Geomechanical assessment using coupled reservoir-geomechanical simulation is becoming increasingly important for analyzing the potential geomechanical risks in subsurface geological developments.However,a robust and e...Geomechanical assessment using coupled reservoir-geomechanical simulation is becoming increasingly important for analyzing the potential geomechanical risks in subsurface geological developments.However,a robust and efficient geomechanical upscaling technique for heterogeneous geological reservoirs is lacking to advance the applications of three-dimensional(3D)reservoir-scale geomechanical simulation considering detailed geological heterogeneities.Here,we develop convolutional neural network(CNN)proxies that reproduce the anisotropic nonlinear geomechanical response caused by lithological heterogeneity,and compute upscaled geomechanical properties from CNN proxies.The CNN proxies are trained using a large dataset of randomly generated spatially correlated sand-shale realizations as inputs and simulation results of their macroscopic geomechanical response as outputs.The trained CNN models can provide the upscaled shear strength(R^(2)>0.949),stress-strain behavior(R^(2)>0.925),and volumetric strain changes(R^(2)>0.958)that highly agree with the numerical simulation results while saving over two orders of magnitude of computational time.This is a major advantage in computing the upscaled geomechanical properties directly from geological realizations without the need to perform local numerical simulations to obtain the geomechanical response.The proposed CNN proxybased upscaling technique has the ability to(1)bridge the gap between the fine-scale geocellular models considering geological uncertainties and computationally efficient geomechanical models used to assess the geomechanical risks of large-scale subsurface development,and(2)improve the efficiency of numerical upscaling techniques that rely on local numerical simulations,leading to significantly increased computational time for uncertainty quantification using numerous geological realizations.展开更多
Research on discrete memristor-based neural networks has received much attention.However,current research mainly focuses on memristor–based discrete homogeneous neuron networks,while memristor-coupled discrete hetero...Research on discrete memristor-based neural networks has received much attention.However,current research mainly focuses on memristor–based discrete homogeneous neuron networks,while memristor-coupled discrete heterogeneous neuron networks are rarely reported.In this study,a new four-stable discrete locally active memristor is proposed and its nonvolatile and locally active properties are verified by its power-off plot and DC V–I diagram.Based on two-dimensional(2D)discrete Izhikevich neuron and 2D discrete Chialvo neuron,a heterogeneous discrete neuron network is constructed by using the proposed discrete memristor as a coupling synapse connecting the two heterogeneous neurons.Considering the coupling strength as the control parameter,chaotic firing,periodic firing,and hyperchaotic firing patterns are revealed.In particular,multiple coexisting firing patterns are observed,which are induced by different initial values of the memristor.Phase synchronization between the two heterogeneous neurons is discussed and it is found that they can achieve perfect synchronous at large coupling strength.Furthermore,the effect of Gaussian white noise on synchronization behaviors is also explored.We demonstrate that the presence of noise not only leads to the transition of firing patterns,but also achieves the phase synchronization between two heterogeneous neurons under low coupling strength.展开更多
In Beyond the Fifth Generation(B5G)heterogeneous edge networks,numerous users are multiplexed on a channel or served on the same frequency resource block,in which case the transmitter applies coding and the receiver u...In Beyond the Fifth Generation(B5G)heterogeneous edge networks,numerous users are multiplexed on a channel or served on the same frequency resource block,in which case the transmitter applies coding and the receiver uses interference cancellation.Unfortunately,uncoordinated radio resource allocation can reduce system throughput and lead to user inequity,for this reason,in this paper,channel allocation and power allocation problems are formulated to maximize the system sum rate and minimum user achievable rate.Since the construction model is non-convex and the response variables are high-dimensional,a distributed Deep Reinforcement Learning(DRL)framework called distributed Proximal Policy Optimization(PPO)is proposed to allocate or assign resources.Specifically,several simulated agents are trained in a heterogeneous environment to find robust behaviors that perform well in channel assignment and power allocation.Moreover,agents in the collection stage slow down,which hinders the learning of other agents.Therefore,a preemption strategy is further proposed in this paper to optimize the distributed PPO,form DP-PPO and successfully mitigate the straggler problem.The experimental results show that our mechanism named DP-PPO improves the performance over other DRL methods.展开更多
Interference management is one of the most important issues in the device-to-device(D2D)-enabled heterogeneous cellular networks(HetCNets)due to the coexistence of massive cellular and D2D devices in which D2D devices...Interference management is one of the most important issues in the device-to-device(D2D)-enabled heterogeneous cellular networks(HetCNets)due to the coexistence of massive cellular and D2D devices in which D2D devices reuse the cellular spectrum.To alleviate the interference,an efficient interference management way is to set exclusion zones around the cellular receivers.In this paper,we adopt a stochastic geometry approach to analyze the outage probabilities of cellular and D2D users in the D2D-enabled HetCNets.The main difficulties contain three aspects:1)how to model the location randomness of base stations,cellular and D2D users in practical networks;2)how to capture the randomness and interrelation of cellular and D2D transmissions due to the existence of random exclusion zones;3)how to characterize the different types of interference and their impacts on the outage probabilities of cellular and D2D users.We then run extensive Monte-Carlo simulations which manifest that our theoretical model is very accurate.展开更多
A heterogeneous information network,which is composed of various types of nodes and edges,has a complex structure and rich information content,and is widely used in social networks,academic networks,e-commerce,and oth...A heterogeneous information network,which is composed of various types of nodes and edges,has a complex structure and rich information content,and is widely used in social networks,academic networks,e-commerce,and other fields.Link prediction,as a key task to reveal the unobserved relationships in the network,is of great significance in heterogeneous information networks.This paper reviews the application of presentation-based learning methods in link prediction of heterogeneous information networks.This paper introduces the basic concepts of heterogeneous information networks,and the theoretical basis of representation learning,and discusses the specific application of the deep learning model in node embedding learning and link prediction in detail.The effectiveness and superiority of these methods on multiple real data sets are demonstrated by experimental verification.展开更多
