期刊文献+
共找到3,452篇文章
< 1 2 173 >
每页显示 20 50 100
Effect of Strain Ratio on Fatigue Model of Ultra-fine Grained Pure Titanium
1
作者 QIANG Meng YANG Xirong +1 位作者 LIU Xiaoyan LUO Lei 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第5期1169-1178,共10页
The ultra-fine grained(UFG)pure titanium was prepared by equal channel angular pressing(ECAP)and rotary swaging(RS).The strain controlled low cycle fatigue(LCF)test was carried out at room temperature.The fatigue life... The ultra-fine grained(UFG)pure titanium was prepared by equal channel angular pressing(ECAP)and rotary swaging(RS).The strain controlled low cycle fatigue(LCF)test was carried out at room temperature.The fatigue life prediction model and mean stress relaxation model under asymmetrical stress load were discussed.The results show that the strain ratio has a significant effect on the low cycle fatigue performance of the UFG pure titanium,and the traditional Manson-coffin model can not accurately predict the fatigue life under asymmetric stress load.Therefore,the SWT mean stress correction model and three-parameter power curve model are proposed,and the test results are verified.The final research shows that the threeparameter power surface model has better representation.By studying the mean stress relaxation phenomenon under the condition of R≠-1,it is revealed that the stress ratio and the strain amplitude are the factors that significantly afiect the mean stress relaxation rate,and the mean stress relaxation model with the two variables is calculated to describe the mean stress relaxation phenomenon of the UFG pure titanium under different strain ratios.The fracture morphology of the samples was observed by SEM,and it was concluded that the final fracture zone of the fatigue fracture of the UFG pure titanium was a mixture of ductile fracture and quasi cleavage fracture.The toughness of the material increases with the increase of strain ratio at the same strain amplitude. 展开更多
关键词 ultra-fine grained pure titanium low cycle fatigue life model mean stress relaxation mode strain ratio fracture morphology
下载PDF
Preparation of ultra-fine grain Ni-Al-WC coating with interlocking bonding on austenitic stainless steel by laser clad and friction stir processing 被引量:4
2
作者 熊拥军 邱子力 +3 位作者 李瑞迪 袁铁锤 吴宏 刘锦辉 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第11期3685-3693,共9页
The ultra-fine structured Ni?Al?WC layer with interlocking bonding was fabricated on austenitic stainless steel by combination of laser clad and friction stir processing (FSP). Laser was initially applied to Ni?Al ele... The ultra-fine structured Ni?Al?WC layer with interlocking bonding was fabricated on austenitic stainless steel by combination of laser clad and friction stir processing (FSP). Laser was initially applied to Ni?Al elemental powder preplaced on the austenitic stainless steel substrate to produce a coating for further processing. The as-received coating was subjected to FSP treatment, processed by a rotary tool rod made of WC?Co alloy, to obtain sample for inspection. Microstructure, phase constitutions, hardness and wear property were investigated by methods of scanning electronic microscopy (SEM) with energy-dispersive X-ray spectroscopy (EDX) microanalysis, and X-ray diffraction (XRD), hardness test alongside with dry sliding wear test. The results show that the severe deformation effect exerted on the specimen resulted in an ultra-fine grain layer of about 100μmin thickness and grain size of 1?2μm. Synergy between introduction of WC particles to the deformation layer and deformation strengthening contributes greatly to the increase in hardness and friction resistance. An interlocking bonding between the coating and matrix which significantly improves bonding strength was formed due to the severe deformation effect. 展开更多
关键词 laser clad friction stir processing Ni-Al-WC coating ultra-fine grain interlocking bonding
下载PDF
Evaluation of ultra-fine grained tungsten under transient high heat flux by high-intensity pulsed ion beam 被引量:2
3
作者 谈军 周张健 +4 位作者 朱小鹏 郭双全 屈丹丹 雷明凯 葛昌纯 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第5期1081-1085,共5页
