The ultra-fine grained(UFG)pure titanium was prepared by equal channel angular pressing(ECAP)and rotary swaging(RS).The strain controlled low cycle fatigue(LCF)test was carried out at room temperature.The fatigue life...The ultra-fine grained(UFG)pure titanium was prepared by equal channel angular pressing(ECAP)and rotary swaging(RS).The strain controlled low cycle fatigue(LCF)test was carried out at room temperature.The fatigue life prediction model and mean stress relaxation model under asymmetrical stress load were discussed.The results show that the strain ratio has a significant effect on the low cycle fatigue performance of the UFG pure titanium,and the traditional Manson-coffin model can not accurately predict the fatigue life under asymmetric stress load.Therefore,the SWT mean stress correction model and three-parameter power curve model are proposed,and the test results are verified.The final research shows that the threeparameter power surface model has better representation.By studying the mean stress relaxation phenomenon under the condition of R≠-1,it is revealed that the stress ratio and the strain amplitude are the factors that significantly afiect the mean stress relaxation rate,and the mean stress relaxation model with the two variables is calculated to describe the mean stress relaxation phenomenon of the UFG pure titanium under different strain ratios.The fracture morphology of the samples was observed by SEM,and it was concluded that the final fracture zone of the fatigue fracture of the UFG pure titanium was a mixture of ductile fracture and quasi cleavage fracture.The toughness of the material increases with the increase of strain ratio at the same strain amplitude.展开更多
The ultra-fine structured Ni?Al?WC layer with interlocking bonding was fabricated on austenitic stainless steel by combination of laser clad and friction stir processing (FSP). Laser was initially applied to Ni?Al ele...The ultra-fine structured Ni?Al?WC layer with interlocking bonding was fabricated on austenitic stainless steel by combination of laser clad and friction stir processing (FSP). Laser was initially applied to Ni?Al elemental powder preplaced on the austenitic stainless steel substrate to produce a coating for further processing. The as-received coating was subjected to FSP treatment, processed by a rotary tool rod made of WC?Co alloy, to obtain sample for inspection. Microstructure, phase constitutions, hardness and wear property were investigated by methods of scanning electronic microscopy (SEM) with energy-dispersive X-ray spectroscopy (EDX) microanalysis, and X-ray diffraction (XRD), hardness test alongside with dry sliding wear test. The results show that the severe deformation effect exerted on the specimen resulted in an ultra-fine grain layer of about 100μmin thickness and grain size of 1?2μm. Synergy between introduction of WC particles to the deformation layer and deformation strengthening contributes greatly to the increase in hardness and friction resistance. An interlocking bonding between the coating and matrix which significantly improves bonding strength was formed due to the severe deformation effect.展开更多
Pure tungsten, oxide dispersion strengthened tungsten and carbide dispersion strengthened tungsten were fabricated by high-energy ball milling and spark plasma sintering process. In order to evaluate the properties of...Pure tungsten, oxide dispersion strengthened tungsten and carbide dispersion strengthened tungsten were fabricated by high-energy ball milling and spark plasma sintering process. In order to evaluate the properties of the tungsten alloys under transient high heat flues, four tungsten samples with different grain sizes were tested by high-intensity pulsed ion beam with a heat flux as high as 160 MW/(m^2·s^-1/2). Compared with the commercial tungsten, the surface modification of the oxide dispersion strengthened tungsten by high-intensity pulsed ion beam is completely different. The oxide dispersion strengthened tungsten shows inferior thermal shock response due to the low melting point second phase of Ti and Y2O3, which results in the surface melting, boiling bubbles and cracking. While the carbide dispersion strengthened tungsten shows better thermal shock response than the commercial tungsten.展开更多
A new processing method,equal channel angular pressing(ECAP)plus cold rolling(CR),was applied to producing ultra-fine grained FeCoV alloy.The microstructures of ultra-fine grained FeCoV alloy after ECAP,ECAP plus CR,a...A new processing method,equal channel angular pressing(ECAP)plus cold rolling(CR),was applied to producing ultra-fine grained FeCoV alloy.The microstructures of ultra-fine grained FeCoV alloy after ECAP,ECAP plus CR,and the effect of tempering treatment on the microstructure of FeCoV alloy produced by ECAP plus CR were investigated.The results show that an elongated substructure with a width of about 0.3μm is obtained after four-pass ECAP using Route A.Cold rolling after ECAP cannot change the morphologies of elongated substructure,and it results in higher fraction of high-angle boundaries and higher dislocation density compared with the identical ECAP without rolling.Subsequent tempering for 30 min at 853 K brings about many nano-phases precipitating at subgrain boundaries and insides the grains,and the size of precipitated phase is measured to be about 10 nm.Nano-phases grow up with increasing tempering temperature and equiaxed structure forms at 883 K.展开更多