The ultra-dense network is a promising technology to increase the network capacity in the forthcoming fifthgeneration(5G)mobile communication networks by deploying lots of low power Small Base Stations(SBSs)which over...The ultra-dense network is a promising technology to increase the network capacity in the forthcoming fifthgeneration(5G)mobile communication networks by deploying lots of low power Small Base Stations(SBSs)which overlap with Macro Base Stations(MBSs).The interference and energy consumption increase rapidly with the number of SBSs although each SBS transmits with small power.In this paper,we model a downlink heterogeneous ultra-dense network where a lot of SBSs are randomly deployed with MBSs based on the Poisson point process.We derive the coverage probability and its variance,and analyze the area spectral efficiency and energy efficiency of the network considering three Fractional Power Control(FPC)strategies.The numerical results and Monte Carlo simulation results show that power control can mitigate the interference and balance the performances of inner-user and edge-user equipments.Especially,a great improvement of energy efficiency is archived with a little loss of area spectral efficiency when FPC is adopted.Finally,we analyze the effect of base stations’(BSs’)sleeping on the performance of the network when it is partially loaded.展开更多
This study investigates the impact of pore network characteristics on fluid flow through complex and heterogeneous porous media,providing insights into the factors affecting fluid propagation in such systems.Specifica...This study investigates the impact of pore network characteristics on fluid flow through complex and heterogeneous porous media,providing insights into the factors affecting fluid propagation in such systems.Specifically,high-resolution or micro X-ray computed tomography(CT)imaging techniques were utilized to examine outcrop stromatolite samples of the Lagoa Salgada,considered flow analogous to the Brazilian Pre-salt carbonate reservoirs.The petrophysical results comprised two distinct stromatolite depositional facies,the columnar and the fine-grained facies.By generating pore network model(PNM),the study quantified the relationship between key features of the porous system,including pore and throat radius,throat length,coordination number,shape factor,and pore volume.The study found that the less dense pore network of the columnar sample is typically characterized by larger pores and wider and longer throats but with a weaker connection of throats to pores.Both facies exhibited less variability in the radius of the pores and throats in comparison to throat length.Additionally,a series of core flooding experiments coupled with medical CT scanning was designed and conducted in the plug samples to assess flow propagation and saturation fields.The study revealed that the heterogeneity and presence of disconnected or dead-end pores significantly impacted the flow patterns and saturation.Two-phase flow patterns and oil saturation distribution reveal a preferential and heterogeneous displacement that mainly swept displaced fluid in some regions of plugs and bypassed it in others.The relation between saturation profiles,porosity profiles,and the number of fluid flow patterns for the samples was evident.Only for the columnar plug sample was the enhancement in recovery factor after shifting to lower salinity water injection(SB)observed.展开更多
Recent advances in deep neural networks have shed new light on physics,engineering,and scientific computing.Reconciling the data-centered viewpoint with physical simulation is one of the research hotspots.The physicsi...Recent advances in deep neural networks have shed new light on physics,engineering,and scientific computing.Reconciling the data-centered viewpoint with physical simulation is one of the research hotspots.The physicsinformedneural network(PINN)is currently the most general framework,which is more popular due to theconvenience of constructing NNs and excellent generalization ability.The automatic differentiation(AD)-basedPINN model is suitable for the homogeneous scientific problem;however,it is unclear how AD can enforce fluxcontinuity across boundaries between cells of different properties where spatial heterogeneity is represented bygrid cells with different physical properties.In this work,we propose a criss-cross physics-informed convolutionalneural network(CC-PINN)learning architecture,aiming to learn the solution of parametric PDEs with spatialheterogeneity of physical properties.To achieve the seamless enforcement of flux continuity and integration ofphysicalmeaning into CNN,a predefined 2D convolutional layer is proposed to accurately express transmissibilitybetween adjacent cells.The efficacy of the proposedmethodwas evaluated through predictions of several petroleumreservoir problems with spatial heterogeneity and compared against state-of-the-art(PINN)through numericalanalysis as a benchmark,which demonstrated the superiority of the proposed method over the PINN.展开更多
Overlooking the issue of false alarm suppression in heterogeneous change detection leads to inferior detection per-formance.This paper proposes a method to handle false alarms in heterogeneous change detection.A light...Overlooking the issue of false alarm suppression in heterogeneous change detection leads to inferior detection per-formance.This paper proposes a method to handle false alarms in heterogeneous change detection.A lightweight network of two channels is bulit based on the combination of convolutional neural network(CNN)and graph convolutional network(GCN).CNNs learn feature difference maps of multitemporal images,and attention modules adaptively fuse CNN-based and graph-based features for different scales.GCNs with a new kernel filter adaptively distinguish between nodes with the same and those with different labels,generating change maps.Experimental evaluation on two datasets validates the efficacy of the pro-posed method in addressing false alarms.展开更多
The ultra-dense low earth orbit(LEO)integrated satellite-terrestrial networks(UDLEO-ISTN)can bring lots of benefits in terms of wide coverage,high capacity,and strong robustness.Meanwhile,the broadcasting and open nat...The ultra-dense low earth orbit(LEO)integrated satellite-terrestrial networks(UDLEO-ISTN)can bring lots of benefits in terms of wide coverage,high capacity,and strong robustness.Meanwhile,the broadcasting and open natures of satellite links also reveal many challenges for transmission security protection,especially for eavesdropping defence.How to efficiently take advantage of the LEO satellite’s density and ensure the secure communication by leveraging physical layer security with the cooperation of jammers deserves further investigation.To our knowledge,using satellites as jammers in UDLEO-ISTN is still a new problem since existing works mainly focused on this issue only from the aspect of terrestrial networks.To this end,we study in this paper the cooperative secrecy communication problem in UDLEOISTN by utilizing several satellites to send jamming signal to the eavesdroppers.An iterative scheme is proposed as our solution to maximize the system secrecy energy efficiency(SEE)via jointly optimizing transmit power allocation and user association.Extensive experiment results verify that our designed optimization scheme can significantly enhance the system SEE and achieve the optimal power allocation and user association strategies.展开更多
On the multilingual online social networks of global information sharing,the wanton spread of rumors has an enormous negative impact on people's lives.Thus,it is essential to explore the rumor-spreading rules in m...On the multilingual online social networks of global information sharing,the wanton spread of rumors has an enormous negative impact on people's lives.Thus,it is essential to explore the rumor-spreading rules in multilingual environment and formulate corresponding control strategies to reduce the harm caused by rumor propagation.In this paper,considering the multilingual environment and intervention mechanism in the rumor-spreading process,an improved ignorants–spreaders-1–spreaders-2–removers(I2SR)rumor-spreading model with time delay and the nonlinear incidence is established in heterogeneous networks.Firstly,based on the mean-field equations corresponding to the model,the basic reproduction number is derived to ensure the existence of rumor-spreading equilibrium.Secondly,by applying Lyapunov stability theory and graph theory,the global stability of rumor-spreading equilibrium is analyzed in detail.In particular,aiming at the lowest control cost,the optimal control scheme is designed to optimize the intervention mechanism,and the optimal control conditions are derived using the Pontryagin's minimum principle.Finally,some illustrative examples are provided to verify the effectiveness of the theoretical results.The results show that optimizing the intervention mechanism can effectively reduce the densities of spreaders-1 and spreaders-2 within the expected time,which provides guiding insights for public opinion managers to control rumors.展开更多
