The positive structure belts surrounding the Taibei Sag,Turpan-Hami Basin,have been the main targets for oil and gas exploration for years and are now left with remaining resources scattering in reservoirs adjacent to...The positive structure belts surrounding the Taibei Sag,Turpan-Hami Basin,have been the main targets for oil and gas exploration for years and are now left with remaining resources scattering in reservoirs adjacent to source rocks in the sag,where the Shuixigou Group with substantial oil and gas potential constitutes the primary focus for near-source exploration.Consequently,characterization of development and key controlling factors of reservoir space becomes a must for future exploration in the area.This study investigates the development traits,genesis,and controlling factors of the Xishanyao and Sangonghe formations in the Shengbei and Qiudong Sub-sags of the Taibei Sag with techniques such as cast thin-section observation,porosity and permeability tests,high-pressure mercury injection,and saturation fluid NMR analysis of reservoir rocks.The findings reveal that the Shuixigou Group in the Taibei Sag consists of lithic sandstone.Reservoirs in the group are mostly poor in terms of physical properties,with undeveloped primary pores dominated by intergranular dissolved pores as a result of a strong compaction.Comparative analysis of key controlling factors of the Sangonghe Formation reveals significant distinctions in sandstone particle size,sand body thickness,genesis and distribution,provenance location,and source rock type between the Qiudong area and Shengbei area.Vertically,the coal seams of the Xishanyao Formation exhibit heightened development with shallower burial depth and lower maturity compared to those of the Sangonghe Formation.Consequently,this environment fosters the formation of organic acids,which have a stronger dissolution effect on minerals to develop secondary dissolution pores,and ultimately resulting in better reservoir physical properties.Overall,the reservoirs within the Qiudong area of the Taibei Sag demonstrate superior characteristics compared to those in the Shengbei area.Furthermore,the reservoir physical properties of the Xishanyao Formation are better than those of the Sangonghe Formation.The research findings will provide valuable guidance for the exploration and development of lithological oil and gas reservoirs within the Taibei Sag.展开更多
The Linxing area within the Ordos Basin exhibits pronounced reservoir heterogeneity and intricate micro-pore structures,rendering it susceptible to water-blocking damage during imbibition extraction.This study delved ...The Linxing area within the Ordos Basin exhibits pronounced reservoir heterogeneity and intricate micro-pore structures,rendering it susceptible to water-blocking damage during imbibition extraction.This study delved into the traits of tight sandstone reservoirs in the 8th member of the Shihezi Formation(also referred to as the He 8 Member)in the study area,as well as their effects on fracturing fluid imbibition.Utilizing experimental techniques such as nuclear magnetic resonance(NMR),high-pressure mercury intrusion(HPMI),and gas adsorption,this study elucidated the reservoir characteristics and examined the factors affecting the imbibition through imbibition experiments.The findings reveal that:①The reservoir,with average porosity of 8.40%and average permeability of 0.642×10^(-3)μm^(2),consists principally of quartz,feldspar,and lithic fragments,with feldspathic litharenite serving as the primary rock type and illite as the chief clay mineral;②Nano-scale micro-pores and throats dominate the reservoir,with dissolution pores and intercrystalline pores serving as predominant pore types,exhibiting relatively high pore connectivity;③Imbibition efficiency is influenced by petrophysical properties,clay mineral content,and microscopic pore structure.Due to the heterogeneity of the tight sandstone reservoir,microscopic factors have a more significant impact on the imbibition efficiency of fracturing fluids;④A comparative analysis shows that average pore size correlates most strongly with imbibition efficiency,followed by petrophysical properties and clay mineral content.In contrast,the pore type has minimal impact.Micropores are vital in the imbibition process,while meso-pores and macro-pores offer primary spaces for imbibition.This study offers theoretical insights and guidance for enhancing the post-fracturing production of tight sandstone reservoirs by examining the effects of these factors on the imbibition efficiency of fracturing fluids in tight sandstones.展开更多
The tight sandstones of the Upper Triassic Xujiahe Formation(T_3x) constitute important gas reservoirs in western Sichuan.The Xujiahe sandstones are characterized by low to very low porosity (av.5.22%and 3.62%) fo...The tight sandstones of the Upper Triassic Xujiahe Formation(T_3x) constitute important gas reservoirs in western Sichuan.The Xujiahe sandstones are characterized by low to very low porosity (av.5.22%and 3.62%) for the T_3x^4 and T_3x^2 sandstones,respectively),extremely low permeability(av. 0.060 mD and 0.058 mD for the T_3x^4 and T_3x^2 sandstones,respectively),strong heterogeneity,micronano pore throat,and poor pore throat sorting.As a result of complex pore structure and the occurrence of fractures,weak correlations exist between petrophysical properties and pore throat size,demonstrating that porosity or pore throat size alone does not serve as a good permeability predictor.Much improved correlations can be obtained between permeability and porosity when pore throat radii are incorporated. Correlations between porosity,permeability,and pore throat radii corresponding to different saturations of mercury were established,showing that the pore throat radius at 20%mercury saturation(R_(20)) is the best permeability predictor.Multivariate regression analysis and artificial neural network(ANN) methods were used to establish permeability prediction models and the unique characteristics of neural networks enable them to be more successful in predicting permeability than the multivariate regression model.In addition, four petrophysical rock types can be identified based on the distributions of R_(20),each exhibiting distinct petrophysical properties and corresponding to different flow units.展开更多
The fractures and kerogen,which generally exist in the shale,are signifcant to the CO_(2) huf-n-puf in the shale reservoir.It is important to study the efects of fractures and kerogen on oil recovery during CO_(2) huf...The fractures and kerogen,which generally exist in the shale,are signifcant to the CO_(2) huf-n-puf in the shale reservoir.It is important to study the efects of fractures and kerogen on oil recovery during CO_(2) huf-n-puf operations in the fracture-matrix system.In this study,a modifed CO_(2) huf-n-puf experiment method is developed to estimate the recovery factors and the CO_(2) injectivity in the fractured organic-rich shales and tight sandstones.The efects of rock properties,injection pressure,and injection time on the recovery factors and CO_(2) usage efciency in shales and sandstones are discussed,respectively.The results show that although the CO_(2) injectivity in the shale is higher than that in the sandstone with the same porosity;besides,the recovery factors of two shale samples are much lower than that of two sandstone samples.This demonstrates that compared with the tight sandstone,more cycles are needed for the shale to reach a higher recovery factor.Furthermore,there are optimal injection pressures(close to the minimum miscible pressure)and CO_(2) injection volumes for CO_(2) huf-npuf in the shale.Since the optimal CO_(2) injection volume in the shale is higher than that in the sandstone,more injection time is needed to enhance the oil recovery in the shale.There is a reference sense for CO_(2) huf-n-puf in the fractured shale oil reservoir for enhanced oil recovery(EOR)purposes.展开更多
Fracability is a property that indicates how easy reservoir rocks can be fractured in hydraulic fracturing operations.It is a key parameter for fracturing design and evaluation.In order to utilize continuous logging d...Fracability is a property that indicates how easy reservoir rocks can be fractured in hydraulic fracturing operations.It is a key parameter for fracturing design and evaluation.In order to utilize continuous logging data to predict fracability,synchronous tests of dynamic and static mechanical parameters of rocks under different confining pressures were conducted on13 tight sandstone samples derived from the central Junggar Basin,China.A modified formula between dynamic and static mechanical parameters was established.Fracability of the tight reservoir in the Junggar Basin was then evaluated based on brittleness index,fracture toughness,and fracability index.The effectiveness of fracturing was analyzed combined with the oil testing curve after hydraulic fracturing.The results show that:(1)The distribution of oil-bearing formations in the studied area coincides well with stratum of higher fracability index.(2)The critical fracability index is determined to be 0.3,three formations are selected as fracturing candidates,and a thin mudstone interbed is identified in the oil-bearing formation.(3)Well testing curve verifies the reliability of the fracability evaluation method and the accuracy of the modified formula between dynamic and static mechanical parameters.This study provides useful information for improving fracturing operations of tight oil and gas reservoirs.展开更多
