Aiming at improving the properties of magnesia carbon materials,silicon aluminum carbide(Al_(4)SiC_(4))containing materials were prepared using industrial aluminum powder,silicon carbide powder,and graphite as raw mat...Aiming at improving the properties of magnesia carbon materials,silicon aluminum carbide(Al_(4)SiC_(4))containing materials were prepared using industrial aluminum powder,silicon carbide powder,and graphite as raw materials,and activated alumina powder as an additive,mixing thoroughly,pressing into cylinders and then firing at 1200℃for 30 min in a carbon embedded atmosphere by the microwave method.The effects of the aluminum powder addition(20%and 24%,by mass)and activated alumina powder addition(0,3%,5%and 7%,by mass)on the microwave synthesis of Al_(4)SiC_(4) as well as the effect of the obtained Al_(4)SiC_(4) containing material on the properties of magnesia carbon bricks were studied.The results show that:compared with the samples with 20%aluminum powder,those with 24%aluminum powder generate more Al_(4)SiC_(4).With the activated alumina powder addition increasing from 0 to 7%,the amount of Al_(4)SiC_(4) generated increases first and then decreases.Compared with the sample without activated alumina powder,the samples with activated alumina powder show lower bulk density and higher apparent porosity.With the activated alumina powder addition increasing from 3%to 7%,the bulk density of the samples increases first and then decreases,while the apparent porosity of the samples shows an opposite trend.The optimal additions are 24%aluminum powder and 5%activated alumina powder,and Al_(4)SiC_(4) synthesized in this sample has a hexagonal plate structure.With the synthesized Al_(4)SiC_(4) containing material added,the magnesia carbon brick has slightly increased cold modulus of rupture,basically the same modulus of elasticity and improved oxidation resistance.展开更多
Conventional mechanical method and mechanical method combined with vacuum freeze-drying technology were used to make the ultra-fine powders of edible fungus (Auricularia auricular). The content of basic nutrients, ami...Conventional mechanical method and mechanical method combined with vacuum freeze-drying technology were used to make the ultra-fine powders of edible fungus (Auricularia auricular). The content of basic nutrients, amino acid, micro structure and their properties of raw edible fungus and the edible fungus powders obtained with the two methods were analyzed and compared. The granularity size and micro-structure of the pulverized samples were analyzed by SEM and TEM technology. The average granularity size of the edible fungus powder obtained with mechanical method was 1–5 μm, while that obtained with mechanical method combined with vacuum freeze-drying process was 0.5–1 μm. The ultra-fine powders of edible fungus obtained with the two methods had better water recovery capability and quality, and their preserving time was longer than that of raw edible fungus. All the properties of the ultra-fine powders of edible fungus obtained with the vacuum freeze-drying technology were evidently superior to that of the conventional mechanical method. Keywords Auricularia auricula - Edible fungus - Ultra-fine powders - Vacuum freeze-drying CLC number TS205 Document code B Biography: YANG Chun-yu (1975), female, Ph. D. in Engineering Technology Center of Forestry and Wood Workine, Machinery, Northeast Forestry University, Harbin 150040, P. R. China.Responsible editor: Zhu Hong展开更多
Cerium carbonate powders were produced in a submerged circulation impinging stream reactor (SCISR) from Ce(NO3)3· 6H2O. NH4HCO3 was used as a precipitant in the reaction. Cerium carbonate powders were roasted...Cerium carbonate powders were produced in a submerged circulation impinging stream reactor (SCISR) from Ce(NO3)3· 6H2O. NH4HCO3 was used as a precipitant in the reaction. Cerium carbonate powders were roasted to produce ultra-fine cerium dioxide (CeO2) powders. The optimal conditions of such production process were obtained by orthogonal and one-factor experiments. The results showed that ultra-fine and narrowly distributed cerium carbonate powders were produced under the optimal flowing conditions. The concentrations of Ce(NO3)3 and NH4HCO3 solutions were 02,5 and 0.3 mol · L^-1, respectively. The concentration of PEG4000 added in these two solutions was 4 g · L^-1. The stirring ratio, reaction temperature, feeding time, solution pH, reaction time and digestion time were 900 r · min^- 1,80 ℃, 20 min, 5 - 6, 5 min and 1 h, respectively. The final product, CeO2 powders, was obtained by roasting the produced cerium carbonate in air for 3 h at 500 ℃. The finally produced CeO2 powders were torispherical particles with a narrow size distribution of 0.8 -2.5 μm. The crystal structure of CeO2 powders belonged to cubic crystal system and its space point 5 group was OH^5-FM3M. Under optimal conditions, powders produced by SCISR were finer and more narrowly distributed than that by Stirred Tank Reactor (STR).展开更多
Dynamic rheological characteristics of polypropylene (PP) filled with ultra-fine full-vulcanized powdered rubber (UFPR) composed of styrene-butadiene copolymer were studied through dynamic rheological measurements on ...Dynamic rheological characteristics of polypropylene (PP) filled with ultra-fine full-vulcanized powdered rubber (UFPR) composed of styrene-butadiene copolymer were studied through dynamic rheological measurements on an Advanced Rheometric Expansion System (ARES). A specific viscoelastic phenomenon, i.e. 'the second plateau', appeared at low frequencies, and exhibits a certain dependence on the amount of rubber particles and the dispersion state in the matrix. This phenomenon is attributed to the formation of aggregation structure of rubber particles. The analyses of Cole-Cole diagrams of the dynamic viscoelastic functions suggest that the heterogeneity of the composites is enhanced on increasing both particle content and temperature.展开更多
