diagenesis and the development of high-quality reservoirs of deep and ultra-deep clastic rocks were investigated using thin section,scanning electron microscope,electron probe,stable isotopic composition and fluid inclusion data.The Qingshuihe Formation went through four burial stages of slow shallow burial,tectonic uplift,progressive deep burial and rapid deep burial successively.The stages of slow shallow burial and tectonic uplift not only can alleviate the mechanical compaction of grains,but also can maintain an open diagenetic system in the reservoirs for a long time,which promotes the dissolution of soluble components by meteoric freshwater and inhibits the precipitation of dissolution products in the reservoirs.The late rapid deep burial process contributed to the development of fluid overpressure,which effectively inhibits the destruction of primary pores by compaction and cementation.The fluid overpressure promotes the development of microfractures in the reservoir,which enhances the dissolution effect of organic acids.Based on the quantitative reconstruction of porosity evolution history,it is found that the long-term slow shallow burial and tectonic uplift processes make the greatest contribution to the development of deep-ultra-deep high-quality clastic rock reservoirs,followed by the late rapid deep burial process,and the progressive deep burial process has little contribution.
基金This research was supported by the National Key Project for Basic Research on the Tibetan Plateau (Grant G1998040800-3);National Natural Science Foundation of China (Grants 49972026 and 39972026);Chinese Academy of Sciences (CAS) Projects (Grant KZ952-JI408) ; US-NSF project (Grant 980612).
文摘A systematic sedimentological and chronological study of typical Paleogene basins in eastcentral Tibet suggests that the depositional characteristics of extensively developed huge-bedded, purplish-red coarse clastic rocks formed in a tectonic setting of regional thrusting and strike-slipping represent a typical dry and hot subaerial alluvial fan environment formed in a proximal and rapidaccumulating sediment body in debris flows and a fan-surface braided river. Combining results from basin-fill sequences, sequences of coarse clastic rocks, fauna and sporo-pollen associations and thermochronological data, it is conduded that the coarse clastic rocks formed in the period of 54.2- 24.1 Ma, nearly coeval with the formation of Paleogene basins in the northern (Nangqen-Yushu thrust belt), middle (Batang-Lijiang fault belt), and disintegration of large basins in the southern (LanpingSimao fold belt) segments of Tibet. The widespread massive-bedded coarse clastic rocks, fold thrusting and strike-slip, thrust shortening, and igneous activities in the Paleogene basins of eastcentral Tibet indicate that an early diachronous tectonic uplift might have occurred in the Tibetan Plateau from Middle Eocene to Oligocene, related to the initial stage of collision of the Indian and Asian plates.
基金Supported by the National Natural Science Foundation(42222208,41821002)China National Science and Technology Major Project(2016ZX05006-007)Mount Taishan Scholar Young Expert Project(201909061).
文摘Based on core observation, thin section examination, fluid inclusions analysis, carbon and oxygen isotopic composition analysis, and other approaches, the structural and burial evolution histories were investigated, and the diagenetic evolution process and genetic/development models were systematically discussed of the Upper Paleozoic Permian clastic rock reservoirs in the Bohai Bay Basin, East China. The Bohai Bay Basin underwent three stages of burial and two stages of uplifting in the Upper Paleozoic. Consequently, three stages of acid dissolution generated by the thermal evolution of kerogen, and two stages of meteoric freshwater leaching occurred. Dissolution in deeply buried, nearly closed diagenetic system was associated with the precipitation of authigenic clay and quartz, leading to a limited increase in storage space. Different structural uplifting–subsidence processes of tectonic zones resulted in varying diagenetic–reservoir-forming processes of the Permian clastic reservoirs. Three genetic models of reservoirs are recognized. The Model I reservoirs with pores formed in shallow strata and buried in shallow to medium strata underwent two stages of exposure to long-term open environment and two stages of meteoric freshwater leaching to enhance pores near the surface, and were shallowly buried in the late stage, exhibiting the dominance of secondary pores and the best physical properties. The Model Ⅱ reservoirs with pores formed in shallow strata and preserved due to modification after deep burial experienced an early exposure-open to late burial-closed environment, where pore types were modified due to dissolution, exhibiting the dominance of numerous secondary solution pores in feldspar and the physical properties inferior to Model I. The Model Ⅲ reservoirs with pores formed after being regulated after multiple periods of burial and dissolution experienced a dissolution of acidic fluids of organic origin under a near-closed to closed environment, exhibiting the dominance of intercrystalline micropores in kaolinite and the poorest physical properties. The target reservoirs lied in the waterflood area in the geological period of meteoric freshwater leaching, and are now the Model Ⅱ deep reservoirs in the slope zone–depression zone. They are determined as favorable options for subsequent exploration.
文摘Terrigenous clastic reservoir rocks are widespread in China, and nearly all the industrial oil and gas accumulations in eastern China occur in the clastic rocks. The study shows that organic inclusions are mostly distributed in the secondary fissures and pores which were formed in the process of oil-rock interaction, rather than in the cements or secondary enlargements.The organic inclusions are dominantly organic gas-rich or are composed of pure hydrocarbons.Homogenization temperatures range mainly from 120℃ to 130℃, which shows a relatively high maturity of organic matter. Vertical and horizontal temperature changes provide the grounds for the investigation of hasin evolution and thermal fluid-kinetics model. Fluorescence spectral characteristics of the organic inclusions indicate that oils and gases in the area studied probably have experienced two-stage or two-time migration. Micro-fluorescence research is one of the effective approaches to oil/source correlation and oil migration-stage determination. The abundance and occurrence of organic inclusions is one of the indicators of oil and gas abundance and accumulation in rock layers. With the help of other information, organic inclusions can provide the basis for the prospective assessment of oil and gas in clastic reservoir rocks.