By measuring the variation of the P-and S-wave velocities of tight sandstone samples under water saturation,it was confirmed that with the decrease in water saturation,the P-wave velocity first decreased and then incr...By measuring the variation of the P-and S-wave velocities of tight sandstone samples under water saturation,it was confirmed that with the decrease in water saturation,the P-wave velocity first decreased and then increased.The variation in velocity was influenced by the sandstone’s porosity.The commonly used Gassmann equation based on fluid substitution theory was studied.Comparing the calculated results with the measured data,it was found that the Gassmann equation agreed well with the measured data at high water saturation,but it could not explain the bending phenomenon of P-wave velocity at low saturation.This indicated that these equations could not accurately describe the relationship between fluid content and rock acoustic velocity.The reasons for this phenomenon were discussed through Taylor’s expansion.The coefficients of the fitting formula were calculated and verified by fitting the measured acoustic velocity changes of the cores.The relationship between P-wave velocity and saturation was discussed,which provides experimental support for calculating saturation using seismic and acoustic logging data.展开更多
Based on an elaboration of the resource potential and annual production of tight sandstone gas and shale gas in the United States and China,this paper reviews the researches on the distribution of tight sandstone gas ...Based on an elaboration of the resource potential and annual production of tight sandstone gas and shale gas in the United States and China,this paper reviews the researches on the distribution of tight sandstone gas and shale gas reservoirs,and analyzes the distribution characteristics and genetic types of tight sandstone gas reservoirs.In the United States,the proportion of tight sandstone gas in the total gas production declined from 20%-35%in 2008 to about 8%in 2023,and the shale gas production was 8310×10^(8)m^(3)in 2023,about 80%of the total gas production,in contrast to the range of 5%-17%during 2000-2008.In China,the proportion of tight sandstone gas in the total gas production increased from 16%in 2010 to 28%or higher in 2023.China began to produce shale gas in 2012,with the production reaching 250×10^(8)m^(3)in 2023,about 11%of the total gas production of the country.The distribution of shale gas reservoirs is continuous.According to the fault presence,fault displacement and gas layer thickness,the continuous shale gas reservoirs can be divided into two types:continuity and intermittency.Most previous studies believed that both tight sandstone gas reservoirs and shale gas reservoirs are continuous,but this paper holds that the distribution of tight sandstone gas reservoirs is not continuous.According to the trap types,tight sandstone gas reservoirs can be divided into lithologic,anticlinal,and synclinal reservoirs.The tight sandstone gas is coal-derived in typical basins in China and Egypt,but oil-type gas in typical basins in the United States and Oman.展开更多
To understand the evolution of stress-induced elastic wave anisotropy,three triaxial experiments were performed on sandstone specimens with bedding orientations parallel,perpendicular,and oblique to the maximum princi...To understand the evolution of stress-induced elastic wave anisotropy,three triaxial experiments were performed on sandstone specimens with bedding orientations parallel,perpendicular,and oblique to the maximum principal stress.P-wave velocities along 64 different directions on each specimen were monitored frequently to understand the anisotropy change at various stress levels by fitting Thomsen’s anisotropy equation.The results show that the elastic wave anisotropy is very sensitive to mechanical loading.Under hydrostatic loading,the magnitude of anisotropy is reduced in all three specimens.However,under deviatoric stress loading,the evolution of anisotropic characteristics(magnitude and orientation of the symmetry axis)is bedding orientation dependent.Anisotropy reversal occurs in specimens with bedding normal/oblique to the maximum principal stress.P-wave anisotropyε0 is linearly related to volumetric strain Sv and dilatancy,indicating that stress-induced redistribution of microcracks has a significant effect on P-wave velocity anisotropy.The closure of initial cracks and pores aligned in the bedding direction contributes to the decrease of the anisotropy.However,opening of new cracks,aligned in the maximum principal direction,accounts for the increase of the anisotropy.The experimental results provide some insights into the microstructural behavior under loading and provide an experimental basis for seismic data interpretation and parameter selection in engineering applications.展开更多
A numerical model of hydraulic fracture propagation is introduced for a representative reservoir(Yuanba continental tight sandstone gas reservoir in Northeast Sichuan).Different parameters are considered,i.e.,the inte...A numerical model of hydraulic fracture propagation is introduced for a representative reservoir(Yuanba continental tight sandstone gas reservoir in Northeast Sichuan).Different parameters are considered,i.e.,the interlayer stress difference,the fracturing discharge rate and the fracturing fluid viscosity.The results show that these factors affect the gas and water production by influencing the fracture size.The interlayer stress difference can effectively control the fracture height.The greater the stress difference,the smaller the dimensionless reconstruction volume of the reservoir,while the flowback rate and gas production are lower.A large displacement fracturing construction increases the fracture-forming efficiency and expands the fracture size.The larger the displacement of fracturing construction,the larger the dimensionless reconstruction volume of the reservoir,and the higher the fracture-forming efficiency of fracturing fluid,the flowback rate,and the gas production.Low viscosity fracturing fluid is suitable for long fractures,while high viscosity fracturing fluid is suitable for wide fractures.With an increase in the fracturing fluid viscosity,the dimensionless reconstruction volume and flowback rate of the reservoir display a non-monotonic behavior,however,their changes are relatively small.展开更多
Based on the actual data collected from the tight sandstone development zone, correlation analysis using theSpearman method was conducted to determine the main factors influencing the gas production rate of tightsands...Based on the actual data collected from the tight sandstone development zone, correlation analysis using theSpearman method was conducted to determine the main factors influencing the gas production rate of tightsandstone fracturing. An integrated model combining geological engineering and numerical simulation of fracturepropagation and production was completed. Based on data analysis, the hydraulic fracture parameters wereoptimized to develop a differentiated fracturing treatment adjustment plan. The results indicate that the influenceof geological and engineering factors in the X1 and X2 development zones in the study area differs significantly.Therefore, it is challenging to adopt a uniform development strategy to achieve rapid production increase. Thedata analysis reveals that the variation in gas production rate is primarily affected by the reservoir thickness andpermeability parameters as geological factors. On the other hand, the amount of treatment fluid and proppantaddition significantly impact the gas production rate as engineering factors. Among these factors, the influence ofgeological factors is more pronounced in block X1. Therefore, the main focus should be on further optimizing thefracturing interval and adjusting the geological development well location. Given the existing well location, thereis limited potential for further optimizing fracture parameters to increase production. For block X2, the fracturingparameters should be optimized. Data screening was conducted to identify outliers in the entire dataset, and adata-driven fracturing parameter optimization method was employed to determine the basic adjustment directionfor reservoir stimulation in the target block. This approach provides insights into the influence of geological,stimulation, and completion parameters on gas production rate. Consequently, the subsequent fracturing parameteroptimization design can significantly reduce the modeling and simulation workload and guide field operations toimprove and optimize hydraulic fracturing efficiency.展开更多
The Chang-63 reservoir in the Huaqing area has widely developed tight sandstone "thick sand layers, but not reservoirs characterized by rich in oil", and it is thus necessary to further study its oil and gas enrichm...The Chang-63 reservoir in the Huaqing area has widely developed tight sandstone "thick sand layers, but not reservoirs characterized by rich in oil", and it is thus necessary to further study its oil and gas enrichment law. This study builds porosity and fracture development and evolution models in different deposition environments, through core observation, casting thin section, SEM, porosity and permeability analysis, burial history analysis, and "four-property-relationships" analysis.展开更多