Pure tungsten, oxide dispersion strengthened tungsten and carbide dispersion strengthened tungsten were fabricated by high-energy ball milling and spark plasma sintering process. In order to evaluate the properties of... Pure tungsten, oxide dispersion strengthened tungsten and carbide dispersion strengthened tungsten were fabricated by high-energy ball milling and spark plasma sintering process. In order to evaluate the properties of the tungsten alloys under transient high heat flues, four tungsten samples with different grain sizes were tested by high-intensity pulsed ion beam with a heat flux as high as 160 MW/(m^2·s^-1/2). Compared with the commercial tungsten, the surface modification of the oxide dispersion strengthened tungsten by high-intensity pulsed ion beam is completely different. The oxide dispersion strengthened tungsten shows inferior thermal shock response due to the low melting point second phase of Ti and Y2O3, which results in the surface melting, boiling bubbles and cracking. While the carbide dispersion strengthened tungsten shows better thermal shock response than the commercial tungsten. 展开更多
关键词 TUNGSTEN tungsten alloy ultra-fine grain surface effects thermal shock transient high heat flux
下载PDF
Grain boundary engineering for enhancing intergranular damage resistance of ferritic/martensitic steel P92
4
作者 Lei Peng Shang-Ming Chen +6 位作者 Jing-Yi Shi Yong-Jie Sun Yi-Fei Liu Yin-Zhong Shen Hong-Ya He Hui-Juan Wang Jie Tian 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第5期186-199,共14页
Ferritic/martensitic(F/M)steel is widely used as a structural material in thermal and nuclear power plants.However,it is susceptible to intergranular damage,which is a critical issue,under service conditions.In this s... Ferritic/martensitic(F/M)steel is widely used as a structural material in thermal and nuclear power plants.However,it is susceptible to intergranular damage,which is a critical issue,under service conditions.In this study,to improve the resistance to intergranular damage of F/M steel,a thermomechanical process(TMP)was employed to achieve a grain boundary engineering(GBE)microstructure in F/M steel P92.The TMP,including cold-rolling thickness reduction of 6%,9%,and 12%,followed by austenitization at 1323 K for 40 min and tempering at 1053 K for 45 min,was applied to the as-received(AR)P92 steel.The prior austenite grain(PAG)size,prior austenite grain boundary character distribution(GBCD),and connectivity of prior austenite grain boundaries(PAGBs)were investigated.Compared to the AR specimen,the PAG size did not change significantly.The fraction of coincident site lattice boundaries(CSLBs,3≤Σ≤29)and Σ3^(n) boundaries along PAGBs decreased with increasing reduction ratio because the recrystallization fraction increased with increasing reduction ratio.The PAGB connectivity of the 6%deformed specimen slightly deteriorated compared with that of the AR specimen.Moreover,potentiodynamic polarization studies revealed that the intergranular damage resistance of the studied steel could be improved by increasing the fraction of CSLBs along the PAGBs,indicating that the TMP,which involves low deformation,could enhance the intergranular damage resistance. 展开更多
关键词 grain boundary engineering Ferritic/martensitic steel Prior austenite grain boundary character distribution grain boundary connectivity Intergranular damage resistance
下载PDF
Improving the Fatigue Performance of the Welded Joints of Ultra-Fine Grain Steel by Ultrasonic Peening 被引量:5
5
作者 王东坡 王婷 +1 位作者 霍立兴 张玉凤 《Transactions of Tianjin University》 EI CAS 2004年第2期113-117,共5页
Contrast tests were carried out to study the fatigue performance of the butt joints treated by ultrasonic peening, aiming at the improvement of ultrasonic peening treatment(UPT) on welded joints of a new material. The... Contrast tests were carried out to study the fatigue performance of the butt joints treated by ultrasonic peening, aiming at the improvement of ultrasonic peening treatment(UPT) on welded joints of a new material. The material is a new generation of fine grain and high purity SS400 steel that has the same ingredients as the traditional low carbon steel. The specimens are in two different states:welded and ultrasonic peening conditions. The corresponding fatigue testing data were analyzed according to the regulation of the statistical method for fatigue life of the welded joints established by International Institute of Welding(IIW). Welding residual stress was considered in two different ways: the constant stress ratio R=0.5 and the Ohta method. The nominal stress-number (σ-N)curves were corrected because of the different plate thickness compared