This paper presents a new method of modifying sodium silicate binder with ultra-fine powders. The sodium silicate binder modified by ultra-fine powder A and the organic B can reduce the addition amount of the binder. ...This paper presents a new method of modifying sodium silicate binder with ultra-fine powders. The sodium silicate binder modified by ultra-fine powder A and the organic B can reduce the addition amount of the binder. The results indicate that the 24 h strength has increased by 39.9% at room temperature and the residual strength has decreased by 30.7% at 800℃, compared to the conventional sodium silicate. An available material to improve the moisture resistance was also found by adding about 2% more inorganic C, and it can increase the moist strength by 20%. In the end, the microanalyses are given to explain the modifying machanism, i. e., the ultra-fine powder A can refine the sodium silicate binder to avoid holes in the binder bond, which can increase the 24 h strength at room temperture, and can lead to more cracks in the bond after the molding sand is heated to 800℃. This is because of the stress caused by the new eutectic complex of modified sodium silicate binder.展开更多
The ultra-fine chromic oxide powder was prepared by a novel gas-solid reduction reaction.Na2CrO4 was firstly reduced with hydrogen at 400-600 ℃.The obtained reduction products,mainly the mixture of NaCrO2 and sodium ...The ultra-fine chromic oxide powder was prepared by a novel gas-solid reduction reaction.Na2CrO4 was firstly reduced with hydrogen at 400-600 ℃.The obtained reduction products,mainly the mixture of NaCrO2 and sodium hydroxide(NaOH),were converted into chromic oxide through hydrolysis followed by calcination.The obtained chromic oxide product was characterized by powder X-ray diffraction(XRD) and SEM.The results show that the hydrolysis process of sodium chromite is the key step and lower reduction temperature helps intensify the hydrolysis process.展开更多
In this study, three kinds of modified ultra-fine ceramic powders marked A, B and C, which were prepared by each of three different modifiers mixing with a commercial SiC, were added to HT250 cast iron, respectively, ...In this study, three kinds of modified ultra-fine ceramic powders marked A, B and C, which were prepared by each of three different modifiers mixing with a commercial SiC, were added to HT250 cast iron, respectively, and the effects of the modified ultra-fine ceramic powders on microstructure, mechanical properties and wear resistance were studied. Metallographic examination, tensile test, scanning electron microscopy, and three-dimensional surface topography were applied to analyze and compare the samples containing modified powder with the original samples. The results showed that the most obvious modification effect among the powders was seen in the sample containing powder A, with the graphite and eutectic cells being refined, the tensile strength being increased by 36.9%, and the wear resistance being improved by 45.5% and 47.2% under loads of 150 N and 300 N, respectively. The improvements of mechanical properties and wear resistance in the HT250 cast iron with the modified ultra-fine ceramic powders were attributed to the synergistic effect of the grain refinement with the powder acting as a hard particle phase and the lubrication by the graphite.展开更多
Coating modification is an important way to enhance the reactivity of aluminum powder.In this paper,ammonium perchlorate and aluminum powder were assembled into energetic microunits by liquid deposition method.Spheric...Coating modification is an important way to enhance the reactivity of aluminum powder.In this paper,ammonium perchlorate and aluminum powder were assembled into energetic microunits by liquid deposition method.Spherical particles with AP as shell and ultrafine aluminum powder as the core(Al@AP)were gained.The micromorphology results show that the coated particles are about 5μm,and the coating layer is evenly distributed on the outer surface of aluminum powder,indicating a complete coating.The energetic microunits were implanted into the nitrate ester plasticizing adhesive system(NEPE)as solid phase fillers.The effect of filler on the rheological properties,safety,mechanical properties,thermal reaction and energy properties of the system was analyzed by comparing with the raw aluminum filler.The test results show that the rheological properties,mechanical properties and pressure index of NEPE containing system Al@AP meets the requirements of solid propellant charging.Compared with Al based propellant,the mechanical sensitivity and thermal sensitivity are decreased,the safety is better,and the explosion heat of the propellant is increased by 7.8%.The engine test shows that the specific impulse is increased by 1.2 s.Al@AP can improve the energy output and safety of NEPE propellant,and has potential application prospects in high-energy propellants.展开更多
The preparation of ultra-fine particles of salbutamol sulphate (SS) was accomplished with a reactive precipitation pathway, in which salbutamol and sulphuric acid were Used as reactants with the solvents of ethanol....The preparation of ultra-fine particles of salbutamol sulphate (SS) was accomplished with a reactive precipitation pathway, in which salbutamol and sulphuric acid were Used as reactants with the solvents of ethanol.The effects of sulphuric acid concentration, reaction temperature, stirring rate, and reaction time onthesize of the particle were investigated. A binary mixture composed of lactose and SS was prepared to evaluate SS. The results showed that ultra-fine SS particles with controlled diameters ranging between 3 μm and 0.8 μm and with a narrow distribution could be achieved. The morphology consisting of clubbed particles wassuccess.fully obtained. The purity of the particles reached above 98% with-UV detection. The dose- of dry powder inhalation was obtained by blending the particles with recrystallized lactose, which acted as a carrier. The deposition quantity of the drug in breathing tract was estimated using a twin imPinger apparatus. Compared with the Shapuer powder (purchased in the market), the results showed that SS_particles had more quantifies.subsided in simulative lung.. _展开更多