Fractures are of great significance to tight oil and gas development.Fracture identification using conventional well logs is a feasible way to locate the underground fractures in tight sandstones.However,there are thr...Fractures are of great significance to tight oil and gas development.Fracture identification using conventional well logs is a feasible way to locate the underground fractures in tight sandstones.However,there are three problems affecting its interpretation accuracy and practical application,namely weak well log responses of fractures,a lack of specific logs for fracture prediction,and relative change omission in log responses.To overcome these problems and improve fracture identification accuracy,a fracture indicating parameter(FIP)method composed of a comprehensive index method(CIM)and a comprehensive fractal method(CFM)is introduced.The CIM tries to handle the first problem by amplifying log responses of fractures.The CFM addresses the third one using fractal dimensions.The flexible weight parameters corresponding to logs in the CIM and CFM make the interpretation possible for wells lacking specific logs.The reconstructed logs in the CIM and CFM try to solve the second problem.It is noted that the FIP method can calculate the probability of fracture development at a certain depth,but cannot show the fracture development degree of a new well compared with other wells.In this study,a formation fracture intensity(FFI)method is also introduced to further evaluate fracture development combined with production data.To test the validity of the FIP and FFI methods,fracture identification experiments are implemented in a tight reservoir in the Ordos Basin.The results are consistent with the data of rock core observation and production,indicating the proposed methods are effective for fracture identification and evaluation.展开更多
Authigenic clays and calcite cements are important in the development of reservoir tightness and the formation of hydrocarbon sweet spots.We investigated Jurassic low-permeability sandstone reservoirs in the central J...Authigenic clays and calcite cements are important in the development of reservoir tightness and the formation of hydrocarbon sweet spots.We investigated Jurassic low-permeability sandstone reservoirs in the central Junggar Basin,NW China,using petrography,mineralogy,porosity,and permeability assessment,and stable C and O isotope analysis to ascertain the influence of authigenic clays and calcites on reservoir quality.Here,we establish the properties and diagenetic processes of the reservoir sandstones,and construct a generalizable model of reservoir quality.The results show that the sandstones are mainly litharenite and feldspathic litharenite and can be classified into ductile-lithic-rich sandstones and ductile-lithic-poor sandstones according to rock composition.The ductile-lithic-rich sandstones are tight(mean porosity?7.31%;mean permeability?0.08 mD)as a result of intense compaction.In contrast,the ductile-lithic-poor sandstones can be classified into five types according to diagenetic process.The formation of favorable hydrocarbon reservoir properties is closely related to the presence of authigenic clays and dissolution of calcite.In particular,kaolinite fills intergranular pores,thereby blocking pore space and reducing reservoir quality.Chlorite coating resists compaction and limits the formation of quartz overgrowths,thereby preserving pore space and enhancing reservoir quality.Calcite controls reservoir quality through both precipitation and dissolution.Calcite precipitation results in reduced reservoir quality,whereby early calcites that were precipitated in formation water resist compaction and provide the basis for subsequent dissolution and late precipitation,whereas dissolution of calcite in mesodiagenesis improves reservoir quality.A generalized model is formulated by relating diagenetic facies types to depth and porosity,providing a reference for other similar reservoirs.Our data suggest that deeply buried tight sandstones can be exploration prospects under favorable conditions involving the presence of authigenic clays and dissolution of calcite,as in the central Junggar Basin of this study.展开更多
The tight sandstone in the Tarim Basin has the characteristics of large burial depth and development of nature fractures due to concentrated in-situ stress. Identifying the present-day in-situ stress orientation is im...The tight sandstone in the Tarim Basin has the characteristics of large burial depth and development of nature fractures due to concentrated in-situ stress. Identifying the present-day in-situ stress orientation is important in hydrocarbon exploration and development, but also a key scientific question in understanding naturally fractured reservoirs. This paper presents a case study where we integrate various methods using wireline and image-log data, to identify present-day in-situ stress direction of ultra-deep fractured tight sandstone reservoirs, in the Kuqa depression. We discuss the formation mechanism of the elliptical borehole, compares the advantages and applicable conditions of the double caliper method,resistivity image logs and array sonic logs method. The well borehole diameter is measured orthogonally,then the ellipse is fitted, and the in-situ stress orientation is identified by the azimuth of the short-axis borehole, but it fails in the borehole expansion section, the fracture development section and the borehole collapse section. The micro-resistivity image logs method reveals the borehole breakouts azimuth, and also the strike of induced fractures, which are used to determine the orientation of in-situ stress. However, under water-based mud conditions, it’s hard to distinguish natural fractures from induced fractures by image logs. Under oil-based mud conditions, the induced fractures are difficult to identify due to the compromised image quality. As for the sonic log, shear waves will split when passing through an anisotropic formation, shear waves will split during propagation, and the azimuth of fast shear waves is consistent with the orientation of in-situ stress. However, it is usually affected by the anisotropy caused by the excessively fast rotation of the well log tools, so that the azimuth of fast shear wave cannot effectively reflect the orientation of the in-situ stress. Based on comprehensive assessment and comparison, in this paper we propose a method integrating various logging data to identify the orientation of in-situ stress. Among various types of logging data, the breakouts azimuth identified by image logs is proved to be the most credible in identifying the orientation of in-situ stress, while using the direction of induced fractures under water-based mud conditions is also viable. However, the azimuth of the fast shear wave is consistent with the orientation of maximum in-situ stress only when the rotation speed of the logging tool is low. The caliper method can be used as a reference for verifying the other two methods. Using this integrated method to study the orientation of in-situ stress in the Keshen8 trap, the results show that faults are an important factor affecting the direction of in-situ stress, while multi-level faults will produce superimposed effects that cause the current direction of in-situ stress to change.展开更多
Microscopic seepage characteristics are critical for the evaluation of tight sandstone reservoirs.In this study,a digital core approach integrating microscopic seepage simulation and CT scanning was developed to chara...Microscopic seepage characteristics are critical for the evaluation of tight sandstone reservoirs.In this study,a digital core approach integrating microscopic seepage simulation and CT scanning was developed to characterize microscopic seepage and fracture effectiveness(the ratio of micro-fractures that contributes to fluid flow)of tight sandstones.Numerical simulations were carried out for characterizations of tight sandstones.The results show that the axial permeability of the investigated cylindrical tight sandstone from Junggar Basin in China is 0.460μm~2,while the radial permeability is 0.3723μm~2,and the axial and radial effective fracture ratios are 0.4387 and 0.4806,respectively,indicating that cracks are not fully developed and the connectivity between micro-cracks is poor.Directional permeability that is difficult to measure by laboratory experiments can be obtained readily using the proposed method in this paper.The results provide important information for improving the exploration and development of tight sandstone reservoirs.展开更多