to the standard and because there was no mismatch or angular deformation. The results indicated that: 1) Compared with the welded specimens, when the stress range was 200 MPa, the fatigue life of the SS400 steel specimens treated by ultrasonic peening is prolonged by over 58 times, and the fatigue strength FAT corresponding to 106 cycles is increased by about 66%; 2) As for the SS400 butt joint (single side welding double sides molding), after being treated by UPT, the nominal S-N curve (m=10) of FAT 100 MPa(R=0.5) should be used for fatigue design. The standard S-N curves of FAT 100 MPa(R=0.5, m=10) could be used for fatigue design of the SS400 steel butt joints treated by ultrasonic peening. 展开更多
关键词 fatigue strength ultrasonic peening welded joints ultra-fine grain steel
下载PDF
Effect of welding heat input on HAZ character in ultra-fine grain steel welding 被引量:3
6
作者 张富巨 许卫刚 +3 位作者 王玉涛 王燕 张学刚 廖永平 《China Welding》 EI CAS 2003年第2期122-127,共6页
In this essay, we studied how heat input affected the microstructure, hardness, grain size and heat-affected zone(HAZ) dimension of WCX355 ultra-fine grain steel which was welded respectively by the ultra narrow-gap w... In this essay, we studied how heat input affected the microstructure, hardness, grain size and heat-affected zone(HAZ) dimension of WCX355 ultra-fine grain steel which was welded respectively by the ultra narrow-gap welding (UNGW) process and the overlaying process with CO 2 as protective atmosphere and laser welding process. The experimental results show when the heat input changed from 1.65 kJ/cm to 5.93 kJ/cm, the width of its HAZ ranged from 0.6 mm to 2.1 mm.The average grain size grew up from 2~5 μm of base metal to 20~70 μm and found no obvious soften phenomenon in overheated zone. The width of normalized zone was generally wide as 2/3 as that of the whole HAZ, and the grain size in this zone is smaller than that in base metal. Under the circumstance of equal heat input, the HAZ width of UNGW is narrower than that of the laser welding. 展开更多
关键词 heat input heat-affected zone ultra-fine grain steel ultra narrow-gap welding
下载PDF
Isothermal Growth Kinetics of Ultra-fine Austenite Grains in a Nb-V-Ti Microalloyed Steel 被引量:4
7
作者 Shengjie Yao Linxiu Du Xianghua Liu Guodong Wang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2009年第5期615-618,共4页
Ultra-fine austenite grains with size of i-3 μm were prepared in a Nb-V-Ti steel through repetitive treatment of rapid heating and quenching. A model for the growth kinetics of these ultra-fine austenite grains was s... Ultra-fine austenite grains with size of i-3 μm were prepared in a Nb-V-Ti steel through repetitive treatment of rapid heating and quenching. A model for the growth kinetics of these ultra-fine austenite grains was successfully created through successive 2 processes, and the activation energy Q for growth was estimated to be about 693.2 kJ/mol, which directly shows the inhibition effect of microalloy elements on the growth of ultra-fine austenite grains. 展开更多
关键词 ultra-fine austenite grain grain growth kinetics Microalloyed steel
下载PDF
Microstructures of ultra-fine grained FeCoV alloys processed by ECAP plus cold rolling and their evolutions during tempering 被引量:5
8
作者 伍来智 陈军 +1 位作者 杜忠泽 王经涛 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2010年第4期602-606,共5页
A new processing method,equal channel angular pressing(ECAP)plus cold rolling(CR),was applied to producing ultra-fine grained FeCoV alloy.The microstructures of ultra-fine grained FeCoV alloy after ECAP,ECAP plus CR,a... A new processing method,equal channel angular pressing(ECAP)plus cold rolling(CR),was applied to producing ultra-fine grained FeCoV alloy.The microstructures of ultra-fine grained FeCoV alloy after ECAP,ECAP plus CR,and the effect of tempering treatment on the microstructure of FeCoV alloy produced by ECAP plus CR were investigated.The results show that an elongated substructure with a width of about 0.3μm is obtained after four-pass ECAP using Route A.Cold rolling after ECAP cannot change the morphologies of elongated substructure,and it results in higher fraction of high-angle boundaries and higher dislocation density compared with the identical ECAP without rolling.Subsequent tempering for 30 min at 853 K brings about many nano-phases precipitating at subgrain boundaries and insides the grains,and the size of precipitated phase is measured to be about 10 nm.Nano-phases grow up with increasing tempering temperature and equiaxed structure forms at 883 K. 展开更多