This paper studies the coordinated planning of transmission tasks in the heterogeneous space networks to enable efficient sharing of ground stations cross satellite systems.Specifically,we first formulate the coordina...This paper studies the coordinated planning of transmission tasks in the heterogeneous space networks to enable efficient sharing of ground stations cross satellite systems.Specifically,we first formulate the coordinated planning problem into a mixed integer liner programming(MILP)problem based on time expanded graph.Then,the problem is transferred and reformulated into a consensus optimization framework which can be solved by satellite systems parallelly.With alternating direction method of multipliers(ADMM),a semi-distributed coordinated transmission task planning algorithm is proposed,in which each satellite system plans its own tasks based on local information and limited communication with the coordination center.Simulation results demonstrate that compared with the centralized and fully-distributed methods,the proposed semi-distributed coordinated method can strike a better balance among task complete rate,complexity,and the amount of information required to be exchanged.展开更多
ExpertRecommendation(ER)aims to identify domain experts with high expertise and willingness to provide answers to questions in Community Question Answering(CQA)web services.How to model questions and users in the hete...ExpertRecommendation(ER)aims to identify domain experts with high expertise and willingness to provide answers to questions in Community Question Answering(CQA)web services.How to model questions and users in the heterogeneous content network is critical to this task.Most traditional methods focus on modeling questions and users based on the textual content left in the community while ignoring the structural properties of heterogeneous CQA networks and always suffering from textual data sparsity issues.Recent approaches take advantage of structural proximities between nodes and attempt to fuse the textual content of nodes for modeling.However,they often fail to distinguish the nodes’personalized preferences and only consider the textual content of a part of the nodes in network embedding learning,while ignoring the semantic relevance of nodes.In this paper,we propose a novel framework that jointly considers the structural proximity relations and textual semantic relevance to model users and questions more comprehensively.Specifically,we learn topology-based embeddings through a hierarchical attentive network learning strategy,in which the proximity information and the personalized preference of nodes are encoded and preserved.Meanwhile,we utilize the node’s textual content and the text correlation between adjacent nodes to build the content-based embedding through a meta-context-aware skip-gram model.In addition,the user’s relative answer quality is incorporated to promote the ranking performance.Experimental results show that our proposed framework consistently and significantly outperforms the state-of-the-art baselines on three real-world datasets by taking the deep semantic understanding and structural feature learning together.The performance of the proposed work is analyzed in terms of MRR,P@K,and MAP and is proven to be more advanced than the existing methodologies.展开更多
The continuous improvement of the cyber threat intelligence sharing mechanism provides new ideas to deal with Advanced Persistent Threats(APT).Extracting attack behaviors,i.e.,Tactics,Techniques,Procedures(TTP)from Cy...The continuous improvement of the cyber threat intelligence sharing mechanism provides new ideas to deal with Advanced Persistent Threats(APT).Extracting attack behaviors,i.e.,Tactics,Techniques,Procedures(TTP)from Cyber Threat Intelligence(CTI)can facilitate APT actors’profiling for an immediate response.However,it is difficult for traditional manual methods to analyze attack behaviors from cyber threat intelligence due to its heterogeneous nature.Based on the Adversarial Tactics,Techniques and Common Knowledge(ATT&CK)of threat behavior description,this paper proposes a threat behavioral knowledge extraction framework that integrates Heterogeneous Text Network(HTN)and Graph Convolutional Network(GCN)to solve this issue.It leverages the hierarchical correlation relationships of attack techniques and tactics in the ATT&CK to construct a text network of heterogeneous cyber threat intelligence.With the help of the Bidirectional EncoderRepresentation fromTransformers(BERT)pretraining model to analyze the contextual semantics of cyber threat intelligence,the task of threat behavior identification is transformed into a text classification task,which automatically extracts attack behavior in CTI,then identifies the malware and advanced threat actors.The experimental results show that F1 achieve 94.86%and 92.15%for the multi-label classification tasks of tactics and techniques.Extend the experiment to verify the method’s effectiveness in identifying the malware and threat actors in APT attacks.The F1 for malware and advanced threat actors identification task reached 98.45%and 99.48%,which are better than the benchmark model in the experiment and achieve state of the art.The model can effectivelymodel threat intelligence text data and acquire knowledge and experience migration by correlating implied features with a priori knowledge to compensate for insufficient sample data and improve the classification performance and recognition ability of threat behavior in text.展开更多
In distributed machine learning(DML)based on the parameter server(PS)architecture,unbalanced communication load distribution of PSs will lead to a significant slowdown of model synchronization in heterogeneous network...In distributed machine learning(DML)based on the parameter server(PS)architecture,unbalanced communication load distribution of PSs will lead to a significant slowdown of model synchronization in heterogeneous networks due to low utilization of bandwidth.To address this problem,a network-aware adaptive PS load distribution scheme is proposed,which accelerates model synchronization by proactively adjusting the communication load on PSs according to network states.We evaluate the proposed scheme on MXNet,known as a realworld distributed training platform,and results show that our scheme achieves up to 2.68 times speed-up of model training in the dynamic and heterogeneous network environment.展开更多
Real-world complex networks are inherently heterogeneous;they have different types of nodes,attributes,and relationships.In recent years,various methods have been proposed to automatically learn how to encode the stru...Real-world complex networks are inherently heterogeneous;they have different types of nodes,attributes,and relationships.In recent years,various methods have been proposed to automatically learn how to encode the structural and semantic information contained in heterogeneous information networks(HINs)into low-dimensional embeddings;this task is called heterogeneous network embedding(HNE).Efficient HNE techniques can benefit various HIN-based machine learning tasks such as node classification,recommender systems,and information retrieval.Here,we provide a comprehensive survey of key advancements in the area of HNE.First,we define an encoder-decoder-based HNE model taxonomy.Then,we systematically overview,compare,and summarize various state-of-the-art HNE models and analyze the advantages and disadvantages of various model categories to identify more potentially competitive HNE frameworks.We also summarize the application fields,benchmark datasets,open source tools,andperformance evaluation in theHNEarea.Finally,wediscuss open issues and suggest promising future directions.We anticipate that this survey will provide deep insights into research in the field of HNE.展开更多
