Based on medium plate runout table ultra-fast cooling( UFC)-accelerated cooling equipment( ACC) system,a heat transfer coefficient model was constructed. Firstly,according to the measured data,heat transfer coefficien...Based on medium plate runout table ultra-fast cooling( UFC)-accelerated cooling equipment( ACC) system,a heat transfer coefficient model was constructed. Firstly,according to the measured data,heat transfer coefficients under different roll speed and water volume were calculated by using an inverse heat conduction method. Secondly,a monofactorial heat transfer coefficient calculation formula was obtained. Finally,the heat transfer coefficient model based on medium plate runout table UFC-ACC system was constructed by intercept function,slope function,interaction influence function and linear or nonlinear influencing factors. The precision of these models was validated by comparing model prediction value with measured data,and the results were in good agreement with practical needs,and the average deviation was less than 5%.展开更多
The equilibrium equations of anisotropic media, coupled to the heat conduction equations, are studied here based on the standard spaces of the physical presentation, in which an new thermo-elastic model based on the s...The equilibrium equations of anisotropic media, coupled to the heat conduction equations, are studied here based on the standard spaces of the physical presentation, in which an new thermo-elastic model based on the second law of thermodynamics is induced. The uncoupled heat wave equation for anisotropic media is deduced. The results show that the equation of heat wave is of the properties of dissipative waves. In final part of this paper, we discuss the propagation behaviour of heat waves for transversely isotropic media.展开更多
Based on the surface elasticity theory of GurtinMurdoch, thermo-elastic fields within rotating nanoshafts with varying material properties subjected to a thermal field are explicitly examined. Accounting for the surfa...Based on the surface elasticity theory of GurtinMurdoch, thermo-elastic fields within rotating nanoshafts with varying material properties subjected to a thermal field are explicitly examined. Accounting for the surface energy effect, the nonclassical boundary conditions are enforced in the cases of fixed-free and free-free conditions. The effects of variation of material properties, temperature of the environment, angular velocity, and radius of the outer radius on the radial displacement, hoop and radial stresses are investigated. In all performed studies, the role of the surface effect on the thermo-elastic field of the nanostructure is methodically discussed.展开更多
Beryllium aluminum cyclosilicate, an ore of beryllium was reinforced in Aluminum matrix to fabricate Al-beryl composites using powder metallurgy. Effect of the content of beryllium aluminum cyclosilicate on microstruc...Beryllium aluminum cyclosilicate, an ore of beryllium was reinforced in Aluminum matrix to fabricate Al-beryl composites using powder metallurgy. Effect of the content of beryllium aluminum cyclosilicate on microstructural hardness and thermal expansion was studied. The coefficient of thermal expansion of Al-beryl composite was measured in the temperature range between 50oC to 360oC using dilatometer and was theoretically studied using thermo-elastic models, and these models were used to explain abnormalities observed experimentally. The hardness of Al-beryl metal matrix composites increased with the increase in beryl percentage. Vacuum sintering of Al-beryl metal matrix composites at 600oC inhibited excellent bonding between the matrix and the particulate increasing the strength of the composite. The result shows the CTE significantly increased with increasing temperature but decreased with increasing reinforcement. At higher temperatures, CTE of Al-beryl metal matrix composites with 5 wt%, 10 wt% and 15 wt% of beryllium aluminum cyclosilicate was 21 ppm/K, 18.2 ppm/K, and 16.8 ppm/K. The CTE values were found to be comparable with theoretical results. The turner model showed conformance with experimental results, was well suited to the experimental results.展开更多
基金Sponsored by the National Natural Science Foundation of China(Grant No.51104045)
文摘Based on medium plate runout table ultra-fast cooling( UFC)-accelerated cooling equipment( ACC) system,a heat transfer coefficient model was constructed. Firstly,according to the measured data,heat transfer coefficients under different roll speed and water volume were calculated by using an inverse heat conduction method. Secondly,a monofactorial heat transfer coefficient calculation formula was obtained. Finally,the heat transfer coefficient model based on medium plate runout table UFC-ACC system was constructed by intercept function,slope function,interaction influence function and linear or nonlinear influencing factors. The precision of these models was validated by comparing model prediction value with measured data,and the results were in good agreement with practical needs,and the average deviation was less than 5%.
文摘The equilibrium equations of anisotropic media, coupled to the heat conduction equations, are studied here based on the standard spaces of the physical presentation, in which an new thermo-elastic model based on the second law of thermodynamics is induced. The uncoupled heat wave equation for anisotropic media is deduced. The results show that the equation of heat wave is of the properties of dissipative waves. In final part of this paper, we discuss the propagation behaviour of heat waves for transversely isotropic media.
文摘Based on the surface elasticity theory of GurtinMurdoch, thermo-elastic fields within rotating nanoshafts with varying material properties subjected to a thermal field are explicitly examined. Accounting for the surface energy effect, the nonclassical boundary conditions are enforced in the cases of fixed-free and free-free conditions. The effects of variation of material properties, temperature of the environment, angular velocity, and radius of the outer radius on the radial displacement, hoop and radial stresses are investigated. In all performed studies, the role of the surface effect on the thermo-elastic field of the nanostructure is methodically discussed.
文摘Beryllium aluminum cyclosilicate, an ore of beryllium was reinforced in Aluminum matrix to fabricate Al-beryl composites using powder metallurgy. Effect of the content of beryllium aluminum cyclosilicate on microstructural hardness and thermal expansion was studied. The coefficient of thermal expansion of Al-beryl composite was measured in the temperature range between 50oC to 360oC using dilatometer and was theoretically studied using thermo-elastic models, and these models were used to explain abnormalities observed experimentally. The hardness of Al-beryl metal matrix composites increased with the increase in beryl percentage. Vacuum sintering of Al-beryl metal matrix composites at 600oC inhibited excellent bonding between the matrix and the particulate increasing the strength of the composite. The result shows the CTE significantly increased with increasing temperature but decreased with increasing reinforcement. At higher temperatures, CTE of Al-beryl metal matrix composites with 5 wt%, 10 wt% and 15 wt% of beryllium aluminum cyclosilicate was 21 ppm/K, 18.2 ppm/K, and 16.8 ppm/K. The CTE values were found to be comparable with theoretical results. The turner model showed conformance with experimental results, was well suited to the experimental results.