The tight sandstones in the Permian Lower Shihezi Formation of Shilijiahan area in the Ordos Basin was taken as study object in this research to quantitatively determine the effects of burial depth, burial time and co...The tight sandstones in the Permian Lower Shihezi Formation of Shilijiahan area in the Ordos Basin was taken as study object in this research to quantitatively determine the effects of burial depth, burial time and compaction strength on porosity during densification of reservoir. Firstly, sandstone compaction profiles were analyzed in detail. Secondly, the theoretical study was performed based on visco-elasto-plastic stress–strain model. Thirdly, multiple regression and iterative algorithm were used respectively to ascertain the variation trends of Young's modulus and equivalent viscosity coefficient with burial depth and burial time. Accordingly, the ternary analytic porosity-reduction model of sandstone compaction trend was established. Eventually, the reasonability of improved model was tested by comparing with thin-section statistics under microscope and the models in common use. The study shows that the new model can divide the porosity reduction into three parts, namely, elastic porosity loss, visco-plastic porosity loss and porosity loss from cementation. And the results calculated by the new model of litharenite in He 2 Member are close to the average value from the thin-section statistics on Houseknecht chart, which approximately reveals the relative magnitudes of compaction and cementation in the normal evolution trend of sandstone porosity. Furthermore, the model can more exactly depict the compaction trend of sandstone affected little by dissolution than previous compaction models, and evaluate sandstone compaction degree and its contribution to reservoir densification during different burial and uplift processes.展开更多
Tight sandstone has a certain anisotropy. Using ultrasonic measurements of samples in three different directions and related matched experiments, this study systematically analyzes the pore structure and anisotropy of...Tight sandstone has a certain anisotropy. Using ultrasonic measurements of samples in three different directions and related matched experiments, this study systematically analyzes the pore structure and anisotropy of tight sandstone samples obtained from oil fields and compares results with those of shale. Results firstly show that the anisotropy of tight sandstone is mainly related to the compositional layering and thin interbedding which occur in different sedimentary environments. Tight sandstone has typical transverse isotropic medium characteristics, Young’s modulus increases in different directions with increasing confining pressure, Poisson’s ratio change is not obvious, anisotropic coefficients decrease with increasing effective pressure, and a certain linear relationship exists between ε, γ, and δ. This article finally summarizes anisotropy in different areas, thereby providing a foundation for the use of suitable appraisal models in different regions. This research can be used as an experimental reference for logging evaluation, seismic data interpretation, and fracturing develop of tight sandstones.展开更多
The Ordos Basin is a significant petroliferous basin in the central part of China.The Carboniferous and Permian deposits of transitional and continental facies are the main gas-bearing layers in the north part of the ...The Ordos Basin is a significant petroliferous basin in the central part of China.The Carboniferous and Permian deposits of transitional and continental facies are the main gas-bearing layers in the north part of the basin.The Carboniferous and Permian natural gas reservoirs in the northern Ordos Basin are mainly tight sandstone reservoirs with low porosity and low permeability,developing lots of "sweet spots" with comparatively high porosity and permeability.The tight sandstones in the study area are gas-bearing,and the sweet spots are rich in gas.Sweet spots and tight sandstones are connected rather than being separated by an interface seal.Sweet spot sand bodies are vertically and horizontally overlapped,forming a large gas reservoir group.In fact,a reservoir formed by a single sweet spot sand body is an open gas accumulation.In the gentle dipping geological setting and with the source rocks directly beneath the tight reservoirs over a large area,the balance between gas charging into tight reservoirs from source rocks and gas loss from tight reservoirs through caprock is the key of gas accumulation in tight sandstones.Both the non-Darcy flow charging driven by source-reservoir excess pressure difference and the diffusion flow charging driven by source-reservoir gas concentration difference play an important role in gas accumulation.The results of mathematical modeling indicate that the gas accumulation cannot be formed by just one of the above mechanisms.The diffusion of gas from source rocks to reservoirs is a significant mechanism of tight sandstone gas accumulation.展开更多
The tight sandstone gas in Upper Paleozoic Formation of the northern Ordos Basin is a typical giant unconventional tight gas province. Evidences from geochemistry, reservoir geology and paleotectonic setting all verif...The tight sandstone gas in Upper Paleozoic Formation of the northern Ordos Basin is a typical giant unconventional tight gas province. Evidences from geochemistry, reservoir geology and paleotectonic setting all verify that the present-day tight sandstone gas accumulation in the Ordos Basin is the result of near-source accumulation. The evidences are listed as following: tight sandstone gas is mainly distributed in the area with high gas-generating strength; gas composition was not subjected tofractionation; gas saturation significantly decreases with the distance away from the source rocks; gas isotopes suggest their origin is the same and maturity is consistent with in-place source rocks; reservoirs have experienced three types of densification digenesis, including intense compaction, siliceous cementation and calcareous cementation, which took place before the formation of a large amount of tight sandstone gas, forming tight reservoirs with low porosity and permeability, fine pore throat and great capillary resistance; the paleo-structural gradient ratio is small from the main hydrocarbon generation period to present. It is indicated the present distribution of tight sandstone gas in the northern Ordos Basin is the result of near-source and short-distance migration and accumulation.展开更多
Tight sandstone gas serves as an important unconventional hydrocarbon resource, and outstanding results have been obtained through its discovery both in China and abroad given its great resource potential. However, he...Tight sandstone gas serves as an important unconventional hydrocarbon resource, and outstanding results have been obtained through its discovery both in China and abroad given its great resource potential. However, heated debates and gaps still remain regarding classification standards of tight sandstone gas, and critical controlling factors, accumulation mechanisms, and devel- opment modes of tight sandstone reservoirs are not deter- mined. Tight sandstone gas reservoirs in China are generally characterized by tight strata, widespread distri- bution areas, coal strata supplying gas, complex gas-water relations, and abnormally low gas reservoir pressure. Water and gas reversal patterns have been detected via glass tube and quartz sand modeling, and the presence of critical geological conditions without buoyancy-driven mecha- nisms can thus be assumed. According to the timing of gas charging and reservoir tightening phases, the following three tight sandstone gas reservoir types have been identified: (a) "accumulation-densification" (AD), or the conventional tight type, (b) "densification-accumulation" (DA), or the deep tight type, and (c) the composite tight type. For the AD type, gas charging occurs prior to reser- voir densification, accumulating in higher positions under buoyancy-controlled mechanisms with critical controlling factors such as source kitchens (S), regional overlaying cap rocks (C), gas reservoirs, (D) and low fluid potential areas (P). For the DA type, reservoir densification prior to the gas charging period (GCP) leads to accumulation in depres- sions and slopes largely due to hydrocarbon expansive forces without buoyancy, and critical controlling factors are effective source rocks (S), widely distributed reservoirs (D), stable tectonic settings (W) and universal densification of reservoirs (L). The composite type includes features of the AD type and DA type, and before and after reservoir densification period (RDP), gas charging and accumulation is controlled by early buoyancy and later molecular expansive force respectively. It is widely distributed in anticlinal zones, deep sag areas and slopes, and is con- trolled by source kitchens (S), reservoirs (D), cap rocks (C), stable tectonic settings (W), low fluid potential areas (P), and universal reservoir densification (L). Tight gas resources with great resource potential are widely dis- tributed worldwide, and tight gas in China that presents advantageous reservoir-forming conditions is primarily found in the Ordos, Sichuan, Tarim, Junggar, and Turpan- Hami basins of central-western China. Tight gas has served as the primary impetus for global unconventional natural gas exploration and production under existing technical conditions.展开更多
基金funded by the National Natural Science Foundation of China(No.U22B6002)the“14th Five-Year”Forward-looking Basic Science and Technology Project of China National Petroleum Company Limited(No.2022DJ2107).