This paper investigates the Quality of Experience(QoE)oriented channel access anti-jamming problem in 5th Generation Mobile Communication(5G)ultra-dense networks.Firstly,considering that the 5G base station adopts bea...This paper investigates the Quality of Experience(QoE)oriented channel access anti-jamming problem in 5th Generation Mobile Communication(5G)ultra-dense networks.Firstly,considering that the 5G base station adopts beamforming technology,an anti-jamming model under Space Division Multiple Access(SDMA)conditions is proposed.Secondly,the confrontational relationship between users and the jammer is formulated as a Stackelberg game.Besides,to achieve global optimization,we design a local cooperation mechanism for users and formulate the cooperation and competition among users as a local altruistic game.By proving that the local altruistic game is an Exact Potential Game(EPG),we further prove the existence of pure strategy Nash Equilibrium(NE)among users and Stackelberg Equilibrium(SE)between users and jammer.Thirdly,to obtain the equilibrium solutions of the proposed games,we propose an anti-jamming channel selection algorithm and improve its convergence speed through heterogeneous learning parameters.The simulation results validate the convergence and effectiveness of the proposed algorithm.Compared with the throughput optimization scheme,our proposed scheme obtain a greater network satisfaction rate.Finally,we also analyze user fairness changes during the algorithm convergence process and get some interesting conclusions.展开更多
In this paper,we investigate the system performance of a heterogeneous cellular network consisting of a macro cell and a small cell,where each cell has one user and one base station with multiple antennas.The macro ba...In this paper,we investigate the system performance of a heterogeneous cellular network consisting of a macro cell and a small cell,where each cell has one user and one base station with multiple antennas.The macro base station(MBS)and the small base station(SBS)transmit their confidential messages to the macro user(MU)and the small user(SU)over their shared spectrum respectively.To enhance the system sum rate(SSR)of MBS-MU and SBS-SU transmission,we propose joint antenna selection combined with optimal power allocation(JAS-OPA)scheme and independent antenna selection combined with optimal power allocation(IAS-OPA)scheme.The JAS-OPA scheme requires to know the channel state information(CSI)of transmission channels and interference channels,while the IAS-OPA scheme only needs to know the CSI of transmission channels.In addition,we carry out the analysis for conventional round-robin antenna selection combined with optimal power allocation(RR-OPA)as a benchmark scheme.We formulate the SSR maximization problem through the power allocation between MBS and SBS and propose iterative OPA algorithms for JAS-OPA,IAS-OPA and RR-OPA schemes,respectively.The results show that the OPA schemes outperform the equal power allocation in terms of SSR.Moreover,we provide the closed-form expression of the system outage probability(SOP)for IAS scheme and RR scheme,it shows the SOP performance can be significantly improved by our proposed IAS scheme compared with RR scheme.展开更多
The vehicular sensor network (VSN) is an important part of intelligent transportation, which is used for real-timedetection and operation control of vehicles and real-time transmission of data and information. In the ...The vehicular sensor network (VSN) is an important part of intelligent transportation, which is used for real-timedetection and operation control of vehicles and real-time transmission of data and information. In the environmentofVSN, massive private data generated by vehicles are transmitted in open channels and used by other vehicle users,so it is crucial to maintain high transmission efficiency and high confidentiality of data. To deal with this problem, inthis paper, we propose a heterogeneous fault-tolerant aggregate signcryption scheme with an equality test (HFTASET).The scheme combines fault-tolerant and aggregate signcryption,whichnot onlymakes up for the deficiency oflow security of aggregate signature, but alsomakes up for the deficiency that aggregate signcryption cannot tolerateinvalid signature. The scheme supports one verification pass when all signcryptions are valid, and it supportsunbounded aggregation when the total number of signcryptions grows dynamically. In addition, this schemesupports heterogeneous equality test, and realizes the access control of private data in different cryptographicenvironments, so as to achieve flexibility in the application of our scheme and realize the function of quick searchof plaintext or ciphertext. Then, the security of HFTAS-ET is demonstrated by strict theoretical analysis. Finally, weconduct strict and standardized experimental operation and performance evaluation, which shows that the schemehas better performance.展开更多
Heterogeneous small cell network is one of the most effective solutions to overcome spectrum scarcity for the next generation of mobile networks.Dual connectivity(DC)can improve the throughput for each individual user...Heterogeneous small cell network is one of the most effective solutions to overcome spectrum scarcity for the next generation of mobile networks.Dual connectivity(DC)can improve the throughput for each individual user by allowing concurrent access to two heterogeneous radio networks.In this paper,we propose a joint user association and fair scheduling algorithm(JUAFS)to deal with the resource allocation and load balancing issues for DC heterogeneous small cell networks.Considering different coverage sizes,numbers of users,and quality of experience characteristics of heterogeneous cells,we present a proportional fair scheduling for user association among cells and utilize interference graph to minimize the transmission conflict probability.Simulation results show the performance improvement of the proposed algorithm in spectrum efficiency and fairness comparing to the existing schemes.展开更多
基金financial support provided by the Future Energy System at University of Alberta and NSERC Discovery Grant RGPIN-2023-04084。
文摘Geomechanical assessment using coupled reservoir-geomechanical simulation is becoming increasingly important for analyzing the potential geomechanical risks in subsurface geological developments.However,a robust and efficient geomechanical upscaling technique for heterogeneous geological reservoirs is lacking to advance the applications of three-dimensional(3D)reservoir-scale geomechanical simulation considering detailed geological heterogeneities.Here,we develop convolutional neural network(CNN)proxies that reproduce the anisotropic nonlinear geomechanical response caused by lithological heterogeneity,and compute upscaled geomechanical properties from CNN proxies.The CNN proxies are trained using a large dataset of randomly generated spatially correlated sand-shale realizations as inputs and simulation results of their macroscopic geomechanical response as outputs.The trained CNN models can provide the upscaled shear strength(R^(2)>0.949),stress-strain behavior(R^(2)>0.925),and volumetric strain changes(R^(2)>0.958)that highly agree with the numerical simulation results while saving over two orders of magnitude of computational time.This is a major advantage in computing the upscaled geomechanical properties directly from geological realizations without the need to perform local numerical simulations to obtain the geomechanical response.The proposed CNN proxybased upscaling technique has the ability to(1)bridge the gap between the fine-scale geocellular models considering geological uncertainties and computationally efficient geomechanical models used to assess the geomechanical risks of large-scale subsurface development,and(2)improve the efficiency of numerical upscaling techniques that rely on local numerical simulations,leading to significantly increased computational time for uncertainty quantification using numerous geological realizations.
