期刊文献+
共找到1,867篇文章
< 1 2 94 >
每页显示 20 50 100
Microstructures of ultra-fine grained FeCoV alloys processed by ECAP plus cold rolling and their evolutions during tempering 被引量:5
1
作者 伍来智 陈军 +1 位作者 杜忠泽 王经涛 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2010年第4期602-606,共5页
A new processing method,equal channel angular pressing(ECAP)plus cold rolling(CR),was applied to producing ultra-fine grained FeCoV alloy.The microstructures of ultra-fine grained FeCoV alloy after ECAP,ECAP plus CR,a... A new processing method,equal channel angular pressing(ECAP)plus cold rolling(CR),was applied to producing ultra-fine grained FeCoV alloy.The microstructures of ultra-fine grained FeCoV alloy after ECAP,ECAP plus CR,and the effect of tempering treatment on the microstructure of FeCoV alloy produced by ECAP plus CR were investigated.The results show that an elongated substructure with a width of about 0.3μm is obtained after four-pass ECAP using Route A.Cold rolling after ECAP cannot change the morphologies of elongated substructure,and it results in higher fraction of high-angle boundaries and higher dislocation density compared with the identical ECAP without rolling.Subsequent tempering for 30 min at 853 K brings about many nano-phases precipitating at subgrain boundaries and insides the grains,and the size of precipitated phase is measured to be about 10 nm.Nano-phases grow up with increasing tempering temperature and equiaxed structure forms at 883 K. 展开更多
关键词 FeCoV alloy equal channel angular pressing cold rolling ultra-fine grain
下载PDF
Effect of upsetting force on microstructure of welds in resistance spot welding of 400 MPa ultra-fine grain steel 被引量:1
2
作者 邓黎鹏 柯黎明 +1 位作者 刘金合 冀春涛 《China Welding》 EI CAS 2016年第2期76-82,共7页
The ultra-fine grain (UFG) steel is welded by using resistance spot welding technique with or without requirement of upsetting force. Metallographic inspection shows that the grain size of weld nugget is larger than... The ultra-fine grain (UFG) steel is welded by using resistance spot welding technique with or without requirement of upsetting force. Metallographic inspection shows that the grain size of weld nugget is larger than that of the base metal and the microstructure is altered significantly. In addition, contracting defects such as air holes can be found in the nugget center. The experiments show that the defects can be effectively avoided by the technique of adding upsetting force during the nugget cooling and crystallizing processes. In tensile shear tests, the welding joint starts to crack from the inner edge of the corona bond. The results of micro-hardness tests show that the newly born martensite structure dramatically improves the hardness of the joint. Under the interactions between residual stresses and regenerated fine grains, the micro-hardness of the heat-affected zone ( HAZ ) is lower than that of the nugget, but evidently higher than that of the base metal. 展开更多
关键词 ultra-fine grain steel resistance spot welding MICROstructure mechanical property
下载PDF
Groove Design and Microstructure Research of Ultra-Fine Grain Bar Rolling
3
作者 Xuetong Li Lei Cao +1 位作者 Minting Wang Fengshan Du 《Modeling and Numerical Simulation of Material Science》 2012年第4期67-75,共9页
New flat-oval groove rolling process of multi-direction deformation is proposed to manufacture ultra-fine grain bar. Application of new groove series can introduce uniform large plastic strain into whole cross section... New flat-oval groove rolling process of multi-direction deformation is proposed to manufacture ultra-fine grain bar. Application of new groove series can introduce uniform large plastic strain into whole cross section of the material, and meanwhile satisfy the requirements of shape and size. Principle of grain refinement, based on experimental research of small specimen, is that grain refinement of ferrite is mainly dynamic recrystallization when low-carbon alloy steel is at low temperature deformation. Relationship of grain size and z-factor is also obtained through experimental research, as well as ultra-fine ferrite grain less than 1 micron. To predict strain, shape, dimensions and grain size of the material in rolling process, numerical simulation model of the warm groove bar rolling process is established via nonlinear finite element method, and distribution of grain size of the final section is obtained via finite element subroutine. The result indicates that ultra-fine grain bar rolling can accomplish at low temperature region. 展开更多