文摘The positive structure belts surrounding the Taibei Sag,Turpan-Hami Basin,have been the main targets for oil and gas exploration for years and are now left with remaining resources scattering in reservoirs adjacent to source rocks in the sag,where the Shuixigou Group with substantial oil and gas potential constitutes the primary focus for near-source exploration.Consequently,characterization of development and key controlling factors of reservoir space becomes a must for future exploration in the area.This study investigates the development traits,genesis,and controlling factors of the Xishanyao and Sangonghe formations in the Shengbei and Qiudong Sub-sags of the Taibei Sag with techniques such as cast thin-section observation,porosity and permeability tests,high-pressure mercury injection,and saturation fluid NMR analysis of reservoir rocks.The findings reveal that the Shuixigou Group in the Taibei Sag consists of lithic sandstone.Reservoirs in the group are mostly poor in terms of physical properties,with undeveloped primary pores dominated by intergranular dissolved pores as a result of a strong compaction.Comparative analysis of key controlling factors of the Sangonghe Formation reveals significant distinctions in sandstone particle size,sand body thickness,genesis and distribution,provenance location,and source rock type between the Qiudong area and Shengbei area.Vertically,the coal seams of the Xishanyao Formation exhibit heightened development with shallower burial depth and lower maturity compared to those of the Sangonghe Formation.Consequently,this environment fosters the formation of organic acids,which have a stronger dissolution effect on minerals to develop secondary dissolution pores,and ultimately resulting in better reservoir physical properties.Overall,the reservoirs within the Qiudong area of the Taibei Sag demonstrate superior characteristics compared to those in the Shengbei area.Furthermore,the reservoir physical properties of the Xishanyao Formation are better than those of the Sangonghe Formation.The research findings will provide valuable guidance for the exploration and development of lithological oil and gas reservoirs within the Taibei Sag.
基金funded by the National key R&D Program of China(No.2023YFE0120700)the National Natural Science Foundation of China(No.51934005)+2 种基金the Shaanxi Province 2023 Innovation Capability Support Plan(No.2023KJXX-122)the Technology Innovation Leading Program of Shaanxi(No.2022 PT-08)the Project of Youth Innovation Team of Shaanxi Universities(No.22JP063).
文摘The Linxing area within the Ordos Basin exhibits pronounced reservoir heterogeneity and intricate micro-pore structures,rendering it susceptible to water-blocking damage during imbibition extraction.This study delved into the traits of tight sandstone reservoirs in the 8th member of the Shihezi Formation(also referred to as the He 8 Member)in the study area,as well as their effects on fracturing fluid imbibition.Utilizing experimental techniques such as nuclear magnetic resonance(NMR),high-pressure mercury intrusion(HPMI),and gas adsorption,this study elucidated the reservoir characteristics and examined the factors affecting the imbibition through imbibition experiments.The findings reveal that:①The reservoir,with average porosity of 8.40%and average permeability of 0.642×10^(-3)μm^(2),consists principally of quartz,feldspar,and lithic fragments,with feldspathic litharenite serving as the primary rock type and illite as the chief clay mineral;②Nano-scale micro-pores and throats dominate the reservoir,with dissolution pores and intercrystalline pores serving as predominant pore types,exhibiting relatively high pore connectivity;③Imbibition efficiency is influenced by petrophysical properties,clay mineral content,and microscopic pore structure.Due to the heterogeneity of the tight sandstone reservoir,microscopic factors have a more significant impact on the imbibition efficiency of fracturing fluids;④A comparative analysis shows that average pore size correlates most strongly with imbibition efficiency,followed by petrophysical properties and clay mineral content.In contrast,the pore type has minimal impact.Micropores are vital in the imbibition process,while meso-pores and macro-pores offer primary spaces for imbibition.This study offers theoretical insights and guidance for enhancing the post-fracturing production of tight sandstone reservoirs by examining the effects of these factors on the imbibition efficiency of fracturing fluids in tight sandstones.
基金supported by the Important National Science&Technology Specific Project (2008ZX05002-004)
文摘The tight sandstones of the Upper Triassic Xujiahe Formation(T_3x) constitute important gas reservoirs in western Sichuan.The Xujiahe sandstones are characterized by low to very low porosity (av.5.22%and 3.62%) for the T_3x^4 and T_3x^2 sandstones,respectively),extremely low permeability(av. 0.060 mD and 0.058 mD for the T_3x^4 and T_3x^2 sandstones,respectively),strong heterogeneity,micronano pore throat,and poor pore throat sorting.As a result of complex pore structure and the occurrence of fractures,weak correlations exist between petrophysical properties and pore throat size,demonstrating that porosity or pore throat size alone does not serve as a good permeability predictor.Much improved correlations can be obtained between permeability and porosity when pore throat radii are incorporated. Correlations between porosity,permeability,and pore throat radii corresponding to different saturations of mercury were established,showing that the pore throat radius at 20%mercury saturation(R_(20)) is the best permeability predictor.Multivariate regression analysis and artificial neural network(ANN) methods were used to establish permeability prediction models and the unique characteristics of neural networks enable them to be more successful in predicting permeability than the multivariate regression model.In addition, four petrophysical rock types can be identified based on the distributions of R_(20),each exhibiting distinct petrophysical properties and corresponding to different flow units.
基金We gratefully acknowledge the National Key R&D Program of China(Grant No.2019YFA0705502,Grant No.2019YFA0705501)the fnancial support from the Shandong Provincial Natural Science Foundation(ZR2019QEE037,ZR2019MEE058)the Fundamental Research Funds for the Central Universities(17CX05005,18CX02104A).
文摘The fractures and kerogen,which generally exist in the shale,are signifcant to the CO_(2) huf-n-puf in the shale reservoir.It is important to study the efects of fractures and kerogen on oil recovery during CO_(2) huf-n-puf operations in the fracture-matrix system.In this study,a modifed CO_(2) huf-n-puf experiment method is developed to estimate the recovery factors and the CO_(2) injectivity in the fractured organic-rich shales and tight sandstones.The efects of rock properties,injection pressure,and injection time on the recovery factors and CO_(2) usage efciency in shales and sandstones are discussed,respectively.The results show that although the CO_(2) injectivity in the shale is higher than that in the sandstone with the same porosity;besides,the recovery factors of two shale samples are much lower than that of two sandstone samples.This demonstrates that compared with the tight sandstone,more cycles are needed for the shale to reach a higher recovery factor.Furthermore,there are optimal injection pressures(close to the minimum miscible pressure)and CO_(2) injection volumes for CO_(2) huf-npuf in the shale.Since the optimal CO_(2) injection volume in the shale is higher than that in the sandstone,more injection time is needed to enhance the oil recovery in the shale.There is a reference sense for CO_(2) huf-n-puf in the fractured shale oil reservoir for enhanced oil recovery(EOR)purposes.
基金supported by the National Science and Technology Major Project of the Ministry of Science and Technology of China(2016ZX05002-002)the National Natural Science Foundation of China(41972138).
