Hydration shrinkage generated by cement hydration is the cause of autogenous shrinkage of high strength concrete. It may result in the volume change and even cracking of mortar and concrete. According to the data anal...Hydration shrinkage generated by cement hydration is the cause of autogenous shrinkage of high strength concrete. It may result in the volume change and even cracking of mortar and concrete. According to the data analysis in a series of experimental studies, the influence of ultra-fine fly ash on the hydration shrinkage of composite cementitious materials was investigated. It is found that ultra-fine fly ash can reduce the hydration shrinkage of cement paste effectively, and the more the ultra-fine fly ash, the less the hydration shrinkage. Compared with cement paste without the ultra-fine fly ash, the shrinkage ratio of cement paste reduces from 23.4% to 39.7% when the ultra-fine fly ash replaces cement from 20% to 50%. Moreover, the microscopic mechanism of the ultra-fine fly ash restraining the hydration shrinkage was also studied by scanning electron microscopy, X-ray diffraction and hydrated equations. The results show that the hydration shrinkage can be restrained to a certain degree because the ultra-fine fly ash does not participate in the hydration at the early stage and the secondary hydration products are different at the later stage.展开更多
Drying shrinkage of thermal insulation mortar with glazed hollow beads was measured by a vertical length comparator, and the influences of fly ash with different contents(0, 18%, 36%, and 54% were used) on the long-...Drying shrinkage of thermal insulation mortar with glazed hollow beads was measured by a vertical length comparator, and the influences of fly ash with different contents(0, 18%, 36%, and 54% were used) on the long-term drying shrinkage were discussed. The mass loss was measured by the weighting method and the pore structure was characterized using three different methods, including the light microscopy, the mercury intrusion porosimetry(MIP), and the nitrogen adsorption/desorption(NAD) experiments, and the correlations among them were researched. The results show that drying shrinkage process of thermal insulation mortar includes three steps with increasing curing time: the acceleration period(before 7 d), the deceleration period(7-365 d), and the metastable period(after 365 d). Drying shrinkage in the first stage(7 d before) increases quickly owing to the fast water loss, and its development in the last two stages is attributed to the increment of the pore volume of mortar with the radius below 50 nm, especially the increment of the pore volume fraction of the pore radius within the size range between 7.3 nm and 12.3 nm. There is no change in the drying shrinkage development trend of mortar with fly ash addition, and three steps in the service life, but fly ash addition in the mortar restrains its value. There is a linear relationship between the drying shrinkage and fly ash content, which means that drying shrinkage reduces with fly ash addition.展开更多
Fly ash floating bead(FAFB) was modified by the nonionic surfactant polyethylene glycol(PEG) under various concentrations to improve its hydrophobility,and then PEG modified FAFB composited with polyaniline(FAFB-...Fly ash floating bead(FAFB) was modified by the nonionic surfactant polyethylene glycol(PEG) under various concentrations to improve its hydrophobility,and then PEG modified FAFB composited with polyaniline(FAFB-PEG/PAn) by emulsion polymerization method using different feed ratios of FAFBPEG.The chemical structure,phase structure,microstructure,conductivity,and dielectric properties were studied by FT-IR,XRD,SEM,four-probe technique,and LCR digital bridge,respectively.It was demonstrated that the optimal concentration of PEG was 1 mol/L and the corresponding grafting ratio was 1.42%.The phase structure of FAFB was not destroyed after modification by PEG,while the surface became smoother and could be coated by PAn successfully according to SEM technique.Compared to that of dodecylbenzenesulfonic acid doped PAn(PAn-DBSA),the conductivity of FAFB-PEG/PAn was decreased by 10-100 times after introduction of various amounts of FAFB-PEG,especially the value could be decreased to 0.01 S cm^-1 if 50 wt%of FAFBPEG was provided.Additionally,the dielectric constant and loss factor of FAFB-PEG/PAn composites gradually decreased with increasing amount of FAFB-PEG in the frequency range of 100 KHz-2 MHz,namely,the dielectric constant could be still kept at 500 and correspondingly the loss factor decreased to 4.7 at 100 KHz if50 wt%of FAFB-PEG was provided.The leaking current phenomenon derived from PAn-DBSA could also be weakened by FAFB-PEG.展开更多
