This paper established the mathematical model of bridge wire temperature rise under direct current condition and gave the solution. It computed bridge wire temperature by using the thermal-electric coupling method pro...This paper established the mathematical model of bridge wire temperature rise under direct current condition and gave the solution. It computed bridge wire temperature by using the thermal-electric coupling method provided by ANSYS-Workbench finite element analysis software. In the end, the temperature bridge wire applied to different electric current was measured by the infrared thermal imaging temperature measurement method. The result shows that the ANSYS simulation results are in agreement with the theoretical calculation and the experimental results. It is feasible to compute bridge wire temperature of initiator by using ANSYS-Workbench software, and it is an important method to analyze complex structure of pyrotechnics.展开更多
The dynamic behavior of a bridge-erecting machine, carrying a moving mass suspended by a wire rope, is investigated. The bridge-erecting machine is modelled by a simply supported uniform beam, and a massless equivale...The dynamic behavior of a bridge-erecting machine, carrying a moving mass suspended by a wire rope, is investigated. The bridge-erecting machine is modelled by a simply supported uniform beam, and a massless equivalent "spring-damper" system with an effective spring constant and an effective damping coefficient is used to model the moving mass suspended by the wire rope. The suddenly applied load is represented by a unitary Dirac Delta function. With the expansion method, a simple closed-form solution for the equation of motion with the replaced spring-damper-mass system is formulated. The characters of the rope are included in the derivation of the differential equation of motion for the system. The numerical examples show that the effects of the damping coefficient and the spring constant of the rope on the deflection have significant variations with the loading frequency. The effects of the damping coefficient and the spring constant under different beam lengths are also examined. The obtained results validate the presented approach, and provide significant references in the design process of bridgeerecting machines.展开更多
The laser-cladding technique for welding of bridge wires is reported for the first time.The essen- tial feature of this technique different from the cur- rent methods is the realization of mutual melting of workpieces...The laser-cladding technique for welding of bridge wires is reported for the first time.The essen- tial feature of this technique different from the cur- rent methods is the realization of mutual melting of workpieces.Thus the stability of products is im- proved in an order of magnitude.The main points of the technique and the microanalyses of the weld- ing spot and other features are given.The technique presented is a novel method of welding between tiny piece and workpiece of different sizes and proper- ties.展开更多
The effects of the content of rare earth elements on the microstructure and properties of hot-dip Zn-5 Al alloy steel wire for bridge cables were investigated.The microstructure of the hot-dip coating was analyzed usi...The effects of the content of rare earth elements on the microstructure and properties of hot-dip Zn-5 Al alloy steel wire for bridge cables were investigated.The microstructure of the hot-dip coating was analyzed using an optical microscope and a scanning electron microscope equipped with an energy-dispersive spectrometer.The bonding force between the hot-dip coating and steel wire was determined by the winding test.The corrosion resistance of the steel wire hot-dip coating was tested by the electrochemical workstation.The hot-dip Zn-5A1 alloy coating has a corrosion-resistant structure composed of a zinc-rich phase and an aluminum-rich phase.Due to the enhanced bonding force,the micro structure of the hot-dip coating of the Zn-5A1 alloy with rare earth elements is more compact and uniform than that without rare earth elements.The addition of rare earth elements improves the corrosion resistance of Zn-5A1 alloy coated steel wire.Due to the rare earth segregation,which prevents the corrosion of the grain boundary and enhances the anti-intergranular corrosion performance,steel wire exhibits the optimum corrosion resistance when the content of rare earth elements is 0.08 wt.%.展开更多
文摘This paper established the mathematical model of bridge wire temperature rise under direct current condition and gave the solution. It computed bridge wire temperature by using the thermal-electric coupling method provided by ANSYS-Workbench finite element analysis software. In the end, the temperature bridge wire applied to different electric current was measured by the infrared thermal imaging temperature measurement method. The result shows that the ANSYS simulation results are in agreement with the theoretical calculation and the experimental results. It is feasible to compute bridge wire temperature of initiator by using ANSYS-Workbench software, and it is an important method to analyze complex structure of pyrotechnics.
基金supported by the National Natural Science Foundation of China(No.11472179)
文摘The dynamic behavior of a bridge-erecting machine, carrying a moving mass suspended by a wire rope, is investigated. The bridge-erecting machine is modelled by a simply supported uniform beam, and a massless equivalent "spring-damper" system with an effective spring constant and an effective damping coefficient is used to model the moving mass suspended by the wire rope. The suddenly applied load is represented by a unitary Dirac Delta function. With the expansion method, a simple closed-form solution for the equation of motion with the replaced spring-damper-mass system is formulated. The characters of the rope are included in the derivation of the differential equation of motion for the system. The numerical examples show that the effects of the damping coefficient and the spring constant of the rope on the deflection have significant variations with the loading frequency. The effects of the damping coefficient and the spring constant under different beam lengths are also examined. The obtained results validate the presented approach, and provide significant references in the design process of bridgeerecting machines.
文摘The laser-cladding technique for welding of bridge wires is reported for the first time.The essen- tial feature of this technique different from the cur- rent methods is the realization of mutual melting of workpieces.Thus the stability of products is im- proved in an order of magnitude.The main points of the technique and the microanalyses of the weld- ing spot and other features are given.The technique presented is a novel method of welding between tiny piece and workpiece of different sizes and proper- ties.
基金The authors would like to acknowledge the support from Key-Area Research and Development Program of Guangdong Province(2019B111106002)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(21KJB460023).
文摘The effects of the content of rare earth elements on the microstructure and properties of hot-dip Zn-5 Al alloy steel wire for bridge cables were investigated.The microstructure of the hot-dip coating was analyzed using an optical microscope and a scanning electron microscope equipped with an energy-dispersive spectrometer.The bonding force between the hot-dip coating and steel wire was determined by the winding test.The corrosion resistance of the steel wire hot-dip coating was tested by the electrochemical workstation.The hot-dip Zn-5A1 alloy coating has a corrosion-resistant structure composed of a zinc-rich phase and an aluminum-rich phase.Due to the enhanced bonding force,the micro structure of the hot-dip coating of the Zn-5A1 alloy with rare earth elements is more compact and uniform than that without rare earth elements.The addition of rare earth elements improves the corrosion resistance of Zn-5A1 alloy coated steel wire.Due to the rare earth segregation,which prevents the corrosion of the grain boundary and enhances the anti-intergranular corrosion performance,steel wire exhibits the optimum corrosion resistance when the content of rare earth elements is 0.08 wt.%.