基金supported by the National Natural Science Foundation of China(Grants No.51409261 and 11172090)the Natural Science Foundation of Shandong Province(Grants No.ZR2014EEQ014)the Applied Basic Research Programs of Qingdao City(Grant No.14-2-4-67-jch)
文摘There are many fracture zones crossing the dam foundation of the Xiangjiaba Hydropower Project in southwestern China. Clastic rock is the main media of the fracture zone and has poor physical and mechanical properties. In order to investigate the creep behavior of clastic rock, triaxial creep tests were conducted using a rock servo-controlling rheological testing machine. The results show that the creep behavior of clastic rock is significant at a high level of deviatoric stress, and less time-dependent deformation occurs at high confining pressure. Based on the creep test results, the relationship between axial strain and time under different confining pressures was investigated, and the relationship between axial strain rate and deviatoric stress was also discussed. The strain rate increases rapidly, and the rock sample fails eventually under high deviatoric stress. Moreover, the creep failure mechanism under different confining pressures was analyzed. The main failure mechanism of clastic rock is plastic shear, accompanied by a significant compression and ductile dilatancy. On the other band, with the determined parameters, the Burgers creep model was used to fit the creep curves. The results indicate that the Burgers model can exactly describe the creep behavior of clastic rock in the Xiangjiaba Hydropower Project.
基金funded by the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDA23090403)the Scientific Foundation of the Chinese Academy of Sciences(Grant No.KFZD-SW-425)the Key Research and Development Program of Sichuan Province(Grant No.2019YFG0460)。
文摘The primary cracks in the rock block undergo series of steps and finally disintegrate,during this procession,the radius affects the impact force of rock block in clastic flow.Therefore,it is essential to figure out the evolution mechanism of crack propagation for the design of engineering protection.In this study,based on fracture mechanics and Hertz contact theory,collision happened between rock block and slope surface is assumed to be elastic contact.Based on the above assumption,the critical impact force of crack propagation is obtained,and a model used to calculate the crack propagation length in a single collision is established.Besides,a rock fall site in Jiuzhai Valley was used to verify the calculation model.According to the model,several key factors were identified to influence crack propagation length including falling height,initial equivalent radius,and recovery coefficient of slope surface.Moreover,as a result of the orthogonal experiment,the influence of those factors on the crack propagation length was ranked,normal recovery coefficient>initial radius>initial falling height.In addition,the kinetic energy of the rock block in the compression stage is transformed into elastic deformation energy,angular kinetic energy,and dissipated energy of crack propagation.Due to the increase of collisions,the kinetic energy is gradually transformed into angular kinetic energy,and the dissipated energy of crack propagation weights is reduced.In conclusion,the crack propagation in rock block is a complicated progress,which is affected by multiple factors,especially falling height,initial equivalent radius,and recovery coefficient of slope surface.Our study may provide guidance for the design of protective structure of clastic flows.
文摘At present,the main clastic rock reservoirs discovered in north Biru Basin are Xihu Formation, Lagongtang Formation,Duoni Formation and Jingzhushan Formation.Through the studies on petrology, reservoir properties and diagenesis,it is concluded that diagenesis of these four layers are strong,most have entered the late diagenesis period.The main type of reservoir space is secondary-hole solution and the pore structure is micro-fine pore and micro
文摘长城系是华北克拉通统一结晶基底形成后的首套沉积盖层,其碎屑锆石U-Pb年代学及其Hf同位素特征分析对探讨地层形成时代、源区特征以及基底演化均具重要研究意义。本文对华北克拉通中部黎城地区长城系下部地层的碎屑锆石进行了U-Pb年龄和Hf同位素分析。结果表明,该区长城系碎屑锆石U-Pb年龄呈现了2.55~2.45Ga、2.15~2.0Ga和~1.92Ga等三个主峰期,同时存在3.5~3.1Ga和2.9~2.7Ga的年龄次峰期。最年轻碎屑锆石的207 Pb/206 Pb加权平均年龄限定了该区长城系沉积发生于1.76Ga之后。碎屑锆石的年龄分布和Hf同位素特征与华北克拉通中、南部基底物质记录的地质事件高度相似,区内长城系地层与南部熊耳地区长城系地层可对比性强,证明太行山南段在1.76Ga后已与南部熊耳裂谷盆地相连,其沉积物质均主要来自华北克拉通中、南部地区。其中,3.5~3.4Ga的古老碎屑锆石εHf(t)=-8.6~-4.6,揭示中、南部地区存在古太古代地壳物质。新太古代早期2.9~2.7Ga的锆石εHf(t)以正值为主(占比85%),它们的t C DM=3190~2774Ma,与其结晶年龄相同或接近,证明华北克拉通南部在新太古代早期以新生地壳生长为主。新太古代晚期2.55~2.45Ga峰期的锆石也以正的εHf(t)值为主(占比69%),而2.15~2.0Ga峰期锆石的εHf(t)值大多偏负(占比56%),说明华北克拉通南部地区从新太古代末期的新生地壳增生为主伴有陆壳再造转变为古元古代中期以古老陆壳物质再造为主,并有少量新生陆壳增生;古元古代晚期~1.92Ga年龄峰期的碎屑锆石εHf(t)=-11.9~+2.0,揭示至古元古代末期华北克拉通中南部进入到以古老陆壳物质再造为主的演化阶段。