Ultra-fine austenite grains with size of i-3 μm were prepared in a Nb-V-Ti steel through repetitive treatment of rapid heating and quenching. A model for the growth kinetics of these ultra-fine austenite grains was s...Ultra-fine austenite grains with size of i-3 μm were prepared in a Nb-V-Ti steel through repetitive treatment of rapid heating and quenching. A model for the growth kinetics of these ultra-fine austenite grains was successfully created through successive 2 processes, and the activation energy Q for growth was estimated to be about 693.2 kJ/mol, which directly shows the inhibition effect of microalloy elements on the growth of ultra-fine austenite grains.展开更多
Contrast tests were carried out to study the fatigue performance of the butt joints treated by ultrasonic peening, aiming at the improvement of ultrasonic peening treatment(UPT) on welded joints of a new material. The...Contrast tests were carried out to study the fatigue performance of the butt joints treated by ultrasonic peening, aiming at the improvement of ultrasonic peening treatment(UPT) on welded joints of a new material. The material is a new generation of fine grain and high purity SS400 steel that has the same ingredients as the traditional low carbon steel. The specimens are in two different states:welded and ultrasonic peening conditions. The corresponding fatigue testing data were analyzed according to the regulation of the statistical method for fatigue life of the welded joints established by International Institute of Welding(IIW). Welding residual stress was considered in two different ways: the constant stress ratio R=0.5 and the Ohta method. The nominal stress-number (σ-N)curves were corrected because of the different plate thickness compared to the standard and because there was no mismatch or angular deformation. The results indicated that: 1) Compared with the welded specimens, when the stress range was 200 MPa, the fatigue life of the SS400 steel specimens treated by ultrasonic peening is prolonged by over 58 times, and the fatigue strength FAT corresponding to 106 cycles is increased by about 66%; 2) As for the SS400 butt joint (single side welding double sides molding), after being treated by UPT, the nominal S-N curve (m=10) of FAT 100 MPa(R=0.5) should be used for fatigue design. The standard S-N curves of FAT 100 MPa(R=0.5, m=10) could be used for fatigue design of the SS400 steel butt joints treated by ultrasonic peening.展开更多
In this essay, we studied how heat input affected the microstructure, hardness, grain size and heat-affected zone(HAZ) dimension of WCX355 ultra-fine grain steel which was welded respectively by the ultra narrow-gap w...In this essay, we studied how heat input affected the microstructure, hardness, grain size and heat-affected zone(HAZ) dimension of WCX355 ultra-fine grain steel which was welded respectively by the ultra narrow-gap welding (UNGW) process and the overlaying process with CO 2 as protective atmosphere and laser welding process. The experimental results show when the heat input changed from 1.65 kJ/cm to 5.93 kJ/cm, the width of its HAZ ranged from 0.6 mm to 2.1 mm.The average grain size grew up from 2~5 μm of base metal to 20~70 μm and found no obvious soften phenomenon in overheated zone. The width of normalized zone was generally wide as 2/3 as that of the whole HAZ, and the grain size in this zone is smaller than that in base metal. Under the circumstance of equal heat input, the HAZ width of UNGW is narrower than that of the laser welding.展开更多
Experiments were conducted to evaluate the grain refinement and thermal stability of ultra-fine grained Al-4Mgalloy introduced by equal-channel angular pressing (ECAP) at 473 K. The results show that the intensities o...Experiments were conducted to evaluate the grain refinement and thermal stability of ultra-fine grained Al-4Mgalloy introduced by equal-channel angular pressing (ECAP) at 473 K. The results show that the intensities of X-ray(111/222) and (200/400) peaks for the alloy processed by ECAP decrease significantly and the peak widths of halfheight become broadening compared with the corresponding value in the annealed alloy. The microstructure of 2passes ECAPed alloy consists of both elongated and equiaxed subgrains. The residual strain in the alloy increaseswith increasing passes numbers, that appears as increasing dislocation density and lattice constant of matrix. Anequiaxed ultra-fine grained structure of~0.2μm is obtained in the present alloy after 8 passes. The ultra-fine grainsare stable below 523 K, because the alloy retains extremely fine grain size of~1μm after static annealing at 523 Kfor 1 h.展开更多
The ultra-fine grain (UFG) steel is welded by using resistance spot welding technique with or without requirement of upsetting force. Metallographic inspection shows that the grain size of weld nugget is larger than...The ultra-fine grain (UFG) steel is welded by using resistance spot welding technique with or without requirement of upsetting force. Metallographic inspection shows that the grain size of weld nugget is larger than that of the base metal and the microstructure is altered significantly. In addition, contracting defects such as air holes can be found in the nugget center. The experiments show that the defects can be effectively avoided by the technique of adding upsetting force during the nugget cooling and crystallizing processes. In tensile shear tests, the welding joint starts to crack from the inner edge of the corona bond. The results of micro-hardness tests show that the newly born martensite structure dramatically improves the hardness of the joint. Under the interactions between residual stresses and regenerated fine grains, the micro-hardness of the heat-affected zone ( HAZ ) is lower than that of the nugget, but evidently higher than that of the base metal.展开更多