关键词 FeCoV alloy equal channel angular pressing cold rolling ultra-fine grain
下载PDF
Effect of upsetting force on microstructure of welds in resistance spot welding of 400 MPa ultra-fine grain steel 被引量:1
9
作者 Deng Lipeng Ke Liming +1 位作者 Liu Jinhe Ji Chuntao 《China Welding》 EI CAS 2016年第2期76-82,共7页
The ultra-fine grain (UFG) steel is welded by using resistance spot welding technique with or without requirement of upsetting force. Metallographic inspection shows that the grain size of weld nugget is larger than... The ultra-fine grain (UFG) steel is welded by using resistance spot welding technique with or without requirement of upsetting force. Metallographic inspection shows that the grain size of weld nugget is larger than that of the base metal and the microstructure is altered significantly. In addition, contracting defects such as air holes can be found in the nugget center. The experiments show that the defects can be effectively avoided by the technique of adding upsetting force during the nugget cooling and crystallizing processes. In tensile shear tests, the welding joint starts to crack from the inner edge of the corona bond. The results of micro-hardness tests show that the newly born martensite structure dramatically improves the hardness of the joint. Under the interactions between residual stresses and regenerated fine grains, the micro-hardness of the heat-affected zone ( HAZ ) is lower than that of the nugget, but evidently higher than that of the base metal. 展开更多
关键词 ultra-fine grain steel resistance spot welding MICROSTRUCTURE mechanical property
下载PDF
Microstructural Evolution and Thermal Stability of Ultra-fine Grained Al-4Mg Alloy by Equal Channel Angular Pressing 被引量:1
10
作者 HongbinGENG SubbongKANG ShiyuHE 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2004年第3期315-318,共4页
Experiments were conducted to evaluate the grain refinement and thermal stability of ultra-fine grained Al-4Mgalloy introduced by equal-channel angular pressing (ECAP) at 473 K. The results show that the intensities o... Experiments were conducted to evaluate the grain refinement and thermal stability of ultra-fine grained Al-4Mgalloy introduced by equal-channel angular pressing (ECAP) at 473 K. The results show that the intensities of X-ray(111/222) and (200/400) peaks for the alloy processed by ECAP decrease significantly and the peak widths of halfheight become broadening compared with the corresponding value in the annealed alloy. The microstructure of 2passes ECAPed alloy consists of both elongated and equiaxed subgrains. The residual strain in the alloy increaseswith increasing passes numbers, that appears as increasing dislocation density and lattice constant of matrix. Anequiaxed ultra-fine grained structure of~0.2μm is obtained in the present alloy after 8 passes. The ultra-fine grainsare stable below 523 K, because the alloy retains extremely fine grain size of~1μm after static annealing at 523 Kfor 1 h. 展开更多
关键词 Aluminum alloy Equal channel angular pressing ultra-fine grain Microstructural stability
下载PDF
Investigation on fracture behavior of the welded joint HAZ of ultra-fine grain steel SS400
11
作者 朱政强 陈立功 +3 位作者 荆洪阳 葛景国 倪纯珍 饶德林 《China Welding》 EI CAS 2003年第2期142-145,共4页
The critical crack dimensions of both base-metal specimen and HAZ specimen are measured via wide-plate tensile tests. Based on the “fitness for purpose” principle, the fracture behavior of the ultra-fine grain steel... The critical crack dimensions of both base-metal specimen and HAZ specimen are measured via wide-plate tensile tests. Based on the “fitness for purpose” principle, the fracture behavior of the ultra-fine grain steel SS400 welded joint HAZ is assessed. The test results indicate that overmatching is benefit for the whole capability’s improvement of ultra-fine grain steel SS400. The test results are confirmed by using finite element method (FEM). 展开更多
关键词 ultra-fine grain steel fitness for purpose general yielding FEM
下载PDF
Surface Cracking Behaviors of Ultra-Fine Grained Tungsten Under Edge Plasma Loading in the HT-7 Tokamak
12
作者 朱大焕 刘洋 +2 位作者 陈俊凌 周张健 鄢容 《Plasma Science and Technology》 SCIE EI CAS CSCD 2013年第6期605-608,共4页