文摘Fracability is a property that indicates how easy reservoir rocks can be fractured in hydraulic fracturing operations.It is a key parameter for fracturing design and evaluation.In order to utilize continuous logging data to predict fracability,synchronous tests of dynamic and static mechanical parameters of rocks under different confining pressures were conducted on13 tight sandstone samples derived from the central Junggar Basin,China.A modified formula between dynamic and static mechanical parameters was established.Fracability of the tight reservoir in the Junggar Basin was then evaluated based on brittleness index,fracture toughness,and fracability index.The effectiveness of fracturing was analyzed combined with the oil testing curve after hydraulic fracturing.The results show that:(1)The distribution of oil-bearing formations in the studied area coincides well with stratum of higher fracability index.(2)The critical fracability index is determined to be 0.3,three formations are selected as fracturing candidates,and a thin mudstone interbed is identified in the oil-bearing formation.(3)Well testing curve verifies the reliability of the fracability evaluation method and the accuracy of the modified formula between dynamic and static mechanical parameters.This study provides useful information for improving fracturing operations of tight oil and gas reservoirs.
文摘By measuring the variation of the P-and S-wave velocities of tight sandstone samples under water saturation,it was confirmed that with the decrease in water saturation,the P-wave velocity first decreased and then increased.The variation in velocity was influenced by the sandstone’s porosity.The commonly used Gassmann equation based on fluid substitution theory was studied.Comparing the calculated results with the measured data,it was found that the Gassmann equation agreed well with the measured data at high water saturation,but it could not explain the bending phenomenon of P-wave velocity at low saturation.This indicated that these equations could not accurately describe the relationship between fluid content and rock acoustic velocity.The reasons for this phenomenon were discussed through Taylor’s expansion.The coefficients of the fitting formula were calculated and verified by fitting the measured acoustic velocity changes of the cores.The relationship between P-wave velocity and saturation was discussed,which provides experimental support for calculating saturation using seismic and acoustic logging data.
基金Supported by the National Key R&D Project(2019YFC1805505)National Natural Science Foundation of China(42272188,42172149,U2244209)+2 种基金Science and Technology Special Project of China National Petroleum Corporation(2023YQX10101)Petrochemical Joint Fund Integration Project of National Natural Science Foundation of China(U20B6001)Shale Gas Academician Workstation Project of Guizhou Energy Industry Research Institute Co.,Ltd.([2021]45-2)。
文摘Based on an elaboration of the resource potential and annual production of tight sandstone gas and shale gas in the United States and China,this paper reviews the researches on the distribution of tight sandstone gas and shale gas reservoirs,and analyzes the distribution characteristics and genetic types of tight sandstone gas reservoirs.In the United States,the proportion of tight sandstone gas in the total gas production declined from 20%-35%in 2008 to about 8%in 2023,and the shale gas production was 8310×10^(8)m^(3)in 2023,about 80%of the total gas production,in contrast to the range of 5%-17%during 2000-2008.In China,the proportion of tight sandstone gas in the total gas production increased from 16%in 2010 to 28%or higher in 2023.China began to produce shale gas in 2012,with the production reaching 250×10^(8)m^(3)in 2023,about 11%of the total gas production of the country.The distribution of shale gas reservoirs is continuous.According to the fault presence,fault displacement and gas layer thickness,the continuous shale gas reservoirs can be divided into two types:continuity and intermittency.Most previous studies believed that both tight sandstone gas reservoirs and shale gas reservoirs are continuous,but this paper holds that the distribution of tight sandstone gas reservoirs is not continuous.According to the trap types,tight sandstone gas reservoirs can be divided into lithologic,anticlinal,and synclinal reservoirs.The tight sandstone gas is coal-derived in typical basins in China and Egypt,but oil-type gas in typical basins in the United States and Oman.
基金The research was partially supported by the National Natural Science Foundation of China(Grant Nos.41902297,41872210)the Natural Science Foundation of Hubei Province(Grant No.2018CFB292)Open Research Fund of State Key Laboratory of Geomechanics and Geotechnical Engineering,Institute of Rock and Soil Mechanics,Chinese Academy of Sciences(Grant No.Z017006).
文摘To understand the evolution of stress-induced elastic wave anisotropy,three triaxial experiments were performed on sandstone specimens with bedding orientations parallel,perpendicular,and oblique to the maximum principal stress.P-wave velocities along 64 different directions on each specimen were monitored frequently to understand the anisotropy change at various stress levels by fitting Thomsen’s anisotropy equation.The results show that the elastic wave anisotropy is very sensitive to mechanical loading.Under hydrostatic loading,the magnitude of anisotropy is reduced in all three specimens.However,under deviatoric stress loading,the evolution of anisotropic characteristics(magnitude and orientation of the symmetry axis)is bedding orientation dependent.Anisotropy reversal occurs in specimens with bedding normal/oblique to the maximum principal stress.P-wave anisotropyε0 is linearly related to volumetric strain Sv and dilatancy,indicating that stress-induced redistribution of microcracks has a significant effect on P-wave velocity anisotropy.The closure of initial cracks and pores aligned in the bedding direction contributes to the decrease of the anisotropy.However,opening of new cracks,aligned in the maximum principal direction,accounts for the increase of the anisotropy.The experimental results provide some insights into the microstructural behavior under loading and provide an experimental basis for seismic data interpretation and parameter selection in engineering applications.
文摘A numerical model of hydraulic fracture propagation is introduced for a representative reservoir(Yuanba continental tight sandstone gas reservoir in Northeast Sichuan).Different parameters are considered,i.e.,the interlayer stress difference,the fracturing discharge rate and the fracturing fluid viscosity.The results show that these factors affect the gas and water production by influencing the fracture size.The interlayer stress difference can effectively control the fracture height.The greater the stress difference,the smaller the dimensionless reconstruction volume of the reservoir,while the flowback rate and gas production are lower.A large displacement fracturing construction increases the fracture-forming efficiency and expands the fracture size.The larger the displacement of fracturing construction,the larger the dimensionless reconstruction volume of the reservoir,and the higher the fracture-forming efficiency of fracturing fluid,the flowback rate,and the gas production.Low viscosity fracturing fluid is suitable for long fractures,while high viscosity fracturing fluid is suitable for wide fractures.With an increase in the fracturing fluid viscosity,the dimensionless reconstruction volume and flowback rate of the reservoir display a non-monotonic behavior,however,their changes are relatively small.
基金Research and Application of Key Technologies for Tight Gas Production Improvement and Rehabilitation of Linxing Shenfu(YXKY-ZL-01-2021)。
文摘Based on the actual data collected from the tight sandstone development zone, correlation analysis using theSpearman method was conducted to determine the main factors influencing the gas production rate of tightsandstone fracturing. An integrated model combining geological engineering and numerical simulation of fracturepropagation and production was completed. Based on data analysis, the hydraulic fracture parameters wereoptimized to develop a differentiated fracturing treatment adjustment plan. The results indicate that the influenceof geological and engineering factors in the X1 and X2 development zones in the study area differs significantly.Therefore, it is challenging to adopt a uniform development strategy to achieve rapid production increase. Thedata analysis reveals that the variation in gas production rate is primarily affected by the reservoir thickness andpermeability parameters as geological factors. On the other hand, the amount of treatment fluid and proppantaddition significantly impact the gas production rate as engineering factors. Among these factors, the influence ofgeological factors is more pronounced in block X1. Therefore, the main focus should be on further optimizing thefracturing interval and adjusting the geological development well location. Given the existing well location, thereis limited potential for further optimizing fracture parameters to increase production. For block X2, the fracturingparameters should be optimized. Data screening was conducted to identify outliers in the entire dataset, and adata-driven fracturing parameter optimization method was employed to determine the basic adjustment directionfor reservoir stimulation in the target block. This approach provides insights into the influence of geological,stimulation, and completion parameters on gas production rate. Consequently, the subsequent fracturing parameteroptimization design can significantly reduce the modeling and simulation workload and guide field operations toimprove and optimize hydraulic fracturing efficiency.