Tests of the candidate plasma facing materials(PFMs) used in experimental fusion devices are essential due to the direct influence of in-situ plasma loading.A type of ultrafine grained(UFG) tungsten sintered by re...Tests of the candidate plasma facing materials(PFMs) used in experimental fusion devices are essential due to the direct influence of in-situ plasma loading.A type of ultrafine grained(UFG) tungsten sintered by resistance sintering under ultra-high pressure(RSUHP) method has been exposed in the edge plasma of the HT-7 tokamak to investigate its performance under plasma loading.Under cychc edge plasma loading,the UFG tungsten develops both macro and micro cracks.The macro cracks are attributed to the low temperature brittleness of the tungsten material itself,while the micro cracks are generated from local intense power flux deposition.展开更多
The critical crack dimensions of both base-metal specimen and HAZ specimen are measured via wide-plate tensile tests. Based on the “fitness for purpose” principle, the fracture behavior of the ultra-fine grain steel...The critical crack dimensions of both base-metal specimen and HAZ specimen are measured via wide-plate tensile tests. Based on the “fitness for purpose” principle, the fracture behavior of the ultra-fine grain steel SS400 welded joint HAZ is assessed. The test results indicate that overmatching is benefit for the whole capability’s improvement of ultra-fine grain steel SS400. The test results are confirmed by using finite element method (FEM).展开更多
New flat-oval groove rolling process of multi-direction deformation is proposed to manufacture ultra-fine grain bar. Application of new groove series can introduce uniform large plastic strain into whole cross section...New flat-oval groove rolling process of multi-direction deformation is proposed to manufacture ultra-fine grain bar. Application of new groove series can introduce uniform large plastic strain into whole cross section of the material, and meanwhile satisfy the requirements of shape and size. Principle of grain refinement, based on experimental research of small specimen, is that grain refinement of ferrite is mainly dynamic recrystallization when low-carbon alloy steel is at low temperature deformation. Relationship of grain size and z-factor is also obtained through experimental research, as well as ultra-fine ferrite grain less than 1 micron. To predict strain, shape, dimensions and grain size of the material in rolling process, numerical simulation model of the warm groove bar rolling process is established via nonlinear finite element method, and distribution of grain size of the final section is obtained via finite element subroutine. The result indicates that ultra-fine grain bar rolling can accomplish at low temperature region.展开更多
Gradient ultra-fine grained surface layer in 6063 aluminum alloy was obtained by means of a novel surface self-nanocrystallization technique,namely rotational accelerated shot peening(RASP)treatment.The average grain ...Gradient ultra-fine grained surface layer in 6063 aluminum alloy was obtained by means of a novel surface self-nanocrystallization technique,namely rotational accelerated shot peening(RASP)treatment.The average grain sizes along the vertical section vary from hundreds of nanometers in the top surface to micrometers in the matrix.By using orthogonal experimental design to compare roughness values and hardness values,we synthesized the processing parameters to obtain sample of smaller roughness values and higher hardness.展开更多
In the present research Monte Carlo technique was used to simulate the grain growth in heat-affected zone(HAZ) of an ultrafine grain steel. An experimental data based (EBD) model proposed by Gao was used to establish ...In the present research Monte Carlo technique was used to simulate the grain growth in heat-affected zone(HAZ) of an ultrafine grain steel. An experimental data based (EBD) model proposed by Gao was used to establish the relation between tMCS and real time temperature kinetics in our simulation. The simulations give out the evolution of grain structure and grain size distribution in HAZ of the ultrafine grain steel. A Microsoft Window based on computer program for the simulation of grain growth in the HAZ of weldment in three dimensions has been developed using Monte Carlo technique. For the system, inputting the temperature field data and material properties, the evolution of grain structure, both image of simulated grain structure and numerical datum reflecting grain size distribution can be produced by the program. The system was applied to the ultrafine grain steel welding, and the simulated results show that the ultrafine grain steel has large tendency of grain growth.展开更多