基金Project supported by the National Natural Science Foundations of China(Grant Nos.62171401 and 62071411).
文摘Research on discrete memristor-based neural networks has received much attention.However,current research mainly focuses on memristor–based discrete homogeneous neuron networks,while memristor-coupled discrete heterogeneous neuron networks are rarely reported.In this study,a new four-stable discrete locally active memristor is proposed and its nonvolatile and locally active properties are verified by its power-off plot and DC V–I diagram.Based on two-dimensional(2D)discrete Izhikevich neuron and 2D discrete Chialvo neuron,a heterogeneous discrete neuron network is constructed by using the proposed discrete memristor as a coupling synapse connecting the two heterogeneous neurons.Considering the coupling strength as the control parameter,chaotic firing,periodic firing,and hyperchaotic firing patterns are revealed.In particular,multiple coexisting firing patterns are observed,which are induced by different initial values of the memristor.Phase synchronization between the two heterogeneous neurons is discussed and it is found that they can achieve perfect synchronous at large coupling strength.Furthermore,the effect of Gaussian white noise on synchronization behaviors is also explored.We demonstrate that the presence of noise not only leads to the transition of firing patterns,but also achieves the phase synchronization between two heterogeneous neurons under low coupling strength.
基金supported by the Key Research and Development Program of China(No.2022YFC3005401)Key Research and Development Program of China,Yunnan Province(No.202203AA080009,202202AF080003)Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.KYCX21_0482).
文摘In Beyond the Fifth Generation(B5G)heterogeneous edge networks,numerous users are multiplexed on a channel or served on the same frequency resource block,in which case the transmitter applies coding and the receiver uses interference cancellation.Unfortunately,uncoordinated radio resource allocation can reduce system throughput and lead to user inequity,for this reason,in this paper,channel allocation and power allocation problems are formulated to maximize the system sum rate and minimum user achievable rate.Since the construction model is non-convex and the response variables are high-dimensional,a distributed Deep Reinforcement Learning(DRL)framework called distributed Proximal Policy Optimization(PPO)is proposed to allocate or assign resources.Specifically,several simulated agents are trained in a heterogeneous environment to find robust behaviors that perform well in channel assignment and power allocation.Moreover,agents in the collection stage slow down,which hinders the learning of other agents.Therefore,a preemption strategy is further proposed in this paper to optimize the distributed PPO,form DP-PPO and successfully mitigate the straggler problem.The experimental results show that our mechanism named DP-PPO improves the performance over other DRL methods.
基金This work is funded in part by the Science and Technology Development Fund,Macao SAR(Grant Nos.0093/2022/A2,0076/2022/A2 and 0008/2022/AGJ)in part by the National Nature Science Foundation of China(Grant No.61872452)+3 种基金in part by Special fund for Dongguan’s Rural Revitalization Strategy in 2021(Grant No.20211800400102)in part by Dongguan Special Commissioner Project(Grant No.20211800500182)in part by Guangdong-Dongguan Joint Fund for Basic and Applied Research of Guangdong Province(Grant No.2020A1515110162)in part by University Special Fund of Guangdong Provincial Department of Education(Grant No.2022ZDZX1073).
文摘Interference management is one of the most important issues in the device-to-device(D2D)-enabled heterogeneous cellular networks(HetCNets)due to the coexistence of massive cellular and D2D devices in which D2D devices reuse the cellular spectrum.To alleviate the interference,an efficient interference management way is to set exclusion zones around the cellular receivers.In this paper,we adopt a stochastic geometry approach to analyze the outage probabilities of cellular and D2D users in the D2D-enabled HetCNets.The main difficulties contain three aspects:1)how to model the location randomness of base stations,cellular and D2D users in practical networks;2)how to capture the randomness and interrelation of cellular and D2D transmissions due to the existence of random exclusion zones;3)how to characterize the different types of interference and their impacts on the outage probabilities of cellular and D2D users.We then run extensive Monte-Carlo simulations which manifest that our theoretical model is very accurate.
基金Science and Technology Research Project of Jiangxi Provincial Department of Education(Project No.GJJ211348,GJJ211347 and GJJ2201056)。
文摘A heterogeneous information network,which is composed of various types of nodes and edges,has a complex structure and rich information content,and is widely used in social networks,academic networks,e-commerce,and other fields.Link prediction,as a key task to reveal the unobserved relationships in the network,is of great significance in heterogeneous information networks.This paper reviews the application of presentation-based learning methods in link prediction of heterogeneous information networks.This paper introduces the basic concepts of heterogeneous information networks,and the theoretical basis of representation learning,and discusses the specific application of the deep learning model in node embedding learning and link prediction in detail.The effectiveness and superiority of these methods on multiple real data sets are demonstrated by experimental verification.
基金the Major Program of the National Nature Science Foundation of China(Grant No.61831004).
文摘The ultra-dense network is a promising technology to increase the network capacity in the forthcoming fifthgeneration(5G)mobile communication networks by deploying lots of low power Small Base Stations(SBSs)which overlap with Macro Base Stations(MBSs).The interference and energy consumption increase rapidly with the number of SBSs although each SBS transmits with small power.In this paper,we model a downlink heterogeneous ultra-dense network where a lot of SBSs are randomly deployed with MBSs based on the Poisson point process.We derive the coverage probability and its variance,and analyze the area spectral efficiency and energy efficiency of the network considering three Fractional Power Control(FPC)strategies.The numerical results and Monte Carlo simulation results show that power control can mitigate the interference and balance the performances of inner-user and edge-user equipments.Especially,a great improvement of energy efficiency is archived with a little loss of area spectral efficiency when FPC is adopted.Finally,we analyze the effect of base stations’(BSs’)sleeping on the performance of the network when it is partially loaded.