文摘The Chang-63 reservoir in the Huaqing area has widely developed tight sandstone "thick sand layers, but not reservoirs characterized by rich in oil", and it is thus necessary to further study its oil and gas enrichment law. This study builds porosity and fracture development and evolution models in different deposition environments, through core observation, casting thin section, SEM, porosity and permeability analysis, burial history analysis, and "four-property-relationships" analysis.
基金supported by the National Science and Technology Major Project(Grant No.2017ZX05009001-002 and 2017ZX05013002-004)the Fundamental Research Funds for the Central Universities(Grant No.2462020YJRC005)Science Foundation of China University of Petroleum,Beijing(Grant No.2462020XKJS02).
文摘Fractures are of great significance to tight oil and gas development.Fracture identification using conventional well logs is a feasible way to locate the underground fractures in tight sandstones.However,there are three problems affecting its interpretation accuracy and practical application,namely weak well log responses of fractures,a lack of specific logs for fracture prediction,and relative change omission in log responses.To overcome these problems and improve fracture identification accuracy,a fracture indicating parameter(FIP)method composed of a comprehensive index method(CIM)and a comprehensive fractal method(CFM)is introduced.The CIM tries to handle the first problem by amplifying log responses of fractures.The CFM addresses the third one using fractal dimensions.The flexible weight parameters corresponding to logs in the CIM and CFM make the interpretation possible for wells lacking specific logs.The reconstructed logs in the CIM and CFM try to solve the second problem.It is noted that the FIP method can calculate the probability of fracture development at a certain depth,but cannot show the fracture development degree of a new well compared with other wells.In this study,a formation fracture intensity(FFI)method is also introduced to further evaluate fracture development combined with production data.To test the validity of the FIP and FFI methods,fracture identification experiments are implemented in a tight reservoir in the Ordos Basin.The results are consistent with the data of rock core observation and production,indicating the proposed methods are effective for fracture identification and evaluation.
基金This work was funded by the National Science and Technology Major Project of China(Grant No.2016ZX05002-006-005)National Natural Science Foundation of China(Grant No.41830425).
文摘Authigenic clays and calcite cements are important in the development of reservoir tightness and the formation of hydrocarbon sweet spots.We investigated Jurassic low-permeability sandstone reservoirs in the central Junggar Basin,NW China,using petrography,mineralogy,porosity,and permeability assessment,and stable C and O isotope analysis to ascertain the influence of authigenic clays and calcites on reservoir quality.Here,we establish the properties and diagenetic processes of the reservoir sandstones,and construct a generalizable model of reservoir quality.The results show that the sandstones are mainly litharenite and feldspathic litharenite and can be classified into ductile-lithic-rich sandstones and ductile-lithic-poor sandstones according to rock composition.The ductile-lithic-rich sandstones are tight(mean porosity?7.31%;mean permeability?0.08 mD)as a result of intense compaction.In contrast,the ductile-lithic-poor sandstones can be classified into five types according to diagenetic process.The formation of favorable hydrocarbon reservoir properties is closely related to the presence of authigenic clays and dissolution of calcite.In particular,kaolinite fills intergranular pores,thereby blocking pore space and reducing reservoir quality.Chlorite coating resists compaction and limits the formation of quartz overgrowths,thereby preserving pore space and enhancing reservoir quality.Calcite controls reservoir quality through both precipitation and dissolution.Calcite precipitation results in reduced reservoir quality,whereby early calcites that were precipitated in formation water resist compaction and provide the basis for subsequent dissolution and late precipitation,whereas dissolution of calcite in mesodiagenesis improves reservoir quality.A generalized model is formulated by relating diagenetic facies types to depth and porosity,providing a reference for other similar reservoirs.Our data suggest that deeply buried tight sandstones can be exploration prospects under favorable conditions involving the presence of authigenic clays and dissolution of calcite,as in the central Junggar Basin of this study.
基金financial support for this work comes from the Science Foundation of CUPB(No.2462017YJRC023)supported by the Exploration and Development Research Institute of Petro China Tarim Oilfield Branch Company
文摘The tight sandstone in the Tarim Basin has the characteristics of large burial depth and development of nature fractures due to concentrated in-situ stress. Identifying the present-day in-situ stress orientation is important in hydrocarbon exploration and development, but also a key scientific question in understanding naturally fractured reservoirs. This paper presents a case study where we integrate various methods using wireline and image-log data, to identify present-day in-situ stress direction of ultra-deep fractured tight sandstone reservoirs, in the Kuqa depression. We discuss the formation mechanism of the elliptical borehole, compares the advantages and applicable conditions of the double caliper method,resistivity image logs and array sonic logs method. The well borehole diameter is measured orthogonally,then the ellipse is fitted, and the in-situ stress orientation is identified by the azimuth of the short-axis borehole, but it fails in the borehole expansion section, the fracture development section and the borehole collapse section. The micro-resistivity image logs method reveals the borehole breakouts azimuth, and also the strike of induced fractures, which are used to determine the orientation of in-situ stress. However, under water-based mud conditions, it’s hard to distinguish natural fractures from induced fractures by image logs. Under oil-based mud conditions, the induced fractures are difficult to identify due to the compromised image quality. As for the sonic log, shear waves will split when passing through an anisotropic formation, shear waves will split during propagation, and the azimuth of fast shear waves is consistent with the orientation of in-situ stress. However, it is usually affected by the anisotropy caused by the excessively fast rotation of the well log tools, so that the azimuth of fast shear wave cannot effectively reflect the orientation of the in-situ stress. Based on comprehensive assessment and comparison, in this paper we propose a method integrating various logging data to identify the orientation of in-situ stress. Among various types of logging data, the breakouts azimuth identified by image logs is proved to be the most credible in identifying the orientation of in-situ stress, while using the direction of induced fractures under water-based mud conditions is also viable. However, the azimuth of the fast shear wave is consistent with the orientation of maximum in-situ stress only when the rotation speed of the logging tool is low. The caliper method can be used as a reference for verifying the other two methods. Using this integrated method to study the orientation of in-situ stress in the Keshen8 trap, the results show that faults are an important factor affecting the direction of in-situ stress, while multi-level faults will produce superimposed effects that cause the current direction of in-situ stress to change.
基金financially supported by the National Natural Science Foundation of China(Grant No.41972138)the Technology Major Project of China(Grant No.ZD2019-183007,2016ZX05002-002)。
文摘Microscopic seepage characteristics are critical for the evaluation of tight sandstone reservoirs.In this study,a digital core approach integrating microscopic seepage simulation and CT scanning was developed to characterize microscopic seepage and fracture effectiveness(the ratio of micro-fractures that contributes to fluid flow)of tight sandstones.Numerical simulations were carried out for characterizations of tight sandstones.The results show that the axial permeability of the investigated cylindrical tight sandstone from Junggar Basin in China is 0.460μm~2,while the radial permeability is 0.3723μm~2,and the axial and radial effective fracture ratios are 0.4387 and 0.4806,respectively,indicating that cracks are not fully developed and the connectivity between micro-cracks is poor.Directional permeability that is difficult to measure by laboratory experiments can be obtained readily using the proposed method in this paper.The results provide important information for improving the exploration and development of tight sandstone reservoirs.