Ultra-fine aluminum nitride has been synthesized by the evaporation of aluminum powder at atmospheric-pressure nitrogen plasma in a hot-wall reactor. The average size of aluminum nitride particle is 0.11 μm measured ...Ultra-fine aluminum nitride has been synthesized by the evaporation of aluminum powder at atmospheric-pressure nitrogen plasma in a hot-wall reactor. The average size of aluminum nitride particle is 0.11 μm measured by scanning electric mirror (SEM), and the purity is at least over 90% evaluated by X-Ray diffraction (XRD). The conversion of Al powder to aluminum nitride is strongly depended on the injection of NH3. Typical experimental parameters such as the feed rate of raw material, the flow rate of ammonia and the position of injecting aluminum powder into the reactor are given.展开更多
In comparison with the conventional equal channel angular pressing(ECAP) process,a comprehensive study of influence of twist extrusion(TE) process on consolidating pure aluminum powder in tubes(PITs) by equal ch...In comparison with the conventional equal channel angular pressing(ECAP) process,a comprehensive study of influence of twist extrusion(TE) process on consolidating pure aluminum powder in tubes(PITs) by equal channel angular pressing and torsion(ECAPT) was conducted via three-dimensional(3D) finite element simulation,experimental investigation and theoretical analysis.Simulation results revealed that during the consolidation of aluminum powder particles by ECAPT,TE process played a significant role of back pressure.Due to the torsional shear and high hydrostatic pressure exerted by twist channel,both the magnitude and homogeneity of the effective strain were increased markedly.After one pass of ECAPT process using a square channel with an inner angle of 90° and a twist slope angle of 36.5° at 200℃,commercial pure aluminum powder particles were successfully consolidated to nearly full density.Simulation and experimental results showed good agreement.In the microstructure observations,grains were greatly refined.At the same time,porosities were effectively eliminated by shrinking in size and breaking into small ones.Microhardness test indicated that strain distribution of ECAPT-processed billet was more homogeneous with respect to the ECAP-processed one.All these improvements may be attributed to the extreme intense shear strain induced during ECAPT and the increase in self-diffusion coefficient of aluminum due to the back pressure exerted by TE process.展开更多
A new processing technology,powder thixoforming,for preparation of particle reinforced metal matrix composites was proposed and 6061 aluminum alloy was prepared by powder thixoforging.6061 ingots were first prepared b...A new processing technology,powder thixoforming,for preparation of particle reinforced metal matrix composites was proposed and 6061 aluminum alloy was prepared by powder thixoforging.6061 ingots were first prepared by cold-pressing the atomized 6061 alloy powders,and then the ingots were partially remelted followed by thixoforging.The effects of reheating time,mould temperature and reheating temperature on microstructure and mechanical properties of the thixoforged alloys were investigated.The results indicate that all of the three parameters have large effects on the microstructure and mechanical properties.Owing to the microstructure changes,the fracture regime varies with the processing parameters.Furthermore,cracks always initiate from shrinkage porosities and inclusions,and then propagate either along the secondarily solidified structures or primary particles.The ultimate tensile strength,elongation and hardness of the resulting alloy are up to 196 MPa,11.0%and HV 55.7 respectively.展开更多
The effect of ball milling on the microstructural evolution was investigated during partial remelting of 6061 aluminum alloy prepared by cold-pressing of atomized alloy powders.The results indicate that the microstruc...The effect of ball milling on the microstructural evolution was investigated during partial remelting of 6061 aluminum alloy prepared by cold-pressing of atomized alloy powders.The results indicate that the microstructural evolution of 6061 aluminum alloy can be divided into three stages,the dissolution of eutectic phases and the coarsening and growth behavior of the resulting grains,structural separation and spheroidization of primary particles,and the final coarsening behavior of the particles.Compared with the alloy without ball milling,ball milling accelerates the first stage of microstructural evolution due to the energy stored in the powders,but the latter two stages are slowed down because of the formation of large-sized powders.Moreover,the finer the as-cold-pressed microstructure is,the smaller and more spherical the primary particles in the final semisolid microstructure are.Furthermore,properly elevating the heating temperature is beneficial for obtaining small and spheroidal particles.展开更多
The homogeneously dispersed, less agglomerated (Nd0.01Y0.99)3Al5O12 nano-sized powders were synthesized by the low temperature combustion (LCS), using Nd2O3, Y2O3, Al(NO3)3·9H2O, ammonia water and citric acid as ...The homogeneously dispersed, less agglomerated (Nd0.01Y0.99)3Al5O12 nano-sized powders were synthesized by the low temperature combustion (LCS), using Nd2O3, Y2O3, Al(NO3)3·9H2O, ammonia water and citric acid as starting materials. This method effectively solves the problems caused by solid-state reaction at high temperature and hard agglomerates brought by the chemical precipitation method. The powders were characterized by TG-DTA, XRD, FT-IR, TEM respectively and the photoluminescence (PL) spectra of (Nd0.01Y0.99)3Al5O12 green and sintered ceramic disks were measured. The results show that the forming temperature of YAG crystal phase is 850 ℃ and YAP crystal phase appearing during the calcinations transforms to pure YAG at 1050 ℃. The particle size of the powders synthesized by the LCS is in a range of 20~50 nm depending on the thermal treatment temperatures. The effectively induced cross section (σin) with the value 4.03×10-19 cm2 of (Nd0.01Y0.99)3Al5O12 ceramics is about 44% higher than that of single crystal.展开更多