An as-cast magnesium alloy with high Al content Mg15Al was subjected to equal-channel angular pressing (ECAP) through a die with an angle of φ= 90? at 553 K following route Bc. It is found that the network β-Mg17...An as-cast magnesium alloy with high Al content Mg15Al was subjected to equal-channel angular pressing (ECAP) through a die with an angle of φ= 90? at 553 K following route Bc. It is found that the network β-Mg17Al12 phases in the as-cast Mg15Al alloy are broken into small blocks and dispersed uniformly with increasing numbers of pressing passes. Moreover, many nano-sized Mg17Al12 particles precipitate in the ultra-fine α-Mg matrix. The grains are obviously refined. However, the grain structure is inhomogeneous in different areas of the alloy. The average size of the primary phase α-Mg is reduced to about 1 μm while grains of around 0.1-0.2 μm are obtained in some two-phase areas. With additional ECAP passes (up to 8), coarsening of the grains occurs by dynamic recovery. Room temperature tensile tests show that the mechanical properties of Mg15Al alloys are markedly improved after 4 ECAP passes. The ultimate tensile strength and elongation to failure increase from 150 MPa to 269.3 MPa and from 0.05% to 7.4%, respectively. Compared with that after 4 passes, the elongation to failure of the alloy increases but the strength of the alloy slightly decreases after 8 ECAP passes. Fracture morphology of the ECAP-processed alloy exhibits dimple-like fracture characteristics while the as-cast alloy shows quasi-cleavage fractures.展开更多
The MoNbTaTiV refractory high-entropy alloy(RHEA)with ultra-fine grains and homogeneous microstructure was successfully fabricated by mechanical alloying(MA)and spark plasma sintering(SPS).The microstructural evolutio...The MoNbTaTiV refractory high-entropy alloy(RHEA)with ultra-fine grains and homogeneous microstructure was successfully fabricated by mechanical alloying(MA)and spark plasma sintering(SPS).The microstructural evolutions,mechanical properties and strengthening mechanisms of the alloys were systematically investigated.The nanocrystalline mechanically alloyed powders with simple bodycentered cubic(BCC)phase were obtained after 40 h MA process.Afterward,the powders were sintered using SPS in the temperature range from 1500℃to 1700℃.The bulk alloys were consisted of submicron scale BCC matrix and face-centered cubic(FCC)precipitation phases.The bulk alloy sintered at 1600℃had an average grain size of 0.58μm and an FCC precipitation phase of 0.18μm,exhibiting outstanding micro-hardness of 542 HV,compressive yield strength of 2208 MPa,fracture strength of 3238 MPa and acceptable plastic strain of 24.9%at room temperature.The enhanced mechanical properties of the MoNbTaTiV RHEA fabricated by MA and SPS were mainly attributed to the grain boundary strengthening and the interstitial solid solution strengthening.It is expectable that the MA and SPS processes are the promising methods to synthesize ultra-fine grains and homogenous microstructural RHEA with excellent mechanical properties.展开更多
Electrochemical impedance spectroscopy (EIS) and Mott-Schottky analysis were carried out to evaluate the electrochemical behavior of the passive films formed on the surface of coarse-grained (CG), fine-grained (F...Electrochemical impedance spectroscopy (EIS) and Mott-Schottky analysis were carried out to evaluate the electrochemical behavior of the passive films formed on the surface of coarse-grained (CG), fine-grained (FG) and ultrafine-grained (UFG) 1050 A1 alloy (AA1050) samples in alkaline media (pH value of 8.0) based on a modification of point defect model (PDM). The EIS results revealed that the polarization resistance increased from about 22.71-120.33 kΩ cm2 for UFG sample when compared to CG sample (annealed sample). The semiconductor properties of the passive films formed on CG, FG and UFG AA1050 samples in the test solution were investigated by employing Mott-Schottky analysis in conjunction with PDM. The results indicated that donor densities were in the range of 2.19 × 1021-0.61 × 1021 cm-3 and decreased with grain refinement. Finally, all electrochemical tests showed that the electrochemical behavior of AA1050 alloy was improved by decreasing the grain size, mainly due to the formation of thicker and less defective oxide films.展开更多
Super-high strength NbTaTiZr high-entropy alloys(NbTaTiZr HEAs)have been successfully fabricated by the mechanical alloying(MA)with spark plasma sintering(SPS)technology,which is 2-fold compared with that of NbTaTiZr ...Super-high strength NbTaTiZr high-entropy alloys(NbTaTiZr HEAs)have been successfully fabricated by the mechanical alloying(MA)with spark plasma sintering(SPS)technology,which is 2-fold compared with that of NbTaTiZr HEAs prepared by vacuum arc melting(VAM).After the SPS process,the bulk NbTaTiZr alloy samples are provided with dual-phase body-centered cubic(BCC)structure and nanoscale grain size about 500 nm that is obviously smaller than that of NbTaTiZr HEA fabricated by VAM.When the sintering temperature is 800℃,the compressive fracture strength is the highest reaching at 2511±78 MPa.When the sintering temperature is 1000℃,the fracture strain is the highest reaching at 12.8%,and compressive fracture strength and yield strength also reach at 2274±91 MPa and 2172±47 MPa,respectively.The excellent mechanical properties of bulk NbTaTiZr alloy samples are attributed to the merits of MA and SPS,and the collaboration effect of ultra-fine grains strengthening,solid solution strengthening and interstitial solid solution strengthening.展开更多