关键词 BAR FEM Flat-Oval GROOVE Large PLASTIC Strain Low Temperature ultra-fine grain
下载PDF
Effect of Strain Ratio on Fatigue Model of Ultra-fine Grained Pure Titanium
4
作者 QIANG Meng YANG Xirong +1 位作者 LIU Xiaoyan LUO Lei 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第5期1169-1178,共10页
The ultra-fine grained(UFG)pure titanium was prepared by equal channel angular pressing(ECAP)and rotary swaging(RS).The strain controlled low cycle fatigue(LCF)test was carried out at room temperature.The fatigue life... The ultra-fine grained(UFG)pure titanium was prepared by equal channel angular pressing(ECAP)and rotary swaging(RS).The strain controlled low cycle fatigue(LCF)test was carried out at room temperature.The fatigue life prediction model and mean stress relaxation model under asymmetrical stress load were discussed.The results show that the strain ratio has a significant effect on the low cycle fatigue performance of the UFG pure titanium,and the traditional Manson-coffin model can not accurately predict the fatigue life under asymmetric stress load.Therefore,the SWT mean stress correction model and three-parameter power curve model are proposed,and the test results are verified.The final research shows that the threeparameter power surface model has better representation.By studying the mean stress relaxation phenomenon under the condition of R≠-1,it is revealed that the stress ratio and the strain amplitude are the factors that significantly afiect the mean stress relaxation rate,and the mean stress relaxation model with the two variables is calculated to describe the mean stress relaxation phenomenon of the UFG pure titanium under different strain ratios.The fracture morphology of the samples was observed by SEM,and it was concluded that the final fracture zone of the fatigue fracture of the UFG pure titanium was a mixture of ductile fracture and quasi cleavage fracture.The toughness of the material increases with the increase of strain ratio at the same strain amplitude. 展开更多
关键词 ultra-fine grained pure titanium low cycle fatigue life model mean stress relaxation mode strain ratio fracture morphology
下载PDF
Microstructure,Properties,and Grain Growth Kinetics of Mo-5Ta Refractory Sputtering Targets Prepared by SPS
5
作者 LIU Dawei YANG Xiaolong +2 位作者 HUANG Lei PAN Yafei ZHANG Jiuxing 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第6期1248-1254,共7页
Mo-5Ta targets were prepared by the spark plasma sintering(SPS)technology under the sintering temperatures of 1400-1600℃,the holding times of 0-20 min,and the axial pressure of 30 MPa.The microstructure,performance,a... Mo-5Ta targets were prepared by the spark plasma sintering(SPS)technology under the sintering temperatures of 1400-1600℃,the holding times of 0-20 min,and the axial pressure of 30 MPa.The microstructure,performance,and grain growth kinetics of Mo-5Ta sputtering targets were studied.With the increase of sintering temperatures and times,Ta can more dissolve in Mo and form a Mo(Ta)solid solution.The grain sizes of Mo-5Ta targets remain unchanged at low temperatures(1400-1500℃)while increasing significantly at high temperature(1600℃)with the extension of the holding time.In addition,the densities and Vickers hardness(HV_(0.5))first ascend and then decrease with sintering proceeding.The thermal conductivity is positively correlated with the grain size and density,as a result of their joint action.Based on the comprehensive analysis,the grain growth is dominated by the combination of boundary diffusion and volume diffusion.When n=2,the activation energies of grain growth under holding times of 5,10,20 min are calculated as 762.70,617.86,and 616.52 kJ/mol,respectively. 展开更多
关键词 SPS Mo-5Ta targets structure PROPERTIES grain growth kinetics
下载PDF
Bimodal grain structure formation and strengthening mechanisms in Mg-Mn-Al-Ca extrusion alloys
6
作者 Jianyue Zhang Peng Peng +1 位作者 Qingshan Yang Alan A.Luo 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第12期4407-4419,共13页