A new technique, powder compact foaming process for the production of aluminumfoams has been studied in this article. According to this method, the aluminum pow-der is mixed with a powder foaming agent (TiH_2). Subseq...A new technique, powder compact foaming process for the production of aluminumfoams has been studied in this article. According to this method, the aluminum pow-der is mixed with a powder foaming agent (TiH_2). Subsequent to mixing, the powderblend is hot compacted to obtain a dense semi--finished product. Upon heating to tem-peratures within the range of the melting point, the foaming agent decomposes to evolvegas and the semi--finished product expands into a porous cellular aluminum. Foamingprocess is the key in this method. Based on experiments, the foaming characteris-tics were mainly analyzed and discussed. Experiments show that the aluminum--foamwith closed pores and a uniform cell structure of high porosity can be obtained usingthis method by adjusting the foaming parameters: the content of foaming agent andfoaming temperature.展开更多
Semi open-cell aluminum foams having channels between individual cells were produced using low cost CaCO3foamingagent and applying the powder compact melting process.To this end,the aluminum and CaCO3powder mixtures w...Semi open-cell aluminum foams having channels between individual cells were produced using low cost CaCO3foamingagent and applying the powder compact melting process.To this end,the aluminum and CaCO3powder mixtures were coldcompacted into dense cylindrical precursors for foaming at specific temperatures under air atmosphere.The effects of severalparameters including precursor compaction pressure,foaming agent content as well as temperature and time of the foaming processon the cell microstructure,linear expansion,relative density and compressive properties were investigated.A uniform distribution ofcells with sizes less than100μm,which form semi open-cell structures with relative densities in the range of55.4%-84.4%,wasobtained.The elevation of compaction pressure between127-318MPa and blowing agent up to15%(mass fraction)led to anincrease in the linear expansion,compressive strength and densification strain.By varying the foaming temperature from800to1000°C,all of the investigated parameters increased except compressive strength and relative density.The results indicated theoptimal foaming temperature and time as900°C and10-25min,respectively.展开更多
Tetraethylenepentamine(C8H23N5,TEPA) has been used as a novel precipitant to synthesize yttrium aluminum garnet(Y3Al5O12,YAG) precursor from a mixed solution of aluminum and yttrium nitrates via a normal-strike co-pre...Tetraethylenepentamine(C8H23N5,TEPA) has been used as a novel precipitant to synthesize yttrium aluminum garnet(Y3Al5O12,YAG) precursor from a mixed solution of aluminum and yttrium nitrates via a normal-strike co-precipitation method without controlling the pH value during precipitation process.The original precursor was analyzed by thermogravimetry/differential scanning calorimetry(TG/DSC).The evolution of phase composition and micro-structure of the as-synthesized YAG powders were characterized by X-ray ...展开更多
High-temperature ignition is essential for the ignition and combustion of energetic metal fuels, including aluminum and magnesium particles which are protected by their high- melting-temperature oxides. A plasma torch...High-temperature ignition is essential for the ignition and combustion of energetic metal fuels, including aluminum and magnesium particles which are protected by their high- melting-temperature oxides. A plasma torch characterized by an ultrahigh-temperature plasma plume fulfills such high-temperature ignition conditions. A new steam plasma igniter is designed and successfully validated by aluminum power ignition and combustion tests. The steam plasma rapidly stabilizes in both plasma and steam jet modes. Parametric investigation of the steam plasma jet is conducted in terms of arc strength. A high-speed camera and an oscilloscope method visualize the discharge characteristics, and optical emission spectroscopy measures the thermochemical properties of the plasma jet. The diatomic molecule OH fitting method, the Boltzmann plot method, and short exposure capturing with an intensified charge coupled device record the axial distributions of the rotational gas temperature, excitation temperature, and OH radical distribution, respectively. The excitation temperature at the nozzle tip is near 5500 K, and the gas temperature is 5400 K.展开更多
Ultra-fine CeO_2-ZrO_2 mixed oxide was successfully synthesized by wet-solid phase mechanochemical processing, Ce_2(CO_3)_3·8H_2O, ZrOCl_2·xH_2O and ammonia were used as reactants. It is found that the cryst...Ultra-fine CeO_2-ZrO_2 mixed oxide was successfully synthesized by wet-solid phase mechanochemical processing, Ce_2(CO_3)_3·8H_2O, ZrOCl_2·xH_2O and ammonia were used as reactants. It is found that the crystalline Ce_2(CO_3)_3·8H_2O and ZrOCl_2·xH_2O are changed to amorphous cerium and zirconium hydroxide precursor after milling with ammonia, and Ce_(0.15)Zr_(0.85)O_2 mixed oxide with pure tetragonal phase structure and medium particle size(D_(50))less than 1μm is formed by calcining precursor over 673 K. The XRD patterns indicate that the crystal unite size increases with rising calcining temperature due to crystal growth. However, the particle size and BET surface area of the Ce(Zr)O_2 mixed oxide decreases with rising calcining temperature, which may be attributed to the contract of particles and the vanish of holes inside grains.展开更多
基金This work was funded by Luoyang Major Science and Technology Innovation Project(2301009A)Henan Province Key ResearchandDevelopment Project(231111230200).