基金Supported by the National Natural Science Foundation of China(4167212441502147)PetroChina Science and Technology Major Project(2016ZX05047001-002)
文摘The tight sandstones in the Permian Lower Shihezi Formation of Shilijiahan area in the Ordos Basin was taken as study object in this research to quantitatively determine the effects of burial depth, burial time and compaction strength on porosity during densification of reservoir. Firstly, sandstone compaction profiles were analyzed in detail. Secondly, the theoretical study was performed based on visco-elasto-plastic stress–strain model. Thirdly, multiple regression and iterative algorithm were used respectively to ascertain the variation trends of Young's modulus and equivalent viscosity coefficient with burial depth and burial time. Accordingly, the ternary analytic porosity-reduction model of sandstone compaction trend was established. Eventually, the reasonability of improved model was tested by comparing with thin-section statistics under microscope and the models in common use. The study shows that the new model can divide the porosity reduction into three parts, namely, elastic porosity loss, visco-plastic porosity loss and porosity loss from cementation. And the results calculated by the new model of litharenite in He 2 Member are close to the average value from the thin-section statistics on Houseknecht chart, which approximately reveals the relative magnitudes of compaction and cementation in the normal evolution trend of sandstone porosity. Furthermore, the model can more exactly depict the compaction trend of sandstone affected little by dissolution than previous compaction models, and evaluate sandstone compaction degree and its contribution to reservoir densification during different burial and uplift processes.
基金sponsored by the National Key Technology R&D Program for the 12th five-year plan(No.2011ZX05020-008)the China National Petroleum Corporation Logging Basic Research Project(No.2014A-3910)
文摘Tight sandstone has a certain anisotropy. Using ultrasonic measurements of samples in three different directions and related matched experiments, this study systematically analyzes the pore structure and anisotropy of tight sandstone samples obtained from oil fields and compares results with those of shale. Results firstly show that the anisotropy of tight sandstone is mainly related to the compositional layering and thin interbedding which occur in different sedimentary environments. Tight sandstone has typical transverse isotropic medium characteristics, Young’s modulus increases in different directions with increasing confining pressure, Poisson’s ratio change is not obvious, anisotropic coefficients decrease with increasing effective pressure, and a certain linear relationship exists between ε, γ, and δ. This article finally summarizes anisotropy in different areas, thereby providing a foundation for the use of suitable appraisal models in different regions. This research can be used as an experimental reference for logging evaluation, seismic data interpretation, and fracturing develop of tight sandstones.
基金supported by the National Basic Research Program of China (No. 2007CB209503)National Natural Science Foundation of China (No. 41102086)
文摘The Ordos Basin is a significant petroliferous basin in the central part of China.The Carboniferous and Permian deposits of transitional and continental facies are the main gas-bearing layers in the north part of the basin.The Carboniferous and Permian natural gas reservoirs in the northern Ordos Basin are mainly tight sandstone reservoirs with low porosity and low permeability,developing lots of "sweet spots" with comparatively high porosity and permeability.The tight sandstones in the study area are gas-bearing,and the sweet spots are rich in gas.Sweet spots and tight sandstones are connected rather than being separated by an interface seal.Sweet spot sand bodies are vertically and horizontally overlapped,forming a large gas reservoir group.In fact,a reservoir formed by a single sweet spot sand body is an open gas accumulation.In the gentle dipping geological setting and with the source rocks directly beneath the tight reservoirs over a large area,the balance between gas charging into tight reservoirs from source rocks and gas loss from tight reservoirs through caprock is the key of gas accumulation in tight sandstones.Both the non-Darcy flow charging driven by source-reservoir excess pressure difference and the diffusion flow charging driven by source-reservoir gas concentration difference play an important role in gas accumulation.The results of mathematical modeling indicate that the gas accumulation cannot be formed by just one of the above mechanisms.The diffusion of gas from source rocks to reservoirs is a significant mechanism of tight sandstone gas accumulation.
基金supported by the National Key Basic Research and Development Program(973 Program),China(grant No.2014CB239000)China National Science and Technology Major Project(grant No.2016ZX05046)
文摘The tight sandstone gas in Upper Paleozoic Formation of the northern Ordos Basin is a typical giant unconventional tight gas province. Evidences from geochemistry, reservoir geology and paleotectonic setting all verify that the present-day tight sandstone gas accumulation in the Ordos Basin is the result of near-source accumulation. The evidences are listed as following: tight sandstone gas is mainly distributed in the area with high gas-generating strength; gas composition was not subjected tofractionation; gas saturation significantly decreases with the distance away from the source rocks; gas isotopes suggest their origin is the same and maturity is consistent with in-place source rocks; reservoirs have experienced three types of densification digenesis, including intense compaction, siliceous cementation and calcareous cementation, which took place before the formation of a large amount of tight sandstone gas, forming tight reservoirs with low porosity and permeability, fine pore throat and great capillary resistance; the paleo-structural gradient ratio is small from the main hydrocarbon generation period to present. It is indicated the present distribution of tight sandstone gas in the northern Ordos Basin is the result of near-source and short-distance migration and accumulation.
基金supported by the National Natural Science Foundation of China (No. 41472112)the National Major Projects (No. 2011ZX05018002)
文摘Tight sandstone gas serves as an important unconventional hydrocarbon resource, and outstanding results have been obtained through its discovery both in China and abroad given its great resource potential. However, heated debates and gaps still remain regarding classification standards of tight sandstone gas, and critical controlling factors, accumulation mechanisms, and devel- opment modes of tight sandstone reservoirs are not deter- mined. Tight sandstone gas reservoirs in China are generally characterized by tight strata, widespread distri- bution areas, coal strata supplying gas, complex gas-water relations, and abnormally low gas reservoir pressure. Water and gas reversal patterns have been detected via glass tube and quartz sand modeling, and the presence of critical geological conditions without buoyancy-driven mecha- nisms can thus be assumed. According to the timing of gas charging and reservoir tightening phases, the following three tight sandstone gas reservoir types have been identified: (a) "accumulation-densification" (AD), or the conventional tight type, (b) "densification-accumulation" (DA), or the deep tight type, and (c) the composite tight type. For the AD type, gas charging occurs prior to reser- voir densification, accumulating in higher positions under buoyancy-controlled mechanisms with critical controlling factors such as source kitchens (S), regional overlaying cap rocks (C), gas reservoirs, (D) and low fluid potential areas (P). For the DA type, reservoir densification prior to the gas charging period (GCP) leads to accumulation in depres- sions and slopes largely due to hydrocarbon expansive forces without buoyancy, and critical controlling factors are effective source rocks (S), widely distributed reservoirs (D), stable tectonic settings (W) and universal densification of reservoirs (L). The composite type includes features of the AD type and DA type, and before and after reservoir densification period (RDP), gas charging and accumulation is controlled by early buoyancy and later molecular expansive force respectively. It is widely distributed in anticlinal zones, deep sag areas and slopes, and is con- trolled by source kitchens (S), reservoirs (D), cap rocks (C), stable tectonic settings (W), low fluid potential areas (P), and universal reservoir densification (L). Tight gas resources with great resource potential are widely dis- tributed worldwide, and tight gas in China that presents advantageous reservoir-forming conditions is primarily found in the Ordos, Sichuan, Tarim, Junggar, and Turpan- Hami basins of central-western China. Tight gas has served as the primary impetus for global unconventional natural gas exploration and production under existing technical conditions.