The effects of small additions of calcium (0.1%and 0.5%~1) on the dynamic recrystallization behavior and mechanical properties of asextruded Mg-1Mn-0.5Al alloys were investigated.Calcium microalloying led to the forma... The effects of small additions of calcium (0.1%and 0.5%~1) on the dynamic recrystallization behavior and mechanical properties of asextruded Mg-1Mn-0.5Al alloys were investigated.Calcium microalloying led to the formation of Al_(2)Ca in as-cast Mg-1Mn-0.5Al-0.1Ca alloy and both Mg_(2)Ca and Al_(2)Ca phases in Mg-1Mn-0.5Al-0.5Ca alloy.The formed Al_(2)Ca particles were fractured during extrusion process and distributed at grain boundary along extrusion direction (ED).The Mg_(2)Ca phase was dynamically precipitated during extrusion process,hindering dislocation movement and reducing dislocation accumulation in low angle grain boundaries (LAGBs) and hindering the transformation of high density of LAGBs into high angle grain boundaries (HAGBs).Therefore,a bimodal structure composed of fine dynamically recrystallized (DRXed) grains and coarse un DRXed regions was formed in Ca-microalloyed Mg-1Mn-0.5Al alloys.The bimodal structure resulted in effective hetero-deformation-induced (HDI) strengthening.Additionally,the fine grains in DRXed regions and the coarse grains in un DRXed regions and the dynamically precipitated Mg_(2)Ca phase significantly enhanced the tensile yield strength from 224 MPa in Mg-1Mn-0.5Al to335 MPa and 352 MPa in Mg-1Mn-0.5Al-0.1Ca and Mg-1Mn-0.5Al-0.5Ca,respectively.Finally,a yield point phenomenon was observed in as-extruded Mg-1Mn-0.5Al-x Ca alloys,more profound with 0.5%Ca addition,which was due to the formation of (■) extension twins in un DRXed regions. 展开更多
关键词 Magnesium alloys EXTRUSION Dynamic precipitation Dynamic recrystallization Bimodal grain structure Mechanical properties
下载PDF
Microstructural Evolution and Thermal Stability of Ultra-fine Grained Al-4Mg Alloy by Equal Channel Angular Pressing 被引量:1
7
作者 HongbinGENG SubbongKANG ShiyuHE 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2004年第3期315-318,共4页
Experiments were conducted to evaluate the grain refinement and thermal stability of ultra-fine grained Al-4Mgalloy introduced by equal-channel angular pressing (ECAP) at 473 K. The results show that the intensities o... Experiments were conducted to evaluate the grain refinement and thermal stability of ultra-fine grained Al-4Mgalloy introduced by equal-channel angular pressing (ECAP) at 473 K. The results show that the intensities of X-ray(111/222) and (200/400) peaks for the alloy processed by ECAP decrease significantly and the peak widths of halfheight become broadening compared with the corresponding value in the annealed alloy. The microstructure of 2passes ECAPed alloy consists of both elongated and equiaxed subgrains. The residual strain in the alloy increaseswith increasing passes numbers, that appears as increasing dislocation density and lattice constant of matrix. Anequiaxed ultra-fine grained structure of~0.2μm is obtained in the present alloy after 8 passes. The ultra-fine grainsare stable below 523 K, because the alloy retains extremely fine grain size of~1μm after static annealing at 523 Kfor 1 h. 展开更多
关键词 Aluminum alloy Equal channel angular pressing ultra-fine grain Microstructural stability
下载PDF
A CELLULAR AUTOMATON-APPROACH TO SIMULATION OFGRAIN STRUCTURE DEVELOPMENT INELECTROSLAG CASTING 被引量:4
8
作者 X.Q. Wei and L. Zhou School of Mechanical Electrical Engineering and School of Chemistry and Materials Science, Nanchang University, Nanchang 330029, China Manuscript received 30 July 1999 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2000年第2期794-799,共6页
A 3-D cellular automaton model of thermal transfer and solidification has been developed, aiming at a simulational study of the grain structure development in electroslag casting. The program we developed for simulat... A 3-D cellular automaton model of thermal transfer and solidification has been developed, aiming at a simulational study of the grain structure development in electroslag casting. The program we developed for simulation of the model allows the effects of both metallurgical factors, including solidification point, supercooling required for nucleation and its scattering, and liquid/solid interface energy, and thermophysical factors, including heat conduction coeffcients, heat transfer coefficients and latent heat, to be