文摘Aiming at improving the properties of magnesia carbon materials,silicon aluminum carbide(Al_(4)SiC_(4))containing materials were prepared using industrial aluminum powder,silicon carbide powder,and graphite as raw materials,and activated alumina powder as an additive,mixing thoroughly,pressing into cylinders and then firing at 1200℃for 30 min in a carbon embedded atmosphere by the microwave method.The effects of the aluminum powder addition(20%and 24%,by mass)and activated alumina powder addition(0,3%,5%and 7%,by mass)on the microwave synthesis of Al_(4)SiC_(4) as well as the effect of the obtained Al_(4)SiC_(4) containing material on the properties of magnesia carbon bricks were studied.The results show that:compared with the samples with 20%aluminum powder,those with 24%aluminum powder generate more Al_(4)SiC_(4).With the activated alumina powder addition increasing from 0 to 7%,the amount of Al_(4)SiC_(4) generated increases first and then decreases.Compared with the sample without activated alumina powder,the samples with activated alumina powder show lower bulk density and higher apparent porosity.With the activated alumina powder addition increasing from 3%to 7%,the bulk density of the samples increases first and then decreases,while the apparent porosity of the samples shows an opposite trend.The optimal additions are 24%aluminum powder and 5%activated alumina powder,and Al_(4)SiC_(4) synthesized in this sample has a hexagonal plate structure.With the synthesized Al_(4)SiC_(4) containing material added,the magnesia carbon brick has slightly increased cold modulus of rupture,basically the same modulus of elasticity and improved oxidation resistance.
文摘Conventional mechanical method and mechanical method combined with vacuum freeze-drying technology were used to make the ultra-fine powders of edible fungus (Auricularia auricular). The content of basic nutrients, amino acid, micro structure and their properties of raw edible fungus and the edible fungus powders obtained with the two methods were analyzed and compared. The granularity size and micro-structure of the pulverized samples were analyzed by SEM and TEM technology. The average granularity size of the edible fungus powder obtained with mechanical method was 1–5 μm, while that obtained with mechanical method combined with vacuum freeze-drying process was 0.5–1 μm. The ultra-fine powders of edible fungus obtained with the two methods had better water recovery capability and quality, and their preserving time was longer than that of raw edible fungus. All the properties of the ultra-fine powders of edible fungus obtained with the vacuum freeze-drying technology were evidently superior to that of the conventional mechanical method. Keywords Auricularia auricula - Edible fungus - Ultra-fine powders - Vacuum freeze-drying CLC number TS205 Document code B Biography: YANG Chun-yu (1975), female, Ph. D. in Engineering Technology Center of Forestry and Wood Workine, Machinery, Northeast Forestry University, Harbin 150040, P. R. China.Responsible editor: Zhu Hong
基金Project supported by the National Natural Science Foundation of China (50474022 and 50574069 )
文摘Cerium carbonate powders were produced in a submerged circulation impinging stream reactor (SCISR) from Ce(NO3)3· 6H2O. NH4HCO3 was used as a precipitant in the reaction. Cerium carbonate powders were roasted to produce ultra-fine cerium dioxide (CeO2) powders. The optimal conditions of such production process were obtained by orthogonal and one-factor experiments. The results showed that ultra-fine and narrowly distributed cerium carbonate powders were produced under the optimal flowing conditions. The concentrations of Ce(NO3)3 and NH4HCO3 solutions were 02,5 and 0.3 mol · L^-1, respectively. The concentration of PEG4000 added in these two solutions was 4 g · L^-1. The stirring ratio, reaction temperature, feeding time, solution pH, reaction time and digestion time were 900 r · min^- 1,80 ℃, 20 min, 5 - 6, 5 min and 1 h, respectively. The final product, CeO2 powders, was obtained by roasting the produced cerium carbonate in air for 3 h at 500 ℃. The finally produced CeO2 powders were torispherical particles with a narrow size distribution of 0.8 -2.5 μm. The crystal structure of CeO2 powders belonged to cubic crystal system and its space point 5 group was OH^5-FM3M. Under optimal conditions, powders produced by SCISR were finer and more narrowly distributed than that by Stirred Tank Reactor (STR).
基金This work was supported by the National Science Fund for Distinguished Young Scholars of China (No.50125312) andSpecial Funds for Major State Basic Research Projects (No.G1999064800).