基金the support of EPIC—Energy Production Innovation Center,hosted by the University of Campinas(UNICAMP)sponsored by FAPESP—Sao Paulo Research Foundation(2017/15736—3 process)+2 种基金the support and funding from Equinor Brazil and the support of ANP(Brazil's National Oil,Natural Gas and Biofuels Agency)through the R&D levy regulationthe Center of Energy and Petroleum Studies(CEPETRO)the School of Mechanical Engineering(FEM)。
文摘This study investigates the impact of pore network characteristics on fluid flow through complex and heterogeneous porous media,providing insights into the factors affecting fluid propagation in such systems.Specifically,high-resolution or micro X-ray computed tomography(CT)imaging techniques were utilized to examine outcrop stromatolite samples of the Lagoa Salgada,considered flow analogous to the Brazilian Pre-salt carbonate reservoirs.The petrophysical results comprised two distinct stromatolite depositional facies,the columnar and the fine-grained facies.By generating pore network model(PNM),the study quantified the relationship between key features of the porous system,including pore and throat radius,throat length,coordination number,shape factor,and pore volume.The study found that the less dense pore network of the columnar sample is typically characterized by larger pores and wider and longer throats but with a weaker connection of throats to pores.Both facies exhibited less variability in the radius of the pores and throats in comparison to throat length.Additionally,a series of core flooding experiments coupled with medical CT scanning was designed and conducted in the plug samples to assess flow propagation and saturation fields.The study revealed that the heterogeneity and presence of disconnected or dead-end pores significantly impacted the flow patterns and saturation.Two-phase flow patterns and oil saturation distribution reveal a preferential and heterogeneous displacement that mainly swept displaced fluid in some regions of plugs and bypassed it in others.The relation between saturation profiles,porosity profiles,and the number of fluid flow patterns for the samples was evident.Only for the columnar plug sample was the enhancement in recovery factor after shifting to lower salinity water injection(SB)observed.
基金the National Natural Science Foundation of China(No.52274048)Beijing Natural Science Foundation(No.3222037)+1 种基金the CNPC 14th Five-Year Perspective Fundamental Research Project(No.2021DJ2104)the Science Foundation of China University of Petroleum,Beijing(No.2462021YXZZ010).
文摘Recent advances in deep neural networks have shed new light on physics,engineering,and scientific computing.Reconciling the data-centered viewpoint with physical simulation is one of the research hotspots.The physicsinformedneural network(PINN)is currently the most general framework,which is more popular due to theconvenience of constructing NNs and excellent generalization ability.The automatic differentiation(AD)-basedPINN model is suitable for the homogeneous scientific problem;however,it is unclear how AD can enforce fluxcontinuity across boundaries between cells of different properties where spatial heterogeneity is represented bygrid cells with different physical properties.In this work,we propose a criss-cross physics-informed convolutionalneural network(CC-PINN)learning architecture,aiming to learn the solution of parametric PDEs with spatialheterogeneity of physical properties.To achieve the seamless enforcement of flux continuity and integration ofphysicalmeaning into CNN,a predefined 2D convolutional layer is proposed to accurately express transmissibilitybetween adjacent cells.The efficacy of the proposedmethodwas evaluated through predictions of several petroleumreservoir problems with spatial heterogeneity and compared against state-of-the-art(PINN)through numericalanalysis as a benchmark,which demonstrated the superiority of the proposed method over the PINN.
基金This work was supported by the Natural Science Foundation of Heilongjiang Province(LH2022F049).
文摘Overlooking the issue of false alarm suppression in heterogeneous change detection leads to inferior detection per-formance.This paper proposes a method to handle false alarms in heterogeneous change detection.A lightweight network of two channels is bulit based on the combination of convolutional neural network(CNN)and graph convolutional network(GCN).CNNs learn feature difference maps of multitemporal images,and attention modules adaptively fuse CNN-based and graph-based features for different scales.GCNs with a new kernel filter adaptively distinguish between nodes with the same and those with different labels,generating change maps.Experimental evaluation on two datasets validates the efficacy of the pro-posed method in addressing false alarms.
基金supported by National Key R&D Program of China(2022YFB3104200)in part by National Natural Science Foundation of China(62202386)+6 种基金in part by Basic Research Programs of Taicang(TC2021JC31)in part by Fundamental Research Funds for the Central Universities(D5000210817)in part by Xi’an Unmanned System Security and Intelligent Communications ISTC Centerin part by Special Funds for Central Universities Construction of World-Class Universities(Disciplines)and Special Development Guidance(0639022GH0202237 and 0639022SH0201237)in part by the Henan Key Scientific Research Program of Higher Education(23B510003,21A510008 and 21A510009)in part by Henan Key Scientific and Technological Projects(212102210553)。
文摘The ultra-dense low earth orbit(LEO)integrated satellite-terrestrial networks(UDLEO-ISTN)can bring lots of benefits in terms of wide coverage,high capacity,and strong robustness.Meanwhile,the broadcasting and open natures of satellite links also reveal many challenges for transmission security protection,especially for eavesdropping defence.How to efficiently take advantage of the LEO satellite’s density and ensure the secure communication by leveraging physical layer security with the cooperation of jammers deserves further investigation.To our knowledge,using satellites as jammers in UDLEO-ISTN is still a new problem since existing works mainly focused on this issue only from the aspect of terrestrial networks.To this end,we study in this paper the cooperative secrecy communication problem in UDLEOISTN by utilizing several satellites to send jamming signal to the eavesdroppers.An iterative scheme is proposed as our solution to maximize the system secrecy energy efficiency(SEE)via jointly optimizing transmit power allocation and user association.Extensive experiment results verify that our designed optimization scheme can significantly enhance the system SEE and achieve the optimal power allocation and user association strategies.
