Tests of the candidate plasma facing materials(PFMs) used in experimental fusion devices are essential due to the direct influence of in-situ plasma loading.A type of ultrafine grained(UFG) tungsten sintered by re...Tests of the candidate plasma facing materials(PFMs) used in experimental fusion devices are essential due to the direct influence of in-situ plasma loading.A type of ultrafine grained(UFG) tungsten sintered by resistance sintering under ultra-high pressure(RSUHP) method has been exposed in the edge plasma of the HT-7 tokamak to investigate its performance under plasma loading.Under cychc edge plasma loading,the UFG tungsten develops both macro and micro cracks.The macro cracks are attributed to the low temperature brittleness of the tungsten material itself,while the micro cracks are generated from local intense power flux deposition.展开更多
Experiment about ultrafine comminution in theory of vertiginous current of bulk material has successfully performed by a lately developed vertical shaft centrifugal autogenous grinder. The results of tested several ma...Experiment about ultrafine comminution in theory of vertiginous current of bulk material has successfully performed by a lately developed vertical shaft centrifugal autogenous grinder. The results of tested several materials are analyzed, moreover. the comminution mechanism and the affecting factors of ultrafine comminution are analyzed.展开更多
This paper reports a novel method of repetitive uniaxial compression combined with accumulative fold for preparing bulk submicron- to nanocrystalline copper starting with a coarse grained counterpart. Grain size reduc...This paper reports a novel method of repetitive uniaxial compression combined with accumulative fold for preparing bulk submicron- to nanocrystalline copper starting with a coarse grained counterpart. Grain size reduction and microstrain variations of the high purity copper samples after different passes of compression and fold are investigated by scanning electron microscope and x-ray diffraction (XRD), respectively. Our results show that the average grain size of samples decreases from about 830 nm to 127 nm as the number of compression passes increases to 30. Microstrain in the compressed sample is found to increase for the first 20 passes, but to decrease at the last 10 passes. The variations of compressive yield strength and the shift of XRD peaks to larger diffraction angles are observed in the squeezed sample. Our experimental results demonstrate that the repetitive uniaxial compression combined with accumulative fold is an effective method to prepare bulk nanocrystalline metallic materials, in particular for soft metals such as Cu, Al and Pb.展开更多
基金supported by the Key Project of Chinese Academy of Sciences(No.KJCX2-YW-N35)National Natural Science Foundation of China(No.11175205)
文摘Tests of the candidate plasma facing materials(PFMs) used in experimental fusion devices are essential due to the direct influence of in-situ plasma loading.A type of ultrafine grained(UFG) tungsten sintered by resistance sintering under ultra-high pressure(RSUHP) method has been exposed in the edge plasma of the HT-7 tokamak to investigate its performance under plasma loading.Under cychc edge plasma loading,the UFG tungsten develops both macro and micro cracks.The macro cracks are attributed to the low temperature brittleness of the tungsten material itself,while the micro cracks are generated from local intense power flux deposition.
文摘Experiment about ultrafine comminution in theory of vertiginous current of bulk material has successfully performed by a lately developed vertical shaft centrifugal autogenous grinder. The results of tested several materials are analyzed, moreover. the comminution mechanism and the affecting factors of ultrafine comminution are analyzed.
基金supported by the National Natural Science Foundation of China (Grant No 50572067)
文摘This paper reports a novel method of repetitive uniaxial compression combined with accumulative fold for preparing bulk submicron- to nanocrystalline copper starting with a coarse grained counterpart. Grain size reduction and microstrain variations of the high purity copper samples after different passes of compression and fold are investigated by scanning electron microscope and x-ray diffraction (XRD), respectively. Our results show that the average grain size of samples decreases from about 830 nm to 127 nm as the number of compression passes increases to 30. Microstrain in the compressed sample is found to increase for the first 20 passes, but to decrease at the last 10 passes. The variations of compressive yield strength and the shift of XRD peaks to larger diffraction angles are observed in the squeezed sample. Our experimental results demonstrate that the repetitive uniaxial compression combined with accumulative fold is an effective method to prepare bulk nanocrystalline metallic materials, in particular for soft metals such as Cu, Al and Pb.
基金International Cooperation Project Foundation of Jiangsu Province,China(BZ2006018)the Science and Technology Project Foundation of Changzhou,China(CZ2006008)~~