文摘Dynamic rheological characteristics of polypropylene (PP) filled with ultra-fine full-vulcanized powdered rubber (UFPR) composed of styrene-butadiene copolymer were studied through dynamic rheological measurements on an Advanced Rheometric Expansion System (ARES). A specific viscoelastic phenomenon, i.e. 'the second plateau', appeared at low frequencies, and exhibits a certain dependence on the amount of rubber particles and the dispersion state in the matrix. This phenomenon is attributed to the formation of aggregation structure of rubber particles. The analyses of Cole-Cole diagrams of the dynamic viscoelastic functions suggest that the heterogeneity of the composites is enhanced on increasing both particle content and temperature.
基金The subject is supported by National Natural Science Fundof China: 50575085.
文摘This paper presents a new method of modifying sodium silicate binder with ultra-fine powders. The sodium silicate binder modified by ultra-fine powder A and the organic B can reduce the addition amount of the binder. The results indicate that the 24 h strength has increased by 39.9% at room temperature and the residual strength has decreased by 30.7% at 800℃, compared to the conventional sodium silicate. An available material to improve the moisture resistance was also found by adding about 2% more inorganic C, and it can increase the moist strength by 20%. In the end, the microanalyses are given to explain the modifying machanism, i. e., the ultra-fine powder A can refine the sodium silicate binder to avoid holes in the binder bond, which can increase the 24 h strength at room temperture, and can lead to more cracks in the bond after the molding sand is heated to 800℃. This is because of the stress caused by the new eutectic complex of modified sodium silicate binder.
基金Funded by the Key Program Project of the National Natural Science Foundation of China (No.50234040)the Major Project of the Knowledge Innovation Program of the Chinese Academy of Sciences (No.KCCX1-SW-22)
文摘The ultra-fine chromic oxide powder was prepared by a novel gas-solid reduction reaction.Na2CrO4 was firstly reduced with hydrogen at 400-600 ℃.The obtained reduction products,mainly the mixture of NaCrO2 and sodium hydroxide(NaOH),were converted into chromic oxide through hydrolysis followed by calcination.The obtained chromic oxide product was characterized by powder X-ray diffraction(XRD) and SEM.The results show that the hydrolysis process of sodium chromite is the key step and lower reduction temperature helps intensify the hydrolysis process.
基金financially supported by the National Natural Science Foundation of China(grant no.51204028)
文摘In this study, three kinds of modified ultra-fine ceramic powders marked A, B and C, which were prepared by each of three different modifiers mixing with a commercial SiC, were added to HT250 cast iron, respectively, and the effects of the modified ultra-fine ceramic powders on microstructure, mechanical properties and wear resistance were studied. Metallographic examination, tensile test, scanning electron microscopy, and three-dimensional surface topography were applied to analyze and compare the samples containing modified powder with the original samples. The results showed that the most obvious modification effect among the powders was seen in the sample containing powder A, with the graphite and eutectic cells being refined, the tensile strength being increased by 36.9%, and the wear resistance being improved by 45.5% and 47.2% under loads of 150 N and 300 N, respectively. The improvements of mechanical properties and wear resistance in the HT250 cast iron with the modified ultra-fine ceramic powders were attributed to the synergistic effect of the grain refinement with the powder acting as a hard particle phase and the lubrication by the graphite.
基金supported by Natural Science Foundation (Grant No.21975024)Natural Science Foundation of Inner Mongolia Autonomous Region (Grant No.2021BS05014)。
文摘Coating modification is an important way to enhance the reactivity of aluminum powder.In this paper,ammonium perchlorate and aluminum powder were assembled into energetic microunits by liquid deposition method.Spherical particles with AP as shell and ultrafine aluminum powder as the core(Al@AP)were gained.The micromorphology results show that the coated particles are about 5μm,and the coating layer is evenly distributed on the outer surface of aluminum powder,indicating a complete coating.The energetic microunits were implanted into the nitrate ester plasticizing adhesive system(NEPE)as solid phase fillers.The effect of filler on the rheological properties,safety,mechanical properties,thermal reaction and energy properties of the system was analyzed by comparing with the raw aluminum filler.The test results show that the rheological properties,mechanical properties and pressure index of NEPE containing system Al@AP meets the requirements of solid propellant charging.Compared with Al based propellant,the mechanical sensitivity and thermal sensitivity are decreased,the safety is better,and the explosion heat of the propellant is increased by 7.8%.The engine test shows that the specific impulse is increased by 1.2 s.Al@AP can improve the energy output and safety of NEPE propellant,and has potential application prospects in high-energy propellants.
基金Supported by the National High Technology Research and Development Program of China (2001AA218061) and the National Natural Science Foundation of China (20236020).