基金the National Natural Science Foundation of People’s Republic of China(Grant Nos.U1703262 and 62163035)the Special Project for Local Science and Technology Development Guided by the Central Government(Grant No.ZYYD2022A05)Xinjiang Key Laboratory of Applied Mathematics(Grant No.XJDX1401)。
文摘On the multilingual online social networks of global information sharing,the wanton spread of rumors has an enormous negative impact on people's lives.Thus,it is essential to explore the rumor-spreading rules in multilingual environment and formulate corresponding control strategies to reduce the harm caused by rumor propagation.In this paper,considering the multilingual environment and intervention mechanism in the rumor-spreading process,an improved ignorants–spreaders-1–spreaders-2–removers(I2SR)rumor-spreading model with time delay and the nonlinear incidence is established in heterogeneous networks.Firstly,based on the mean-field equations corresponding to the model,the basic reproduction number is derived to ensure the existence of rumor-spreading equilibrium.Secondly,by applying Lyapunov stability theory and graph theory,the global stability of rumor-spreading equilibrium is analyzed in detail.In particular,aiming at the lowest control cost,the optimal control scheme is designed to optimize the intervention mechanism,and the optimal control conditions are derived using the Pontryagin's minimum principle.Finally,some illustrative examples are provided to verify the effectiveness of the theoretical results.The results show that optimizing the intervention mechanism can effectively reduce the densities of spreaders-1 and spreaders-2 within the expected time,which provides guiding insights for public opinion managers to control rumors.
基金supported in part by the NSF China under Grant(61701365,61801365,62001347)in part by Natural Science Foundation of Shaanxi Province(2020JQ-686)+4 种基金in part by the China Postdoctoral Science Foundation under Grant(2018M643581,2019TQ0210,2019TQ0241,2020M673344)in part by Young Talent fund of University Association for Science and Technology in Shaanxi,China(20200112)in part by Key Research and Development Program in Shaanxi Province of China(2021GY066)in part by Postdoctoral Foundation in Shaanxi Province of China(2018BSHEDZZ47)the Fundamental Research Funds for the Central Universities。
文摘This paper studies the coordinated planning of transmission tasks in the heterogeneous space networks to enable efficient sharing of ground stations cross satellite systems.Specifically,we first formulate the coordinated planning problem into a mixed integer liner programming(MILP)problem based on time expanded graph.Then,the problem is transferred and reformulated into a consensus optimization framework which can be solved by satellite systems parallelly.With alternating direction method of multipliers(ADMM),a semi-distributed coordinated transmission task planning algorithm is proposed,in which each satellite system plans its own tasks based on local information and limited communication with the coordination center.Simulation results demonstrate that compared with the centralized and fully-distributed methods,the proposed semi-distributed coordinated method can strike a better balance among task complete rate,complexity,and the amount of information required to be exchanged.
文摘ExpertRecommendation(ER)aims to identify domain experts with high expertise and willingness to provide answers to questions in Community Question Answering(CQA)web services.How to model questions and users in the heterogeneous content network is critical to this task.Most traditional methods focus on modeling questions and users based on the textual content left in the community while ignoring the structural properties of heterogeneous CQA networks and always suffering from textual data sparsity issues.Recent approaches take advantage of structural proximities between nodes and attempt to fuse the textual content of nodes for modeling.However,they often fail to distinguish the nodes’personalized preferences and only consider the textual content of a part of the nodes in network embedding learning,while ignoring the semantic relevance of nodes.In this paper,we propose a novel framework that jointly considers the structural proximity relations and textual semantic relevance to model users and questions more comprehensively.Specifically,we learn topology-based embeddings through a hierarchical attentive network learning strategy,in which the proximity information and the personalized preference of nodes are encoded and preserved.Meanwhile,we utilize the node’s textual content and the text correlation between adjacent nodes to build the content-based embedding through a meta-context-aware skip-gram model.In addition,the user’s relative answer quality is incorporated to promote the ranking performance.Experimental results show that our proposed framework consistently and significantly outperforms the state-of-the-art baselines on three real-world datasets by taking the deep semantic understanding and structural feature learning together.The performance of the proposed work is analyzed in terms of MRR,P@K,and MAP and is proven to be more advanced than the existing methodologies.
基金supported by China’s National Key R&D Program,No.2019QY1404the National Natural Science Foundation of China,Grant No.U20A20161,U1836103the Basic Strengthening Program Project,No.2019-JCJQ-ZD-113.
文摘The continuous improvement of the cyber threat intelligence sharing mechanism provides new ideas to deal with Advanced Persistent Threats(APT).Extracting attack behaviors,i.e.,Tactics,Techniques,Procedures(TTP)from Cyber Threat Intelligence(CTI)can facilitate APT actors’profiling for an immediate response.However,it is difficult for traditional manual methods to analyze attack behaviors from cyber threat intelligence due to its heterogeneous nature.Based on the Adversarial Tactics,Techniques and Common Knowledge(ATT&CK)of threat behavior description,this paper proposes a threat behavioral knowledge extraction framework that integrates Heterogeneous Text Network(HTN)and Graph Convolutional Network(GCN)to solve this issue.It leverages the hierarchical correlation relationships of attack techniques and tactics in the ATT&CK to construct a text network of heterogeneous cyber threat intelligence.With the help of the Bidirectional EncoderRepresentation fromTransformers(BERT)pretraining model to analyze the contextual semantics of cyber threat intelligence,the task of threat behavior identification is transformed into a text classification task,which automatically extracts attack behavior in CTI,then identifies the malware and advanced threat actors.The experimental results show that F1 achieve 94.86%and 92.15%for the multi-label classification tasks of tactics and techniques.Extend the experiment to verify the method’s effectiveness in identifying the malware and threat actors in APT attacks.The F1 for malware and advanced threat actors identification task reached 98.45%and 99.48%,which are better than the benchmark model in the experiment and achieve state of the art.The model can effectivelymodel threat intelligence text data and acquire knowledge and experience migration by correlating implied features with a priori knowledge to compensate for insufficient sample data and improve the classification performance and recognition ability of threat behavior in text.
基金partially supported by the computing power networks and new communication primitives project under Grant No. HC-CN-2020120001the National Natural Science Foundation of China under Grant No. 62102066Open Research Projects of Zhejiang Lab under Grant No. 2022QA0AB02
文摘In distributed machine learning(DML)based on the parameter server(PS)architecture,unbalanced communication load distribution of PSs will lead to a significant slowdown of model synchronization in heterogeneous networks due to low utilization of bandwidth.To address this problem,a network-aware adaptive PS load distribution scheme is proposed,which accelerates model synchronization by proactively adjusting the communication load on PSs according to network states.We evaluate the proposed scheme on MXNet,known as a realworld distributed training platform,and results show that our scheme achieves up to 2.68 times speed-up of model training in the dynamic and heterogeneous network environment.