Ultra-fine-grained commercial purity aluminum was produced by severe cold rolling, annealing and then strain- ing at ultra-high rate by a single pass laser shock. Resulted microstructure was investigated by transmissi...Ultra-fine-grained commercial purity aluminum was produced by severe cold rolling, annealing and then strain- ing at ultra-high rate by a single pass laser shock. Resulted microstructure was investigated by transmission electron microscopy. Microhardness of annealed 0.6μm ultra-fine grained aluminum increased by 67% from 24 to 40 HV. Many 0.3 μm sub-grains appeared at the shock wave center after a single pass laser shock, while high density dislocation networks were observed in some grains at the shock wave edges. Accordingly, microhardness at the impact center increased by 37.5% from 40 to 55 HV. From the impact center to the edge, microhardness decreased by 22% from 55 to 45 HV.展开更多
基金Funded by National Natural Science Foundation of China(No.51474170)the Key Laboratory Project of Shaanxi Provincial Department of Education(No.20js075)。
文摘The ultra-fine grained(UFG)pure titanium was prepared by equal channel angular pressing(ECAP)and rotary swaging(RS).The strain controlled low cycle fatigue(LCF)test was carried out at room temperature.The fatigue life prediction model and mean stress relaxation model under asymmetrical stress load were discussed.The results show that the strain ratio has a significant effect on the low cycle fatigue performance of the UFG pure titanium,and the traditional Manson-coffin model can not accurately predict the fatigue life under asymmetric stress load.Therefore,the SWT mean stress correction model and three-parameter power curve model are proposed,and the test results are verified.The final research shows that the threeparameter power surface model has better representation.By studying the mean stress relaxation phenomenon under the condition of R≠-1,it is revealed that the stress ratio and the strain amplitude are the factors that significantly afiect the mean stress relaxation rate,and the mean stress relaxation model with the two variables is calculated to describe the mean stress relaxation phenomenon of the UFG pure titanium under different strain ratios.The fracture morphology of the samples was observed by SEM,and it was concluded that the final fracture zone of the fatigue fracture of the UFG pure titanium was a mixture of ductile fracture and quasi cleavage fracture.The toughness of the material increases with the increase of strain ratio at the same strain amplitude.
基金Projects(51571214,51301205,51101126)supported by the National Natural Science Foundation of ChinaProject(P2014-07)supported by the Open Fund of State Key Laboratory of Materials Processing and Die&Mould Technology,China+4 种基金Project(20130162120001)supported by the Specialized Research Fund for the Doctoral Program of Higher Education of ChinaProject(K1308034-11)supported by the Changsha Municipal Science and Technology Plan,ChinaProjects(2015GK3004,2015JC3006)supported by the Science and Technology Project of Hunan Province,ChinaProject supported by the Innovation-driven Plan in Central South University,ChinaProject supported by the Independent Project of State Key Laboratory of Powder Metallurgy of Central South University,China
文摘The ultra-fine structured Ni?Al?WC layer with interlocking bonding was fabricated on austenitic stainless steel by combination of laser clad and friction stir processing (FSP). Laser was initially applied to Ni?Al elemental powder preplaced on the austenitic stainless steel substrate to produce a coating for further processing. The as-received coating was subjected to FSP treatment, processed by a rotary tool rod made of WC?Co alloy, to obtain sample for inspection. Microstructure, phase constitutions, hardness and wear property were investigated by methods of scanning electronic microscopy (SEM) with energy-dispersive X-ray spectroscopy (EDX) microanalysis, and X-ray diffraction (XRD), hardness test alongside with dry sliding wear test. The results show that the severe deformation effect exerted on the specimen resulted in an ultra-fine grain layer of about 100μmin thickness and grain size of 1?2μm. Synergy between introduction of WC particles to the deformation layer and deformation strengthening contributes greatly to the increase in hardness and friction resistance. An interlocking bonding between the coating and matrix which significantly improves bonding strength was formed due to the severe deformation effect.
基金roject (50634060) supported by the National Natural Science Foundation of ChinaProject (2010GB109000) supported by the National Basic Research Program of China
文摘Pure tungsten, oxide dispersion strengthened tungsten and carbide dispersion strengthened tungsten were fabricated by high-energy ball milling and spark plasma sintering process. In order to evaluate the properties of the tungsten alloys under transient high heat flues, four tungsten samples with different grain sizes were tested by high-intensity pulsed ion beam with a heat flux as high as 160 MW/(m^2·s^-1/2). Compared with the commercial tungsten, the surface modification of the oxide dispersion strengthened tungsten by high-intensity pulsed ion beam is completely different. The oxide dispersion strengthened tungsten shows inferior thermal shock response due to the low melting point second phase of Ti and Y2O3, which results in the surface melting, boiling bubbles and cracking. While the carbide dispersion strengthened tungsten shows better thermal shock response than the commercial tungsten.
