Combustion performance of pulverized coal(PC)in blast furnace(BF)process is regarded as a criteria parameter to assess the prop-er injection dosage of PC.In this paper,effects of two kinds of additives,Fe_(2)O_(3) and...Combustion performance of pulverized coal(PC)in blast furnace(BF)process is regarded as a criteria parameter to assess the prop-er injection dosage of PC.In this paper,effects of two kinds of additives,Fe_(2)O_(3) and CaO,on PC combustion were studied using the thermo-gravimetric method.The results demonstrate that both the Fe_(2)O_(3) and CaO can promote combustion performance index of PC including igni-tion index(C_(i)),burnout index(D_(b)),as well as comprehensive combustibility index(S_(n)).The S_(n) increases from 1.37×10^(−6) to 2.16×10^(−6)%2·min^(−2)·℃^(−3) as the Fe_(2)O_(3) proportion increases from 0 to 5.0wt%.Additionally,the combustion kinetics of PC was clarified using the Coats-Redfern method.The results show that the activation energy(E)of PC combustion decreases after adding the above additives.For instance,the E decreases from 56.54 to 35.75 kJ/mol when the Fe_(2)O_(3) proportion increases from 0 to 5.0wt%,which supports the improved combustion per-formance.Moreover,it is uneconomic to utilize pure Fe_(2)O_(3) and CaO in production.Based on economy analysis,we selected the iron-bearing dust(IBD)which contains much Fe_(2)O_(3) and CaO component to investigate,and got the same effects.Therefore,the IBD is a potential option for catalytic PC combustion in BF process.展开更多
An important index to evaluate the process efficiency of coal preparation is the mineral liberation degree of pulverized coal,which is greatly influenced by the particle size and shape distribution acquired by image s...An important index to evaluate the process efficiency of coal preparation is the mineral liberation degree of pulverized coal,which is greatly influenced by the particle size and shape distribution acquired by image segmentation.However,the agglomeration effect of fine powders and the edge effect of granular images caused by scanning electron microscopy greatly affect the precision of particle image segmentation.In this study,we propose a novel image segmentation method derived from mask regional convolutional neural network based on deep learning for recognizing fine coal powders.Firstly,an atrous convolution is introduced into our network to learn the image feature of multi-sized powders,which can reduce the missing segmentation of small-sized agglomerated particles.Then,a new mask loss function combing focal loss and dice coefficient is used to overcome the false segmentation caused by the edge effect.The final comparative experimental results show that our method achieves the best results of 94.43%and 91.44%on AP50 and AP75 respectively among the comparison algorithms.In addition,in order to provide an effective method for particle size analysis of coal particles,we study the particle size distribution of coal powders based on the proposed image segmentation method and obtain a good curve relationship between cumulative mass fraction and particle size.展开更多
An updated approach to refining the core indicators of pulverized coal used for blast furnace injection based on principal component analysis is proposed in view of the disadvantages of the existing performance indica...An updated approach to refining the core indicators of pulverized coal used for blast furnace injection based on principal component analysis is proposed in view of the disadvantages of the existing performance indicator system of pulverized coal used in blast furnaces. This presented method takes into account all the performance indicators of pulverized coal injection, including calorific value, igniting point, combustibility, reactivity, flowability, grindability, etc. Four core indicators of pulverized coal injection are selected and studied by using principal component analysis, namely, comprehensive combustibility, comprehensive reactivity, comprehensive flowability, and comprehensive grindability. The newly established core index system is not only beneficial to narrowing down current evaluation indices but also effective to avoid previous overlapping problems among indicators by mutually independent index design. Furthermore, a comprehensive property indicator is introduced on the basis of the four core indicators, and the injection properties of pulverized coal can be overall evaluated.展开更多