On the basis of study on physical and chemical properties of magnetic bead (MB) in fly ash (FA), the paper gives out the separation methods of MB and results of three separating process. The result of comparative test...On the basis of study on physical and chemical properties of magnetic bead (MB) in fly ash (FA), the paper gives out the separation methods of MB and results of three separating process. The result of comparative test in size, density, stability, magnetic material content, specific magnetic susceptibility (SMS), medium recovery oxidation resistance and wear resistance between MB and magnetic fines currently used in dense medium separation leads to that using MB recovered from fly ash is used as medium solids in coal cleaning in stead of magnetic fines not only have no influence upon taryests of separation, but can bring good economic and social benefits.展开更多
A TiO2 photocatalyst is coated on the surface of a zeolite fly ash bead(ZFAB) to improve its dispersability and exposure degree in a cement system.The application of Ag particles in TiO2/ZFAB modified cementitious m...A TiO2 photocatalyst is coated on the surface of a zeolite fly ash bead(ZFAB) to improve its dispersability and exposure degree in a cement system.The application of Ag particles in TiO2/ZFAB modified cementitious materials is to further enhance the photocatalytic performance.Various Ag@TiO2/ZFAB modified cementitious specimens with different Ag dosages are prepared and the characteristics and photocatalytic performance of the prepared samples are investigated.It is observed that the multi-level pore structure of ZFAB can improve the exposure degree of TiO2 in a cement system and is also useful to enhance the photocatalytic efficiency.With an increment of the amounts of Ag particles in the TiO2/ZFAB modified cementitious samples,the photocatalytic activities increased first and then decreased.The optimal Ag@TiO2/ZFAB modified cementitious sample reveals the maximum reaction rate constant for degrading benzene(9.91×10^-3 min^-1),which is approximately 3 and 10 times higher than those of TiO2/ZFAB and TiO2 modified samples,respectively.This suggests that suitable Ag particles coupled with a ZFAB carrier could effectively enhance the photocatalytic effects and use of TiO2 in a cement system.Thus,ZFAB as a carrier could provide a potential method for a high efficiency engineering application of TiO2 in the construction field.展开更多
To decrease the cement and SF content of RPC by using ultra-fine fly ash (UFFA) and steel slag powder (SS), the effect of these mineral admixtures on compressive strength of RPC were investigated. The experimental...To decrease the cement and SF content of RPC by using ultra-fine fly ash (UFFA) and steel slag powder (SS), the effect of these mineral admixtures on compressive strength of RPC were investigated. The experimental results indicate that the utilization of UFFA and SS in RPC is feasible and has prominent mechanical performance. The microstructure analysis (SEM and TG-DTG-DSC) demonstrated that the excellent mechanical properties of RPC containing SS and UFFA were mainly attributed to the sequential hydration filling effect of the compound system.展开更多
The effect of Fe_(2)O_(3) on the formation of micro glass beads(MGBs)under air staged combustion was studied.The experimental temperature was 1450℃,and Hegang bituminous coal was used as the experimental object.X⁃ray...The effect of Fe_(2)O_(3) on the formation of micro glass beads(MGBs)under air staged combustion was studied.The experimental temperature was 1450℃,and Hegang bituminous coal was used as the experimental object.X⁃ray diffractometer(XRD),ash fusion tester,viscosity formula and scanning electron microscopy(SEM)were used to analyze the fly ash.Nano Measurer 1.2 software was used to measure the diameter of MGBs.The results showed that with the increase of Fe_(2)O_(3) in Hegang coal,the glass phase in fly ash first increased and then decreased.When the amount of Fe_(2)O_(3) was 15%,the content of the glass phase was the highest,which was 51.26%.The ash melting point first decreased and then increased,while the viscosity gradually decreased and the particles gradually became spherical.With the increase of Fe_(2)O_(3),the proportion of MGBs with particle size less than 10μm increased gradually.From the above results,it can be concluded that the addition of Fe_(2)O_(3) is conducive to the formation of MGBs and the reduction of particle size.展开更多