investigated. The effect of process control can be indirectly inspected with the simulation by varying the melting rate. A box counting algorithm was employed to estimate the local curvature of liquid/solid interface. A series of simulated experiments of electroslag casting processes have been carried out. The simulation started from the beginning of the electroslag casting and proceeds by iteration of certain rules, during which a uniform constant slag temperature and a constant melting rate were assumed. It has been observed that a pool of molten metal forms and deepens gradually under constant melting rate. The deepening of the pool slows down with the simulated electroslag casting process, and the depth and shape of the pool tends to be steady after certain height of cast is formed. A finger-like grain structure with the fingers approximately normal to the bottom of the molten metal pool was generally observed. Higher latent heat was found to enhance dendritic growth. The results agree well with general observation of the grain structures in electroslag castings and demonstrate the applicability of cellular automaton modeling to structural development in casting. 展开更多
关键词 electroslay casting grain structure SIMULATION
下载PDF
Isothermal Growth Kinetics of Ultra-fine Austenite Grains in a Nb-V-Ti Microalloyed Steel 被引量:4
9
作者 Shengjie Yao Linxiu Du Xianghua Liu Guodong Wang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2009年第5期615-618,共4页
Ultra-fine austenite grains with size of i-3 μm were prepared in a Nb-V-Ti steel through repetitive treatment of rapid heating and quenching. A model for the growth kinetics of these ultra-fine austenite grains was s... Ultra-fine austenite grains with size of i-3 μm were prepared in a Nb-V-Ti steel through repetitive treatment of rapid heating and quenching. A model for the growth kinetics of these ultra-fine austenite grains was successfully created through successive 2 processes, and the activation energy Q for growth was estimated to be about 693.2 kJ/mol, which directly shows the inhibition effect of microalloy elements on the growth of ultra-fine austenite grains. 展开更多
关键词 ultra-fine austenite grain grain growth kinetics Microalloyed steel
下载PDF
Tailoring bimodal grain structure of Mg-9Al-1Zn alloy for strength-ductility synergy:Co-regulating effect from coarse Al_(2)Y and submicron Mg_(17)Al_(12) particles 被引量:7
10
作者 Yong-Kang Li Min Zha +6 位作者 Hai-Long Jia Si-Qing Wang Hongmin Zhang Xiao Ma Teng Tian Pinkui Ma Hui-Yuan Wang 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2021年第5期1571-1582,共12页
Grain boundary strengthening is an effective strategy for increasing mechanical properties of Mg alloys.However,this method offers limited strengthening in bimodal grain-structured Mg alloys due to the difficultly in ... Grain boundary strengthening is an effective strategy for increasing mechanical properties of Mg alloys.However,this method offers limited strengthening in bimodal grain-structured Mg alloys due to the difficultly in increasing the volume fraction of fine grains while keeping a small grain size.Herein,we show that the volume fraction of fine grains(FGs,~2.5μm)in the bimodal grain structure can be tailored from~30 vol.%in Mg-9 Al-1 Zn(AZ91)to~52 vol.%in AZ91-1Y(wt.%)processed by hard plate rolling(HPR).Moreover,a superior combination of a high ultimate tensile strength(~405 MPa)and decent uniform elongation(~9%)is achieved in present AZ91-1Y alloy.It reveals that a desired bimodal grain structure can be tailored by the co-regulating effect from coarse Al_(2)Y particles resulting in inhomogeneous recrystallization,and dispersed submicron Mg_(17)Al_(12)particles depressing the growth of recrystallized grains.The findings offer a valuable insight in tailoring bimodal grain-structured Mg alloys for optimized strength and ductility. 展开更多
关键词 Magnesium alloys Bimodal grain structure Second-phase particles Recrystallization STRENGTH DUCTILITY
下载PDF
Agricultural Production Structure Optimization: A Case Study of Major Grain Producing Areas, China 被引量:3
11
作者 LU Sha-sha LIU Yan-sui +1 位作者 LONG Hua-lou GUAN Xing-liang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2013年第1期184-197,共14页