基金supported by the National Key Research and Development Plan of China(2017YFB0503700,2016YFB0501801)the National Natural Science Foundation of China(61170026,62173157)+1 种基金the Thirteen Five-Year Research Planning Project of National Language Committee(No.YB135-149)the Fundamental Research Funds for the Central Universities(Nos.CCNU20QN022,CCNU20QN021,CCNU20ZT012).
文摘Real-world complex networks are inherently heterogeneous;they have different types of nodes,attributes,and relationships.In recent years,various methods have been proposed to automatically learn how to encode the structural and semantic information contained in heterogeneous information networks(HINs)into low-dimensional embeddings;this task is called heterogeneous network embedding(HNE).Efficient HNE techniques can benefit various HIN-based machine learning tasks such as node classification,recommender systems,and information retrieval.Here,we provide a comprehensive survey of key advancements in the area of HNE.First,we define an encoder-decoder-based HNE model taxonomy.Then,we systematically overview,compare,and summarize various state-of-the-art HNE models and analyze the advantages and disadvantages of various model categories to identify more potentially competitive HNE frameworks.We also summarize the application fields,benchmark datasets,open source tools,andperformance evaluation in theHNEarea.Finally,wediscuss open issues and suggest promising future directions.We anticipate that this survey will provide deep insights into research in the field of HNE.
基金supported by the National Natural Science Foundation of China under Grant No.61901523 and No.62071488.
文摘This paper investigates the Quality of Experience(QoE)oriented channel access anti-jamming problem in 5th Generation Mobile Communication(5G)ultra-dense networks.Firstly,considering that the 5G base station adopts beamforming technology,an anti-jamming model under Space Division Multiple Access(SDMA)conditions is proposed.Secondly,the confrontational relationship between users and the jammer is formulated as a Stackelberg game.Besides,to achieve global optimization,we design a local cooperation mechanism for users and formulate the cooperation and competition among users as a local altruistic game.By proving that the local altruistic game is an Exact Potential Game(EPG),we further prove the existence of pure strategy Nash Equilibrium(NE)among users and Stackelberg Equilibrium(SE)between users and jammer.Thirdly,to obtain the equilibrium solutions of the proposed games,we propose an anti-jamming channel selection algorithm and improve its convergence speed through heterogeneous learning parameters.The simulation results validate the convergence and effectiveness of the proposed algorithm.Compared with the throughput optimization scheme,our proposed scheme obtain a greater network satisfaction rate.Finally,we also analyze user fairness changes during the algorithm convergence process and get some interesting conclusions.
基金supported by National Natural Science Foundation of China(No.62071253)Postgraduate Research and Practice Innovation Program of Jiangsu Province(KYCX210747).
文摘In this paper,we investigate the system performance of a heterogeneous cellular network consisting of a macro cell and a small cell,where each cell has one user and one base station with multiple antennas.The macro base station(MBS)and the small base station(SBS)transmit their confidential messages to the macro user(MU)and the small user(SU)over their shared spectrum respectively.To enhance the system sum rate(SSR)of MBS-MU and SBS-SU transmission,we propose joint antenna selection combined with optimal power allocation(JAS-OPA)scheme and independent antenna selection combined with optimal power allocation(IAS-OPA)scheme.The JAS-OPA scheme requires to know the channel state information(CSI)of transmission channels and interference channels,while the IAS-OPA scheme only needs to know the CSI of transmission channels.In addition,we carry out the analysis for conventional round-robin antenna selection combined with optimal power allocation(RR-OPA)as a benchmark scheme.We formulate the SSR maximization problem through the power allocation between MBS and SBS and propose iterative OPA algorithms for JAS-OPA,IAS-OPA and RR-OPA schemes,respectively.The results show that the OPA schemes outperform the equal power allocation in terms of SSR.Moreover,we provide the closed-form expression of the system outage probability(SOP)for IAS scheme and RR scheme,it shows the SOP performance can be significantly improved by our proposed IAS scheme compared with RR scheme.
基金supported in part by the Open Fund of Advanced Cryptography and System Security Key Laboratory of Sichuan Province under Grant SKLACSS-202102in part by the Intelligent Terminal Key Laboratory of Sichuan Province under Grant SCITLAB-1019.
文摘The vehicular sensor network (VSN) is an important part of intelligent transportation, which is used for real-timedetection and operation control of vehicles and real-time transmission of data and information. In the environmentofVSN, massive private data generated by vehicles are transmitted in open channels and used by other vehicle users,so it is crucial to maintain high transmission efficiency and high confidentiality of data. To deal with this problem, inthis paper, we propose a heterogeneous fault-tolerant aggregate signcryption scheme with an equality test (HFTASET).The scheme combines fault-tolerant and aggregate signcryption,whichnot onlymakes up for the deficiency oflow security of aggregate signature, but alsomakes up for the deficiency that aggregate signcryption cannot tolerateinvalid signature. The scheme supports one verification pass when all signcryptions are valid, and it supportsunbounded aggregation when the total number of signcryptions grows dynamically. In addition, this schemesupports heterogeneous equality test, and realizes the access control of private data in different cryptographicenvironments, so as to achieve flexibility in the application of our scheme and realize the function of quick searchof plaintext or ciphertext. Then, the security of HFTAS-ET is demonstrated by strict theoretical analysis. Finally, weconduct strict and standardized experimental operation and performance evaluation, which shows that the schemehas better performance.
基金supported in part by the National Natural Science Foundation of China under Grant 61871433,61828103in part by the Research Platform of South China Normal University and Foshan。
文摘Heterogeneous small cell network is one of the most effective solutions to overcome spectrum scarcity for the next generation of mobile networks.Dual connectivity(DC)can improve the throughput for each individual user by allowing concurrent access to two heterogeneous radio networks.In this paper,we propose a joint user association and fair scheduling algorithm(JUAFS)to deal with the resource allocation and load balancing issues for DC heterogeneous small cell networks.Considering different coverage sizes,numbers of users,and quality of experience characteristics of heterogeneous cells,we present a proportional fair scheduling for user association among cells and utilize interference graph to minimize the transmission conflict probability.Simulation results show the performance improvement of the proposed algorithm in spectrum efficiency and fairness comparing to the existing schemes.