基金Project(50675133)supported by the National Natural Science Foundation of ChinaProject(2006CB705401)supported by the National Basic Research Program of China
文摘A new processing method,equal channel angular pressing(ECAP)plus cold rolling(CR),was applied to producing ultra-fine grained FeCoV alloy.The microstructures of ultra-fine grained FeCoV alloy after ECAP,ECAP plus CR,and the effect of tempering treatment on the microstructure of FeCoV alloy produced by ECAP plus CR were investigated.The results show that an elongated substructure with a width of about 0.3μm is obtained after four-pass ECAP using Route A.Cold rolling after ECAP cannot change the morphologies of elongated substructure,and it results in higher fraction of high-angle boundaries and higher dislocation density compared with the identical ECAP without rolling.Subsequent tempering for 30 min at 853 K brings about many nano-phases precipitating at subgrain boundaries and insides the grains,and the size of precipitated phase is measured to be about 10 nm.Nano-phases grow up with increasing tempering temperature and equiaxed structure forms at 883 K.
基金supported by the National Natural Science Foundation of China(No.50527402)
文摘Ultra-fine austenite grains with size of i-3 μm were prepared in a Nb-V-Ti steel through repetitive treatment of rapid heating and quenching. A model for the growth kinetics of these ultra-fine austenite grains was successfully created through successive 2 processes, and the activation energy Q for growth was estimated to be about 693.2 kJ/mol, which directly shows the inhibition effect of microalloy elements on the growth of ultra-fine austenite grains.
文摘Contrast tests were carried out to study the fatigue performance of the butt joints treated by ultrasonic peening, aiming at the improvement of ultrasonic peening treatment(UPT) on welded joints of a new material. The material is a new generation of fine grain and high purity SS400 steel that has the same ingredients as the traditional low carbon steel. The specimens are in two different states:welded and ultrasonic peening conditions. The corresponding fatigue testing data were analyzed according to the regulation of the statistical method for fatigue life of the welded joints established by International Institute of Welding(IIW). Welding residual stress was considered in two different ways: the constant stress ratio R=0.5 and the Ohta method. The nominal stress-number (σ-N)curves were corrected because of the different plate thickness compared to the standard and because there was no mismatch or angular deformation. The results indicated that: 1) Compared with the welded specimens, when the stress range was 200 MPa, the fatigue life of the SS400 steel specimens treated by ultrasonic peening is prolonged by over 58 times, and the fatigue strength FAT corresponding to 106 cycles is increased by about 66%; 2) As for the SS400 butt joint (single side welding double sides molding), after being treated by UPT, the nominal S-N curve (m=10) of FAT 100 MPa(R=0.5) should be used for fatigue design. The standard S-N curves of FAT 100 MPa(R=0.5, m=10) could be used for fatigue design of the SS400 steel butt joints treated by ultrasonic peening.
文摘In this essay, we studied how heat input affected the microstructure, hardness, grain size and heat-affected zone(HAZ) dimension of WCX355 ultra-fine grain steel which was welded respectively by the ultra narrow-gap welding (UNGW) process and the overlaying process with CO 2 as protective atmosphere and laser welding process. The experimental results show when the heat input changed from 1.65 kJ/cm to 5.93 kJ/cm, the width of its HAZ ranged from 0.6 mm to 2.1 mm.The average grain size grew up from 2~5 μm of base metal to 20~70 μm and found no obvious soften phenomenon in overheated zone. The width of normalized zone was generally wide as 2/3 as that of the whole HAZ, and the grain size in this zone is smaller than that in base metal. Under the circumstance of equal heat input, the HAZ width of UNGW is narrower than that of the laser welding.
文摘Experiments were conducted to evaluate the grain refinement and thermal stability of ultra-fine grained Al-4Mgalloy introduced by equal-channel angular pressing (ECAP) at 473 K. The results show that the intensities of X-ray(111/222) and (200/400) peaks for the alloy processed by ECAP decrease significantly and the peak widths of halfheight become broadening compared with the corresponding value in the annealed alloy. The microstructure of 2passes ECAPed alloy consists of both elongated and equiaxed subgrains. The residual strain in the alloy increaseswith increasing passes numbers, that appears as increasing dislocation density and lattice constant of matrix. Anequiaxed ultra-fine grained structure of~0.2μm is obtained in the present alloy after 8 passes. The ultra-fine grainsare stable below 523 K, because the alloy retains extremely fine grain size of~1μm after static annealing at 523 Kfor 1 h.
文摘The ultra-fine grain (UFG) steel is welded by using resistance spot welding technique with or without requirement of upsetting force. Metallographic inspection shows that the grain size of weld nugget is larger than that of the base metal and the microstructure is altered significantly. In addition, contracting defects such as air holes can be found in the nugget center. The experiments show that the defects can be effectively avoided by the technique of adding upsetting force during the nugget cooling and crystallizing processes. In tensile shear tests, the welding joint starts to crack from the inner edge of the corona bond. The results of micro-hardness tests show that the newly born martensite structure dramatically improves the hardness of the joint. Under the interactions between residual stresses and regenerated fine grains, the micro-hardness of the heat-affected zone ( HAZ ) is lower than that of the nugget, but evidently higher than that of the base metal.