文摘The preparation of ultra-fine particles of salbutamol sulphate (SS) was accomplished with a reactive precipitation pathway, in which salbutamol and sulphuric acid were Used as reactants with the solvents of ethanol.The effects of sulphuric acid concentration, reaction temperature, stirring rate, and reaction time onthesize of the particle were investigated. A binary mixture composed of lactose and SS was prepared to evaluate SS. The results showed that ultra-fine SS particles with controlled diameters ranging between 3 μm and 0.8 μm and with a narrow distribution could be achieved. The morphology consisting of clubbed particles wassuccess.fully obtained. The purity of the particles reached above 98% with-UV detection. The dose- of dry powder inhalation was obtained by blending the particles with recrystallized lactose, which acted as a carrier. The deposition quantity of the drug in breathing tract was estimated using a twin imPinger apparatus. Compared with the Shapuer powder (purchased in the market), the results showed that SS_particles had more quantifies.subsided in simulative lung.. _
基金This work was supported by Science and Technology Innovation Fund of Middle-Minor Enterprises from Ministy of Science and Technology.
文摘Ultra-fine aluminum nitride has been synthesized by the evaporation of aluminum powder at atmospheric-pressure nitrogen plasma in a hot-wall reactor. The average size of aluminum nitride particle is 0.11 μm measured by scanning electric mirror (SEM), and the purity is at least over 90% evaluated by X-Ray diffraction (XRD). The conversion of Al powder to aluminum nitride is strongly depended on the injection of NH3. Typical experimental parameters such as the feed rate of raw material, the flow rate of ammonia and the position of injecting aluminum powder into the reactor are given.
基金Project(51401177)supported by the National Natural Science Foundation of ChinaProject(13KJD430005)supported by the Natural Science Foundation of Jiangsu Higher Education Institutions of ChinaProject(JSKLEDC201309)supported by Jiangsu Key Laboratory of Large Engineering Equipment Detection and Control,China
文摘In comparison with the conventional equal channel angular pressing(ECAP) process,a comprehensive study of influence of twist extrusion(TE) process on consolidating pure aluminum powder in tubes(PITs) by equal channel angular pressing and torsion(ECAPT) was conducted via three-dimensional(3D) finite element simulation,experimental investigation and theoretical analysis.Simulation results revealed that during the consolidation of aluminum powder particles by ECAPT,TE process played a significant role of back pressure.Due to the torsional shear and high hydrostatic pressure exerted by twist channel,both the magnitude and homogeneity of the effective strain were increased markedly.After one pass of ECAPT process using a square channel with an inner angle of 90° and a twist slope angle of 36.5° at 200℃,commercial pure aluminum powder particles were successfully consolidated to nearly full density.Simulation and experimental results showed good agreement.In the microstructure observations,grains were greatly refined.At the same time,porosities were effectively eliminated by shrinking in size and breaking into small ones.Microhardness test indicated that strain distribution of ECAPT-processed billet was more homogeneous with respect to the ECAP-processed one.All these improvements may be attributed to the extreme intense shear strain induced during ECAPT and the increase in self-diffusion coefficient of aluminum due to the back pressure exerted by TE process.
基金Project(2014-07)supported by the Basic Scientific Fund of Gansu University,ChinaProject(NCET-10-0023)supported by the Program for New Century Excellent Talents in University of ChinaProject supported by the Program for Hongliu Outstanding Talents of Lanzhou University of Technology,China
文摘A new processing technology,powder thixoforming,for preparation of particle reinforced metal matrix composites was proposed and 6061 aluminum alloy was prepared by powder thixoforging.6061 ingots were first prepared by cold-pressing the atomized 6061 alloy powders,and then the ingots were partially remelted followed by thixoforging.The effects of reheating time,mould temperature and reheating temperature on microstructure and mechanical properties of the thixoforged alloys were investigated.The results indicate that all of the three parameters have large effects on the microstructure and mechanical properties.Owing to the microstructure changes,the fracture regime varies with the processing parameters.Furthermore,cracks always initiate from shrinkage porosities and inclusions,and then propagate either along the secondarily solidified structures or primary particles.The ultimate tensile strength,elongation and hardness of the resulting alloy are up to 196 MPa,11.0%and HV 55.7 respectively.
基金Project(G2010CB635106)supported by the National Basic Research Program of ChinaProject(NCET-10-0023)supported by the Program for New Century Excellent Talents in University of China+1 种基金Project supported by the Program for Hongliu Outstanding Talents of Lanzhou University of Technology,ChinaProject(2014-07)supported by the Basic Scientific Research Expenses of Gansu University,China
文摘The effect of ball milling on the microstructural evolution was investigated during partial remelting of 6061 aluminum alloy prepared by cold-pressing of atomized alloy powders.The results indicate that the microstructural evolution of 6061 aluminum alloy can be divided into three stages,the dissolution of eutectic phases and the coarsening and growth behavior of the resulting grains,structural separation and spheroidization of primary particles,and the final coarsening behavior of the particles.Compared with the alloy without ball milling,ball milling accelerates the first stage of microstructural evolution due to the energy stored in the powders,but the latter two stages are slowed down because of the formation of large-sized powders.Moreover,the finer the as-cold-pressed microstructure is,the smaller and more spherical the primary particles in the final semisolid microstructure are.Furthermore,properly elevating the heating temperature is beneficial for obtaining small and spheroidal particles.