Tests of the candidate plasma facing materials(PFMs) used in experimental fusion devices are essential due to the direct influence of in-situ plasma loading.A type of ultrafine grained(UFG) tungsten sintered by re... Tests of the candidate plasma facing materials(PFMs) used in experimental fusion devices are essential due to the direct influence of in-situ plasma loading.A type of ultrafine grained(UFG) tungsten sintered by resistance sintering under ultra-high pressure(RSUHP) method has been exposed in the edge plasma of the HT-7 tokamak to investigate its performance under plasma loading.Under cychc edge plasma loading,the UFG tungsten develops both macro and micro cracks.The macro cracks are attributed to the low temperature brittleness of the tungsten material itself,while the micro cracks are generated from local intense power flux deposition. 展开更多
关键词 ultra-fine grain tungsten plasma facing materials cracking behaviors plasma irradiation
下载PDF
Gradient Ultra-fine Grained Surface Layer in 6063 Aluminum Alloy Obtained by Means of Rotational Accelerated Shot Peening
13
作者 Ying LIU Hailu XU +2 位作者 He XIAN Yanfang LIU Zheng LI 《Research and Application of Materials Science》 2021年第1期38-46,共9页
Gradient ultra-fine grained surface layer in 6063 aluminum alloy was obtained by means of a novel surface self-nanocrystallization technique,namely rotational accelerated shot peening(RASP)treatment.The average grain ... Gradient ultra-fine grained surface layer in 6063 aluminum alloy was obtained by means of a novel surface self-nanocrystallization technique,namely rotational accelerated shot peening(RASP)treatment.The average grain sizes along the vertical section vary from hundreds of nanometers in the top surface to micrometers in the matrix.By using orthogonal experimental design to compare roughness values and hardness values,we synthesized the processing parameters to obtain sample of smaller roughness values and higher hardness. 展开更多
关键词 rotational accelerated shot peening gradient ultra-fine grained structure orthogonal experimental design processing parameters
下载PDF
In situ observation of austenite grain growth behavior in the simulated coarse-grained heat-affected zone of Ti-microalloyed steels 被引量:13
14
作者 Xiang-liang Wan Kai-ming Wu +2 位作者 Gang Huang Ran Wei Lin Cheng 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2014年第9期878-885,共8页
The austenite grain growth behavior in a simulated coarse-grained heat-affected zone during thermal cycling was investigated via in situ observation. Austenite grains nucleated at ferrite grain boundaries and then gre... The austenite grain growth behavior in a simulated coarse-grained heat-affected zone during thermal cycling was investigated via in situ observation. Austenite grains nucleated at ferrite grain boundaries and then grew in different directions through movement of grain boundaries into the ferrite phase. Subsequently, the adjacent austenite grains impinged against each other during the α→γtransformation. After the α→γ transformation, austenite grains coarsened via the coalescence of small grains and via boundary migration between grains. The growth process of austenite grains was a continuous process during heating, isothermal holding, and cooling in simulated thermal cycling. Abundant finely dispersed nanoscale TiN particles in a steel specimen containing 0.012wt% Ti effectively retarded the grain boundary migration, which resulted in refined austenite grains. When the Ti concentration in the steel was increased, the number of TiN particles de- creased and their size coarsened. The big particles were not effective in pinning the austenite grain boundary movement and resulted in coarse austenite grains. 展开更多
关键词 alloy steel AUSTENITE grain growth heat-affected zone COARSENING titanium nitride
下载PDF
Grain refinement in the coarse-grained region of the heat-affected zone in low-carbon high-strength microalloyed steels 被引量:10
15
作者 Ran Wei Cheng-jia Shang Kai-ming Wu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2010年第6期737-741,共5页