A large number of mathematical models were developed for supporting agricultural production structure optimization decisions; however, few of them can address various uncertainties existing in many factors (e.g., eco... A large number of mathematical models were developed for supporting agricultural production structure optimization decisions; however, few of them can address various uncertainties existing in many factors (e.g., eco-social benefit maximization, food security, employment stability and ecosystem balance). In this study, an interval-probabilistic agricultural production structure optimization model (IPAPSOM) is formulated for tackling uncertainty presented as discrete intervals and/or probability distribution. The developed model improves upon the existing probabilistic programming and inexact optimization approaches. The IPAPSOM considers not only food security policy constraints, but also involves rural households’income increase and eco-environmental conversation, which can effectively reflect various interrelations among different aspects in an agricultural production structure optimization system. Moreover, it can also help examine the reliability of satisfying (or risk of violating) system constraints under uncertainty. The model is applied to a real case of long-term agricultural production structure optimization in Dancheng County, which is located in Henan Province of Central China as one of the major grain producing areas. Interval solutions associated with different risk levels of constraint violation are obtained. The results are useful for generating a range of decision alternatives under various system benefit conditions, and thus helping decision makers to identify the desired agricultural production structure optimization strategy under uncertainty. 展开更多
关键词 major grain producing areas agricultural production structure optimization interval-probabilistic programming food security farmers’income increase China
下载PDF
Effect of welding heat input on HAZ character in ultra-fine grain steel welding 被引量:3
12
作者 张富巨 许卫刚 +3 位作者 王玉涛 王燕 张学刚 廖永平 《China Welding》 EI CAS 2003年第2期122-127,共6页
In this essay, we studied how heat input affected the microstructure, hardness, grain size and heat-affected zone(HAZ) dimension of WCX355 ultra-fine grain steel which was welded respectively by the ultra narrow-gap w... In this essay, we studied how heat input affected the microstructure, hardness, grain size and heat-affected zone(HAZ) dimension of WCX355 ultra-fine grain steel which was welded respectively by the ultra narrow-gap welding (UNGW) process and the overlaying process with CO 2 as protective atmosphere and laser welding process. The experimental results show when the heat input changed from 1.65 kJ/cm to 5.93 kJ/cm, the width of its HAZ ranged from 0.6 mm to 2.1 mm.The average grain size grew up from 2~5 μm of base metal to 20~70 μm and found no obvious soften phenomenon in overheated zone. The width of normalized zone was generally wide as 2/3 as that of the whole HAZ, and the grain size in this zone is smaller than that in base metal. Under the circumstance of equal heat input, the HAZ width of UNGW is narrower than that of the laser welding. 展开更多
关键词 heat input heat-affected zone ultra-fine grain steel ultra narrow-gap welding
下载PDF
Extending the Lifetime of Copper-beryllium Alloys as Plastic Injection High-end Needle Valve Mold Nozzle Tips Through a Heat-treatment-based Microstructure Optimization Approach
13
作者 孟晓敏 ZHAO Dong MAJID Shaker 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第3期665-668,共4页
The relationship between the microstructure and the practical performance of two different copper-beryllium alloys including their lifetime has been investigated.Herein,two valves made of two different alloys with ver... The relationship between the microstructure and the practical performance of two different copper-beryllium alloys including their lifetime has been investigated.Herein,two valves made of two different alloys with very similar compositions and the same heat treatment methods were investigated by various standard techniques including metallography,X-ray diffraction,chemical composition,microhardness,and thermal conductivity measurements.Although both alloys experienced the same heat-treatment processes,they revealed different thermal and mechanical properties due to the minor difference in their chemical composition.The alloy providing a longer lifetime (40%more) as the tip had a higher thermal conductivity of 280.3 W(m·K)^(-1) (about two times that of the other alloy).Regarding the metallography images and the measured thermal conductivity values of the alloys,the extended lifetime of the nozzle with the optimum performance is ascribed to its biphasic microstructure and the minor grain boundaries and interfacial thermal resistance.And important difference in the chemical composition was investigated in this study. 展开更多