基金supported by the Key Project of Chinese Academy of Sciences(No.KJCX2-YW-N35)National Natural Science Foundation of China(No.11175205)
文摘Tests of the candidate plasma facing materials(PFMs) used in experimental fusion devices are essential due to the direct influence of in-situ plasma loading.A type of ultrafine grained(UFG) tungsten sintered by resistance sintering under ultra-high pressure(RSUHP) method has been exposed in the edge plasma of the HT-7 tokamak to investigate its performance under plasma loading.Under cychc edge plasma loading,the UFG tungsten develops both macro and micro cracks.The macro cracks are attributed to the low temperature brittleness of the tungsten material itself,while the micro cracks are generated from local intense power flux deposition.
文摘The critical crack dimensions of both base-metal specimen and HAZ specimen are measured via wide-plate tensile tests. Based on the “fitness for purpose” principle, the fracture behavior of the ultra-fine grain steel SS400 welded joint HAZ is assessed. The test results indicate that overmatching is benefit for the whole capability’s improvement of ultra-fine grain steel SS400. The test results are confirmed by using finite element method (FEM).
文摘New flat-oval groove rolling process of multi-direction deformation is proposed to manufacture ultra-fine grain bar. Application of new groove series can introduce uniform large plastic strain into whole cross section of the material, and meanwhile satisfy the requirements of shape and size. Principle of grain refinement, based on experimental research of small specimen, is that grain refinement of ferrite is mainly dynamic recrystallization when low-carbon alloy steel is at low temperature deformation. Relationship of grain size and z-factor is also obtained through experimental research, as well as ultra-fine ferrite grain less than 1 micron. To predict strain, shape, dimensions and grain size of the material in rolling process, numerical simulation model of the warm groove bar rolling process is established via nonlinear finite element method, and distribution of grain size of the final section is obtained via finite element subroutine. The result indicates that ultra-fine grain bar rolling can accomplish at low temperature region.
基金funded by NSFC(Grant No.51301092)the National Key R&D Program of China(Grant No.2017YFA0204403)Open Research Fund of Science and Technology on High Strength Structural Materials Laboratory(No.O2016006).
文摘Gradient ultra-fine grained surface layer in 6063 aluminum alloy was obtained by means of a novel surface self-nanocrystallization technique,namely rotational accelerated shot peening(RASP)treatment.The average grain sizes along the vertical section vary from hundreds of nanometers in the top surface to micrometers in the matrix.By using orthogonal experimental design to compare roughness values and hardness values,we synthesized the processing parameters to obtain sample of smaller roughness values and higher hardness.
文摘In the present research Monte Carlo technique was used to simulate the grain growth in heat-affected zone(HAZ) of an ultrafine grain steel. An experimental data based (EBD) model proposed by Gao was used to establish the relation between tMCS and real time temperature kinetics in our simulation. The simulations give out the evolution of grain structure and grain size distribution in HAZ of the ultrafine grain steel. A Microsoft Window based on computer program for the simulation of grain growth in the HAZ of weldment in three dimensions has been developed using Monte Carlo technique. For the system, inputting the temperature field data and material properties, the evolution of grain structure, both image of simulated grain structure and numerical datum reflecting grain size distribution can be produced by the program. The system was applied to the ultrafine grain steel welding, and the simulated results show that the ultrafine grain steel has large tendency of grain growth.
基金Funded by the Taiyuan Special Fund for Sci-Tech Star (No. 09121002)the Youth Science Foundation of Shanxi Province (No.2008021033)Shanxi Research Fund for Returned Scholars (No.2007-25)
文摘An as-cast magnesium alloy with high Al content Mg15Al was subjected to equal-channel angular pressing (ECAP) through a die with an angle of φ= 90? at 553 K following route Bc. It is found that the network β-Mg17Al12 phases in the as-cast Mg15Al alloy are broken into small blocks and dispersed uniformly with increasing numbers of pressing passes. Moreover, many nano-sized Mg17Al12 particles precipitate in the ultra-fine α-Mg matrix. The grains are obviously refined. However, the grain structure is inhomogeneous in different areas of the alloy. The average size of the primary phase α-Mg is reduced to about 1 μm while grains of around 0.1-0.2 μm are obtained in some two-phase areas. With additional ECAP passes (up to 8), coarsening of the grains occurs by dynamic recovery. Room temperature tensile tests show that the mechanical properties of Mg15Al alloys are markedly improved after 4 ECAP passes. The ultimate tensile strength and elongation to failure increase from 150 MPa to 269.3 MPa and from 0.05% to 7.4%, respectively. Compared with that after 4 passes, the elongation to failure of the alloy increases but the strength of the alloy slightly decreases after 8 ECAP passes. Fracture morphology of the ECAP-processed alloy exhibits dimple-like fracture characteristics while the as-cast alloy shows quasi-cleavage fractures.