The microstructural features and grain refinement in the coarse-grained region of the heat-affected zone in low-carbon high-strength microalloyed steels were investigated using optical microscopy, scanning electron mi... The microstructural features and grain refinement in the coarse-grained region of the heat-affected zone in low-carbon high-strength microalloyed steels were investigated using optical microscopy, scanning electron microscopy, and electron backscattering dif- fraction. The coarse-grained region of the heat-affected zone consists of predominantly bainite and a small proportion of acicular ferrite. Bainite packets are separated by high angle boundaries. Acicular ferrite laths or plates in the coarse-grained region of the heat-affected zone formed prior to bainite packets partition austenite grains into many smaller and separate areas, resulting in fine-grained mixed microstruc- tures. Electron backscattefing diffraction analysis indicates that the average crystallographic grain size of the coarse-grained region of the heat-affected zone reaches 6-9 μm, much smaller than that of anstanite grains. 展开更多
关键词 microalloyed steels WELDING grain refinement BAINITE acicular ferrite
下载PDF
Microstructures and Toughness of Weld Metai of Ultrafine Grained Ferritic Steel by Laser Welding 被引量:11
16
作者 XudongZHANG WuzhuCHEN +3 位作者 ChengWANG LinZHAO YunPENG ZhilingTIAN 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2004年第6期755-759,共5页
3 mm thick 400 MPa grade ultrafine grained ferritic steel plates were bead-on-plate welded by CO2 laser with heat input of 120-480 J/mm. The microstructures of the weld metal mainly consist of bainite, which form is l... 3 mm thick 400 MPa grade ultrafine grained ferritic steel plates were bead-on-plate welded by CO2 laser with heat input of 120-480 J/mm. The microstructures of the weld metal mainly consist of bainite, which form is lower bainite plates or polygonal ferrite containing quantities of dispersed cementite particles, mixed with a few of low carbon martensite laths or ferrite, depending on the heat input. The hardness and the tensile strength of the weld metal are higher than those of the base metal, and monotonously increase as the heat input decreases. No softened zone exists in heat affected zone (HAZ). Compared with the base metal, although the grains of laser weld are much larger, the toughness of the weld metal is higher within a large range of heat input. Furthermore, as the heat input increases, the toughness of the weld metal rises to a maximum value, at which point the percentage of lower bainite is the highest, and then drops. 展开更多
关键词 Laser welding Ultrafine grained steel MICROSTRUCTURE TOUGHNESS
下载PDF
Microstructures of an Ultrafine Grained SS400 Steel in an Industrial Scale 被引量:4
17
作者 Hua DING Long LI +2 位作者 Chunzheng YANG Dan SONG Linxiu DU 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2006年第2期145-148,共4页
The microstructures of a SS400 steel after thermomechanical control process(TMCP) in an industrial production were observed by optical microscope,scanning electron microscope(SEM) and transmission electron microsc... The microstructures of a SS400 steel after thermomechanical control process(TMCP) in an industrial production were observed by optical microscope,scanning electron microscope(SEM) and transmission electron microscope(TEM).The results indicated that the size of ferrite grains was 4-5μm,and transmission of ferrite was around 70%.The types of the ultrafine ferrite grains were analyzed and the strengthening mechanisms were discussed.The results show that the ultrafine ferrite grains came from three processes,i.e.deformation induced ferrite transformation(DIFT).dynamic recrystallization of ferrite and accelerated cooling process.The increase in the strength of the material was mainly due to the grain refining. 展开更多
关键词 SS400 steel Ultrafine ferrite grain Mechanical property MICROSTRUCTURE
下载PDF
Atomistic study on the microscopic mechanism of grain boundary embrittlement induced by small dense helium bubbles in iron
18
作者 Lei Peng Yong-Jie Sun +3 位作者 Jing-Yi Shi Yi-Fei Liu Shang-Ming Chen Liu-Liu Li 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第3期84-95,共12页
The helium bubbles induced by 14 MeV neutron irradiation can cause intergranular fractures in reduced activation ferritic martensitic steel,which is a candidate structural material for fusion reactors.In order to eluc... The helium bubbles induced by 14 MeV neutron irradiation can cause intergranular fractures in reduced activation ferritic martensitic steel,which is a candidate structural material for fusion reactors.In order to elucidate the susceptibility of different grain boundaries(GBs)to helium-induced embrittlement,the tensile fracture processes of 10 types of GBs with and without helium bubbles in body-centered cubic(bcc)iron at the relevant service