关键词 crystal structure grain boundaries metals and alloys thermal properties needle valve
下载PDF
Effect of grain boundary sliding on the toughness of ultrafine grain structure steel: A molecular dynamics simulation study 被引量:1
14
作者 谢红献 刘波 +1 位作者 殷福星 于涛 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第1期54-61,共8页
Molecular dynamics simulations are carried out to investigate the mechanisms of low-temperature impact toughness of the ultrafine grain structure steel. The simulation results suggest that the sliding of the {001 }/{ ... Molecular dynamics simulations are carried out to investigate the mechanisms of low-temperature impact toughness of the ultrafine grain structure steel. The simulation results suggest that the sliding of the {001 }/{ 110} type and { 110}/{ 111 } type grain boundary can improve the impact toughness. Then, the mechanism of grain boundary sliding is studied and it is found that the motion of dislocations along the grain boundary is the underlying cause of the grain boundary sliding. Finally, the sliding of the grain boundary is analyzed from the standpoint of the energy. We conclude that the measures which can increase the quantity of the {001}/{110} type and {110}/{ 111} type grain boundary and elongate the free gliding distance of dislocations along these grain boundaries will improve the low-temperature impact toughness of the ultrafine grain structure steel. 展开更多
关键词 molecular dynamics simulations grain boundary CRACK ultrafine grain structure steel
下载PDF
Effect of Initial Microstructure Prior to Extrusion on the Microstructure and Mechanical Properties of Extruded AZ80 Alloy with a Low Temperature and a Low Ratio
15
作者 Hang Zhang Haipeng Li +4 位作者 Rongguang Li Boshu Liu Ruizhi Wu Dongyue Zhao Shanshan Li 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第3期339-349,共11页
Magnesium(Mg)alloys are the lightest metal structural material for engineering applications and therefore have a wide market of applications.However,compared to steel and aluminum alloys,Mg alloys have lower mechanica... Magnesium(Mg)alloys are the lightest metal structural material for engineering applications and therefore have a wide market of applications.However,compared to steel and aluminum alloys,Mg alloys have lower mechanical properties,which greatly limits their application.Extrusion is one of the most important processing methods for Mg and its alloys.However,the effect of such a heterogeneous microstructure achieved at low temperatures on the mechanical properties is lacking investigation.In this work,commercial AZ80 alloys with different initial microstructures(as-cast and as-homogenized)were selected and extruded at a low extrusion temperature of 220℃and a low extrusion ratio of 4.The microstructure and mechanical properties of the two extruded AZ80 alloys were investigated.The results show that homogenized-extruded(HE)sample exhibits higher strength than the cast-extruded(CE)sample,which is mainly attributed to the high number density of fine dynamic precipitates and the high fraction of recrystallized ultrafine grains.Compared to the coarse compounds existing in CE sample,the fine dynamical precipitates of Mg17(Al,Zn)12form in the HE sample can effectively promote the dynamical recrystallization during extrusion,while they exhibit a similar effect on the size and orientation of the recrystallized grains.These results can facilitate the designing of high-strength wrought magnesium alloys by rational microstructure construction. 展开更多
关键词 Magnesium alloy Low temperature and low ratio extrusion Bimodal grain structure Dynamic precipitate Dynamic recrystallization
下载PDF
Microscopic Structures of Endosperms Before and After Gelatinization in Rice Varieties with Varied Grain Quality 被引量:1
16