The stress state and floating sinking reqularity of various particles in fly ash in water were analyzed. The formula for calculating the floating sinking rate was given. And the formula for calculating the magnetic fo...The stress state and floating sinking reqularity of various particles in fly ash in water were analyzed. The formula for calculating the floating sinking rate was given. And the formula for calculating the magnetic force needed to separate magnetic beads from magnetic separator was also obtained.展开更多
文摘Hydration shrinkage generated by cement hydration is the cause of autogenous shrinkage of high strength concrete. It may result in the volume change and even cracking of mortar and concrete. According to the data analysis in a series of experimental studies, the influence of ultra-fine fly ash on the hydration shrinkage of composite cementitious materials was investigated. It is found that ultra-fine fly ash can reduce the hydration shrinkage of cement paste effectively, and the more the ultra-fine fly ash, the less the hydration shrinkage. Compared with cement paste without the ultra-fine fly ash, the shrinkage ratio of cement paste reduces from 23.4% to 39.7% when the ultra-fine fly ash replaces cement from 20% to 50%. Moreover, the microscopic mechanism of the ultra-fine fly ash restraining the hydration shrinkage was also studied by scanning electron microscopy, X-ray diffraction and hydrated equations. The results show that the hydration shrinkage can be restrained to a certain degree because the ultra-fine fly ash does not participate in the hydration at the early stage and the secondary hydration products are different at the later stage.
基金Funded by the National Key Technology R&D Program of China during the 12th Five-year Plan(No.2012BAJ20B02)
文摘Drying shrinkage of thermal insulation mortar with glazed hollow beads was measured by a vertical length comparator, and the influences of fly ash with different contents(0, 18%, 36%, and 54% were used) on the long-term drying shrinkage were discussed. The mass loss was measured by the weighting method and the pore structure was characterized using three different methods, including the light microscopy, the mercury intrusion porosimetry(MIP), and the nitrogen adsorption/desorption(NAD) experiments, and the correlations among them were researched. The results show that drying shrinkage process of thermal insulation mortar includes three steps with increasing curing time: the acceleration period(before 7 d), the deceleration period(7-365 d), and the metastable period(after 365 d). Drying shrinkage in the first stage(7 d before) increases quickly owing to the fast water loss, and its development in the last two stages is attributed to the increment of the pore volume of mortar with the radius below 50 nm, especially the increment of the pore volume fraction of the pore radius within the size range between 7.3 nm and 12.3 nm. There is no change in the drying shrinkage development trend of mortar with fly ash addition, and three steps in the service life, but fly ash addition in the mortar restrains its value. There is a linear relationship between the drying shrinkage and fly ash content, which means that drying shrinkage reduces with fly ash addition.
基金Funded by National Natural Science Foundation of China(No.51204131)
文摘Fly ash floating bead(FAFB) was modified by the nonionic surfactant polyethylene glycol(PEG) under various concentrations to improve its hydrophobility,and then PEG modified FAFB composited with polyaniline(FAFB-PEG/PAn) by emulsion polymerization method using different feed ratios of FAFBPEG.The chemical structure,phase structure,microstructure,conductivity,and dielectric properties were studied by FT-IR,XRD,SEM,four-probe technique,and LCR digital bridge,respectively.It was demonstrated that the optimal concentration of PEG was 1 mol/L and the corresponding grafting ratio was 1.42%.The phase structure of FAFB was not destroyed after modification by PEG,while the surface became smoother and could be coated by PAn successfully according to SEM technique.Compared to that of dodecylbenzenesulfonic acid doped PAn(PAn-DBSA),the conductivity of FAFB-PEG/PAn was decreased by 10-100 times after introduction of various amounts of FAFB-PEG,especially the value could be decreased to 0.01 S cm^-1 if 50 wt%of FAFBPEG was provided.Additionally,the dielectric constant and loss factor of FAFB-PEG/PAn composites gradually decreased with increasing amount of FAFB-PEG in the frequency range of 100 KHz-2 MHz,namely,the dielectric constant could be still kept at 500 and correspondingly the loss factor decreased to 4.7 at 100 KHz if50 wt%of FAFB-PEG was provided.The leaking current phenomenon derived from PAn-DBSA could also be weakened by FAFB-PEG.