temperature of 600 K were investigated via molecular dynamics methods.The results indicate that in the absence of helium bubbles,the GBs studied here can be classified into two distinct categories:brittle GBs and ductile GBs.The atomic scale analysis shows that the plastic deformation of ductile GB at high temperatures originates from complex plastic deformation mechanisms,including the Bain/Burgers path phase transition and deformation twinning,in which the Bain path phase transition is the most dominant plastic deformation mechanism.However,the presence of helium bubbles severely inhibits the plastic deformation channels of the GBs,resulting in a significant decrease in elongation at fractures.For bubble-decorated GBs,the ultimate tensile strength increases with the increase in the misorientation angle.Interestingly,the coherent twin boundary∑3{112}was found to maintain relatively high fracture strength and maximum failure strain under the influence of helium bubbles. 展开更多
关键词 Helium bubble grain boundary EMBRITTLEMENT Reduced activation ferritic martensitic steel Molecular dynamics Bain path
下载PDF
Effect of deformation parameters on the austenite dynamic recrystallization behavior of a eutectoid pearlite rail steel
19
作者 Haibo Feng Shaohua Li +7 位作者 Kexiao Wang Junheng Gao Shuize Wang Haitao Zhao Zhenyu Han Yong Deng Yuhe Huang Xinping Ma 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第5期833-841,共9页
Understandings of the effect of hot deformation parameters close to the practical production line on grain refinement are crucial for enhancing both the strength and toughness of future rail steels.In this work,the au... Understandings of the effect of hot deformation parameters close to the practical production line on grain refinement are crucial for enhancing both the strength and toughness of future rail steels.In this work,the austenite dynamic recrystallization(DRX)behaviors of a eutectoid pearlite rail steel were studied using a thermo-mechanical simulator with hot deformation parameters frequently employed in rail production lines.The single-pass hot deformation results reveal that the prior austenite grain sizes(PAGSs)for samples with different deformation reductions decrease initially with an increase in deformation temperature.However,once the deformation temperature is beyond a certain threshold,the PAGSs start to increase.It can be attributed to the rise in DRX volume fraction and the increase of DRX grain with deformation temperature,respectively.Three-pass hot deformation results show that the accumulated strain generated in the first and second deformation passes can increase the extent of DRX.In the case of complete DRX,PAGS is predominantly determined by the deformation temperature of the final pass.It suggests a strategic approach during industrial production where part of the deformation reduction in low temperature range can be shifted to the medium temperature range to release rolling mill loads. 展开更多
关键词 eutectoid pearlite rail steel prior austenite grain size dynamic recrystallization single-pass hot deformation three-pass hot deformation
下载PDF
INVESTIGATION ON FRACTURE BEHAVIOR FOR WELDED JOINT OF NEW GENERATION FINE GRAINED STEEL SS400
20
作者 H.Y.Jing X.G.Liu +2 位作者 Z.Q.Zhu L.X.Huo Y.F.Zhang 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2003年第1期35-40,共6页
The fracture behavior for welded joint of new generation fine grained steel SS400 was investigated and assessed on the basis of fitness for purpose philosophy. The actual critical defect sizes for the SS400 base metal... The fracture behavior for welded joint of new generation fine grained steel SS400 was investigated and assessed on the basis of fitness for purpose philosophy. The actual critical defect sizes for the SS400 base metal and its weld HAZ (heat affected zone) defined by the gross yielding criterium have been determined directly by means of wide plate tests. It has been shown that although the HAZ grain growth occurs due to the welding heat, the resistance to fracture is not deteriorated. The deformation behavior of wide plate specimen was also studied by finite, element (FE) analysis. The deformation of weld HAZ is protected by the high strength weld metal, so it is easier to get the general yielding for the welded joint specimen. 展开更多
关键词 fine grained steel general yielding wide plate test fracture behavior
下载PDF
上一页 1 2 173 下一页 到第
使用帮助 返回顶部