基金supported financially by the National Natural Science Foundation of China (No.51875122)
文摘The MoNbTaTiV refractory high-entropy alloy(RHEA)with ultra-fine grains and homogeneous microstructure was successfully fabricated by mechanical alloying(MA)and spark plasma sintering(SPS).The microstructural evolutions,mechanical properties and strengthening mechanisms of the alloys were systematically investigated.The nanocrystalline mechanically alloyed powders with simple bodycentered cubic(BCC)phase were obtained after 40 h MA process.Afterward,the powders were sintered using SPS in the temperature range from 1500℃to 1700℃.The bulk alloys were consisted of submicron scale BCC matrix and face-centered cubic(FCC)precipitation phases.The bulk alloy sintered at 1600℃had an average grain size of 0.58μm and an FCC precipitation phase of 0.18μm,exhibiting outstanding micro-hardness of 542 HV,compressive yield strength of 2208 MPa,fracture strength of 3238 MPa and acceptable plastic strain of 24.9%at room temperature.The enhanced mechanical properties of the MoNbTaTiV RHEA fabricated by MA and SPS were mainly attributed to the grain boundary strengthening and the interstitial solid solution strengthening.It is expectable that the MA and SPS processes are the promising methods to synthesize ultra-fine grains and homogenous microstructural RHEA with excellent mechanical properties.
文摘Electrochemical impedance spectroscopy (EIS) and Mott-Schottky analysis were carried out to evaluate the electrochemical behavior of the passive films formed on the surface of coarse-grained (CG), fine-grained (FG) and ultrafine-grained (UFG) 1050 A1 alloy (AA1050) samples in alkaline media (pH value of 8.0) based on a modification of point defect model (PDM). The EIS results revealed that the polarization resistance increased from about 22.71-120.33 kΩ cm2 for UFG sample when compared to CG sample (annealed sample). The semiconductor properties of the passive films formed on CG, FG and UFG AA1050 samples in the test solution were investigated by employing Mott-Schottky analysis in conjunction with PDM. The results indicated that donor densities were in the range of 2.19 × 1021-0.61 × 1021 cm-3 and decreased with grain refinement. Finally, all electrochemical tests showed that the electrochemical behavior of AA1050 alloy was improved by decreasing the grain size, mainly due to the formation of thicker and less defective oxide films.
基金financially supported by the National Natural Science Foundation of China(No.51871077)Guangdong Basic and Applied Basic Research Foundation(No.2021A1515012626)+3 种基金Shenzhen Knowledge Innovation Plan-Fundamental Research(Discipline Distribution)(No.JCYJ20180507184623297)Shenzhen Science and Technology Plan-Technology Innovation(No.KQJSCX20180328165656256)Development and Reform Commission of Shenzhen Municipality-Shenzhen R&D Center for Al-based Hydrogen Hydrolysis Materials(No.ZX20190229)the Startup Foundation from Shenzhen and Startup Foundation from Harbin Institute of Technology(Shenzhen)。
文摘Super-high strength NbTaTiZr high-entropy alloys(NbTaTiZr HEAs)have been successfully fabricated by the mechanical alloying(MA)with spark plasma sintering(SPS)technology,which is 2-fold compared with that of NbTaTiZr HEAs prepared by vacuum arc melting(VAM).After the SPS process,the bulk NbTaTiZr alloy samples are provided with dual-phase body-centered cubic(BCC)structure and nanoscale grain size about 500 nm that is obviously smaller than that of NbTaTiZr HEA fabricated by VAM.When the sintering temperature is 800℃,the compressive fracture strength is the highest reaching at 2511±78 MPa.When the sintering temperature is 1000℃,the fracture strain is the highest reaching at 12.8%,and compressive fracture strength and yield strength also reach at 2274±91 MPa and 2172±47 MPa,respectively.The excellent mechanical properties of bulk NbTaTiZr alloy samples are attributed to the merits of MA and SPS,and the collaboration effect of ultra-fine grains strengthening,solid solution strengthening and interstitial solid solution strengthening.
基金support from the National Natural Science Foundation of China (No. 50801021)
文摘Ultra-fine-grained commercial purity aluminum was produced by severe cold rolling, annealing and then strain- ing at ultra-high rate by a single pass laser shock. Resulted microstructure was investigated by transmission electron microscopy. Microhardness of annealed 0.6μm ultra-fine grained aluminum increased by 67% from 24 to 40 HV. Many 0.3 μm sub-grains appeared at the shock wave center after a single pass laser shock, while high density dislocation networks were observed in some grains at the shock wave edges. Accordingly, microhardness at the impact center increased by 37.5% from 40 to 55 HV. From the impact center to the edge, microhardness decreased by 22% from 55 to 45 HV.