作者 YANGZe-min WANGWei-jin +3 位作者 LANSheng-yin XUZhen-xiu ZHOUZhu-qing WA 《Agricultural Sciences in China》 CAS CSCD 2003年第1期113-118,F003,T002,共8页
The microscopic structures of the endosperm of indica rice varieties with different quality before and after gelatinization were observed using scanning electron microscope. The results showed that the degree of gelat... The microscopic structures of the endosperm of indica rice varieties with different quality before and after gelatinization were observed using scanning electron microscope. The results showed that the degree of gelatinization varied in different parts of the grain and in different varieties under the same experimental conditions. The gelatinization of dorsal side was the most complete. Its cells were decomposed totally into puff-like or flocculent materials. The ventral side gelatinized less thoroughly, appearing agglomerate and some cell frames were still visible. The middle part gelatinized most incompletely and the cells were still integrated. Evident differences in gelatinization were observed among different varieties, the dorsal, ventral and middle parts of high quality varieties gelatinized more thoroughly than those of the corresponding parts of low quality varieties respectively. An obvious concavity often appeared in the middle of the cross-section of the low quality grains while the cross-section of high quality grains was normally flat. The same phenomenon was noted when comparing the early maturing indica rice and the late maturing indica rice. Varietal difference of gelatinization in dorsal sides was not as distinct as in middle parts and ventral sides. The difference among dorsal side, middle part and ventral side in gelatinization was greater in low quality grains than that of high quality grains. In addition, a lot of ruptured cells were observed in the cross-section of high quality rice, while few of them could be found in the low quality rice. Apparently, the number of ruptured cells is positively correlated with rice quality. Quality of rice grain also has positive correlation with the rate of water absorption and extension. High rates of water absorption and extension lead to better gelatinization of rice grain, and hence indicate good quality. 展开更多
关键词 Indica rice grain quality GELATINIZATION Microscopic structure
下载PDF
Effect of long-period stacking ordered structure on very high cycle fatigue properties of Mg-Gd-Y-Zn-Zr alloys
17
作者 Xiangyu WANG Chao HE +3 位作者 Xue Li Lang LI Yongjie LIU Qingyuan WANG 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第8期2811-2822,共12页
Magnesium alloys with a long-period stacking ordered(LPSO)structure usually possess excellent static strength,but their fatigue behaviors are poorly understood.This work presents the effect of the LPSO structure on th... Magnesium alloys with a long-period stacking ordered(LPSO)structure usually possess excellent static strength,but their fatigue behaviors are poorly understood.This work presents the effect of the LPSO structure on the crack behaviors of Mg alloys in a very high cycle fatigue(VHCF)regime.The LPSO lamellas lead to a facet-like cracking process along the basal planes at the crack initiation site and strongly prohibit the early crack propagation by deflecting the growth direction.The stress intensity factor at the periphery of the faceted area is much higher than the conventional LPSO-free Mg alloys,contributing higher fatigue crack propagation threshold of LPSO-containing Mg alloys.Microstructure observation at the facets reveals a layer of ultrafine grains at the fracture surface due to the cyclic contact of the crack surface,which supports the numerous cyclic pressing model describing the VHCF crack initiation behavior. 展开更多
关键词 Fatigue crack initiation Long-period stacking ordered structure Mg alloys Ultrafine grains Very high cycle fatigue
下载PDF
Microstructure and Mechanical Properties of Ultrafine Grained Mg15Al Alloy Processed by Equal-channel Angular Pressing 被引量:1
18
作者 王红霞 梁伟 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2010年第2期238-242,共5页