文摘The homogeneously dispersed, less agglomerated (Nd0.01Y0.99)3Al5O12 nano-sized powders were synthesized by the low temperature combustion (LCS), using Nd2O3, Y2O3, Al(NO3)3·9H2O, ammonia water and citric acid as starting materials. This method effectively solves the problems caused by solid-state reaction at high temperature and hard agglomerates brought by the chemical precipitation method. The powders were characterized by TG-DTA, XRD, FT-IR, TEM respectively and the photoluminescence (PL) spectra of (Nd0.01Y0.99)3Al5O12 green and sintered ceramic disks were measured. The results show that the forming temperature of YAG crystal phase is 850 ℃ and YAP crystal phase appearing during the calcinations transforms to pure YAG at 1050 ℃. The particle size of the powders synthesized by the LCS is in a range of 20~50 nm depending on the thermal treatment temperatures. The effectively induced cross section (σin) with the value 4.03×10-19 cm2 of (Nd0.01Y0.99)3Al5O12 ceramics is about 44% higher than that of single crystal.
文摘A new technique, powder compact foaming process for the production of aluminumfoams has been studied in this article. According to this method, the aluminum pow-der is mixed with a powder foaming agent (TiH_2). Subsequent to mixing, the powderblend is hot compacted to obtain a dense semi--finished product. Upon heating to tem-peratures within the range of the melting point, the foaming agent decomposes to evolvegas and the semi--finished product expands into a porous cellular aluminum. Foamingprocess is the key in this method. Based on experiments, the foaming characteris-tics were mainly analyzed and discussed. Experiments show that the aluminum--foamwith closed pores and a uniform cell structure of high porosity can be obtained usingthis method by adjusting the foaming parameters: the content of foaming agent andfoaming temperature.
文摘Semi open-cell aluminum foams having channels between individual cells were produced using low cost CaCO3foamingagent and applying the powder compact melting process.To this end,the aluminum and CaCO3powder mixtures were coldcompacted into dense cylindrical precursors for foaming at specific temperatures under air atmosphere.The effects of severalparameters including precursor compaction pressure,foaming agent content as well as temperature and time of the foaming processon the cell microstructure,linear expansion,relative density and compressive properties were investigated.A uniform distribution ofcells with sizes less than100μm,which form semi open-cell structures with relative densities in the range of55.4%-84.4%,wasobtained.The elevation of compaction pressure between127-318MPa and blowing agent up to15%(mass fraction)led to anincrease in the linear expansion,compressive strength and densification strain.By varying the foaming temperature from800to1000°C,all of the investigated parameters increased except compressive strength and relative density.The results indicated theoptimal foaming temperature and time as900°C and10-25min,respectively.
文摘Tetraethylenepentamine(C8H23N5,TEPA) has been used as a novel precipitant to synthesize yttrium aluminum garnet(Y3Al5O12,YAG) precursor from a mixed solution of aluminum and yttrium nitrates via a normal-strike co-precipitation method without controlling the pH value during precipitation process.The original precursor was analyzed by thermogravimetry/differential scanning calorimetry(TG/DSC).The evolution of phase composition and micro-structure of the as-synthesized YAG powders were characterized by X-ray ...
基金supported by the Defense Acquisition Program Administration and Agency for Defense Development under the contract UD110095CDsupported by the Advanced Research Center Program(NRF-2013R1A5A1073861) through the National Research Foundation of Korea(NRF) grant funded by the Korean government(MSIP) contracted through the Advanced Space Propulsion Research Center at Seoul National University
文摘High-temperature ignition is essential for the ignition and combustion of energetic metal fuels, including aluminum and magnesium particles which are protected by their high- melting-temperature oxides. A plasma torch characterized by an ultrahigh-temperature plasma plume fulfills such high-temperature ignition conditions. A new steam plasma igniter is designed and successfully validated by aluminum power ignition and combustion tests. The steam plasma rapidly stabilizes in both plasma and steam jet modes. Parametric investigation of the steam plasma jet is conducted in terms of arc strength. A high-speed camera and an oscilloscope method visualize the discharge characteristics, and optical emission spectroscopy measures the thermochemical properties of the plasma jet. The diatomic molecule OH fitting method, the Boltzmann plot method, and short exposure capturing with an intensified charge coupled device record the axial distributions of the rotational gas temperature, excitation temperature, and OH radical distribution, respectively. The excitation temperature at the nozzle tip is near 5500 K, and the gas temperature is 5400 K.
文摘Ultra-fine CeO_2-ZrO_2 mixed oxide was successfully synthesized by wet-solid phase mechanochemical processing, Ce_2(CO_3)_3·8H_2O, ZrOCl_2·xH_2O and ammonia were used as reactants. It is found that the crystalline Ce_2(CO_3)_3·8H_2O and ZrOCl_2·xH_2O are changed to amorphous cerium and zirconium hydroxide precursor after milling with ammonia, and Ce_(0.15)Zr_(0.85)O_2 mixed oxide with pure tetragonal phase structure and medium particle size(D_(50))less than 1μm is formed by calcining precursor over 673 K. The XRD patterns indicate that the crystal unite size increases with rising calcining temperature due to crystal growth. However, the particle size and BET surface area of the Ce(Zr)O_2 mixed oxide decreases with rising calcining temperature, which may be attributed to the contract of particles and the vanish of holes inside grains.