文摘On the basis of study on physical and chemical properties of magnetic bead (MB) in fly ash (FA), the paper gives out the separation methods of MB and results of three separating process. The result of comparative test in size, density, stability, magnetic material content, specific magnetic susceptibility (SMS), medium recovery oxidation resistance and wear resistance between MB and magnetic fines currently used in dense medium separation leads to that using MB recovered from fly ash is used as medium solids in coal cleaning in stead of magnetic fines not only have no influence upon taryests of separation, but can bring good economic and social benefits.
基金supported by the National Natural Science Foundation of China (51478370)the Engineering and Physical Sciences Research Council of UK–Natural Science Foundation of China (EPSRC-NSFC) International Joint Research Project (51461135005)~~
文摘A TiO2 photocatalyst is coated on the surface of a zeolite fly ash bead(ZFAB) to improve its dispersability and exposure degree in a cement system.The application of Ag particles in TiO2/ZFAB modified cementitious materials is to further enhance the photocatalytic performance.Various Ag@TiO2/ZFAB modified cementitious specimens with different Ag dosages are prepared and the characteristics and photocatalytic performance of the prepared samples are investigated.It is observed that the multi-level pore structure of ZFAB can improve the exposure degree of TiO2 in a cement system and is also useful to enhance the photocatalytic efficiency.With an increment of the amounts of Ag particles in the TiO2/ZFAB modified cementitious samples,the photocatalytic activities increased first and then decreased.The optimal Ag@TiO2/ZFAB modified cementitious sample reveals the maximum reaction rate constant for degrading benzene(9.91×10^-3 min^-1),which is approximately 3 and 10 times higher than those of TiO2/ZFAB and TiO2 modified samples,respectively.This suggests that suitable Ag particles coupled with a ZFAB carrier could effectively enhance the photocatalytic effects and use of TiO2 in a cement system.Thus,ZFAB as a carrier could provide a potential method for a high efficiency engineering application of TiO2 in the construction field.
基金Funded by the Guide Project in National Science & Technology Pillar Program during the 10th Five-Year Plan Period (2003BA652C)
文摘To decrease the cement and SF content of RPC by using ultra-fine fly ash (UFFA) and steel slag powder (SS), the effect of these mineral admixtures on compressive strength of RPC were investigated. The experimental results indicate that the utilization of UFFA and SS in RPC is feasible and has prominent mechanical performance. The microstructure analysis (SEM and TG-DTG-DSC) demonstrated that the excellent mechanical properties of RPC containing SS and UFFA were mainly attributed to the sequential hydration filling effect of the compound system.
基金Sponsored by the Natural Science Foundation of Shandong Province (Grant No. ZR2020ME190)the Shandong Key Research and Development Plan (Grant No. 2019GSF109004)。
文摘The effect of Fe_(2)O_(3) on the formation of micro glass beads(MGBs)under air staged combustion was studied.The experimental temperature was 1450℃,and Hegang bituminous coal was used as the experimental object.X⁃ray diffractometer(XRD),ash fusion tester,viscosity formula and scanning electron microscopy(SEM)were used to analyze the fly ash.Nano Measurer 1.2 software was used to measure the diameter of MGBs.The results showed that with the increase of Fe_(2)O_(3) in Hegang coal,the glass phase in fly ash first increased and then decreased.When the amount of Fe_(2)O_(3) was 15%,the content of the glass phase was the highest,which was 51.26%.The ash melting point first decreased and then increased,while the viscosity gradually decreased and the particles gradually became spherical.With the increase of Fe_(2)O_(3),the proportion of MGBs with particle size less than 10μm increased gradually.From the above results,it can be concluded that the addition of Fe_(2)O_(3) is conducive to the formation of MGBs and the reduction of particle size.
文摘The stress state and floating sinking reqularity of various particles in fly ash in water were analyzed. The formula for calculating the floating sinking rate was given. And the formula for calculating the magnetic force needed to separate magnetic beads from magnetic separator was also obtained.