An as-cast magnesium alloy with high Al content Mg15Al was subjected to equal-channel angular pressing (ECAP) through a die with an angle of φ= 90? at 553 K following route Bc. It is found that the network β-Mg17... An as-cast magnesium alloy with high Al content Mg15Al was subjected to equal-channel angular pressing (ECAP) through a die with an angle of φ= 90? at 553 K following route Bc. It is found that the network β-Mg17Al12 phases in the as-cast Mg15Al alloy are broken into small blocks and dispersed uniformly with increasing numbers of pressing passes. Moreover, many nano-sized Mg17Al12 particles precipitate in the ultra-fine α-Mg matrix. The grains are obviously refined. However, the grain structure is inhomogeneous in different areas of the alloy. The average size of the primary phase α-Mg is reduced to about 1 μm while grains of around 0.1-0.2 μm are obtained in some two-phase areas. With additional ECAP passes (up to 8), coarsening of the grains occurs by dynamic recovery. Room temperature tensile tests show that the mechanical properties of Mg15Al alloys are markedly improved after 4 ECAP passes. The ultimate tensile strength and elongation to failure increase from 150 MPa to 269.3 MPa and from 0.05% to 7.4%, respectively. Compared with that after 4 passes, the elongation to failure of the alloy increases but the strength of the alloy slightly decreases after 8 ECAP passes. Fracture morphology of the ECAP-processed alloy exhibits dimple-like fracture characteristics while the as-cast alloy shows quasi-cleavage fractures. 展开更多
关键词 high-aluminum Mg Alloy β-Mg17Al12 phase ultra-fine grained microstructure mechanical properties equal-channel angular pressing
下载PDF
Atomic-scale simulation of nano-grains:structure and diffusion properties 被引量:1
19
作者 WEN Yu-hua CHEN Zheng-zheng +1 位作者 WANG Chong-yu ZHU Ru-zeng 《原子与分子物理学报》 CAS CSCD 北大核心 2003年第2期149-152,共4页
Nanograins are characterized by a typical grain size from 1 to 100 nm. Molecular dynamics simulations have been carried out for the nanograin sphere with the diameters from 1.45 to 10.12 nm. We study the influence of ... Nanograins are characterized by a typical grain size from 1 to 100 nm. Molecular dynamics simulations have been carried out for the nanograin sphere with the diameters from 1.45 to 10.12 nm. We study the influence of grain size on structure and diffusion properties of the nanograins. The results reveal that as the grain size is reduced, the fraction of grain surface increases significantly, and the surface width is approximately constant; the mean atomic energy of the surface increases distinctly, but that of the grain interior varies insignificantly; the diffusion coefficient is increased sharply, and the relation of the diffusion coefficient and the grain size is close to exponential relation below 10 nm. 展开更多
关键词 Nano grain structure Diffustion property Molecular dynamics simulation
下载PDF
Structure and Magnetic Properties of Fe_(76.5)Si_(13.5)B_9Cu_1 Alloy with Nanoscale Grain Size 被引量:1
20
作者 Fei ZHOU Kaiyuan HE Lizhi CHENG and Zuhan LAI(Dept. of Materials Science and Engineering, Northeastern University, Shenyang, 110006, China)( Dept. of Phys., Northeastern University) 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1994年第6期430-434,共5页
The structure and magnetic properties of Fe76.5Si13.5B9Cu1 alloys with a nanocrystalline (NC) bcc Fe(Si) phase trom about 23 to 46 nm in diameter, which were first formed into amorphous ribbons and then annealed at va... The structure and magnetic properties of Fe76.5Si13.5B9Cu1 alloys with a nanocrystalline (NC) bcc Fe(Si) phase trom about 23 to 46 nm in diameter, which were first formed into amorphous ribbons and then annealed at various temperatures between 703 and 773 K, have been investigated. At annealing temperatures from 703 to 748 K, the single NC bcc(Si) phase is obtained in the crystallized alloys. The grain size and the Si-content in the NC bcc Fe(Si) phase for the alloys annealed at different temperatures are presented. The soft magnetic properties and the saturation magnetostriction for the alloys with the NC bcc Fe(Si) phase are also measured. The results show that, the saturation magnetizotion and the permeability are improved for the alloys with only the NC bcc Fe(Si) phase and become better with decreasing of the NC bcc phase size, and the saturation magnetostriction declines for the alloys with increasing Si-content in the NC bcc Fe(Si) phase. 展开更多
关键词 SI structure and Magnetic Properties of Fe B9Cu1 Alloy with Nanoscale grain Size Cu
下载PDF
上一页 1 2 94 下一页 到第
使用帮助 返回顶部