The combustion characteristics of two kinds of unburned pulverized coal (UPC) made from bituminous coal and anthracite were investigated by thermogravimetric analysis under air. The reaction kinetics mechanisms betwee...The combustion characteristics of two kinds of unburned pulverized coal (UPC) made from bituminous coal and anthracite were investigated by thermogravimetric analysis under air. The reaction kinetics mechanisms between UPC and CO2 in an isothermal experiment in the temperature range 1000–1100°C were investigated. The combustion performance of unburned pulverized coal made from bituminous coal (BUPC) was better than that of unburned pulverized coal made from anthracite (AUPC). The combustion characteristic indexes (S) of BUPC and AUPC are 0.47 × 10^-6 and 0.34 × 10^-6 %2·min^-2·°C^-3, respectively, and the combustion reaction apparent activation energies are 91.94 and 102.63 kJ·mol^-1, respectively. The reaction mechanism of BUPC with CO2 is random nucleation and growth, and the apparent activation energy is 96.24 kJ·mol^-1. By contrast, the reaction mechanism of AUPC with CO2 follows the shrinkage spherical function model and the apparent activation energy is 133.55 kJ·mol^-1.展开更多
The relationship between two-dimensional radiant image and three-dimensional radiant energy in blast furnace raceway was studied by numerical simulation of combustion process. Taking radiant image as radiant boundary ...The relationship between two-dimensional radiant image and three-dimensional radiant energy in blast furnace raceway was studied by numerical simulation of combustion process. Taking radiant image as radiant boundary for numerical simulation of combustion process, the uneven radiation parameter can be calculated. A method to examine three-dimensional temperature distribution in blast furnace raceway was put forward by radiant image processing. The numeral temperature field matching the real combustion can be obtained by proposed numeric image processing technique.展开更多
The combustion process of pulverized coal injected into blast furnace involves a lot of physical and chemical reactions. Based on the combustion behaviors of pulverized coal, the conception of coal effective calorific...The combustion process of pulverized coal injected into blast furnace involves a lot of physical and chemical reactions. Based on the combustion behaviors of pulverized coal, the conception of coal effective calorific value representing the actual thermal energy provided for blast furnace was proposed. A cost performance evaluation model of coal injection was built up for the optimal selection of various kinds of coal based on effective calorific value. The model contains two indicators: coal effective calorific value which has eight sub-indicators and coal injection cost which includes four sub-indicators. In addition, the calculation principle and application of cost performance evaluation model in a Chinese large-scale iron and steel company were comprehensively introduced. The evaluation results finally confirm that this novel model is of great significance to the optimal selection of blast furnace pulverized coal.展开更多
In order to establish correlativity between pulverized coal combustion in a blast furnace raceway and its radiant image, we investigated the relationships between two dimensional radiant images and three dimensional r...In order to establish correlativity between pulverized coal combustion in a blast furnace raceway and its radiant image, we investigated the relationships between two dimensional radiant images and three dimensional radiant energy in a blast furnace raceway, focusing on the correlativity of the numerical simulation of combustion processes with the connection of radiant images information and space temperature distribution. We calculated the uneven radiate characteristic parameterby taking radiant images as a kind of radiative boundary for numerical simulation of combustion processes, and put fonward a method to examine three-dimensional temperatures distribution in blast furnace raceway by radiant image processing. The numeral temperature fields matching the real combustion can be got by the numeric image processing technique.展开更多
Aiming at the optimization of the operation condition, a general numerical method for calculating pulverized coal combustion in a full scale furnace fired tangentially at four corners is adopted. “ k ε ” turbulence...Aiming at the optimization of the operation condition, a general numerical method for calculating pulverized coal combustion in a full scale furnace fired tangentially at four corners is adopted. “ k ε ” turbulence model is used for the gas phases and a stochastic approach based on the Lagrangian technique is used for particle phases. Two competing reactions model for the coal devolatilization and PDF (the probability density function) method for the combustion of the gas phases are employed. In the numerical simulations, assuming the air distribution of second port level is of pagoda, waist drum and uniform type. The results show that pagoda type air distribution is advantageous to ignition and smooth combustion of pulverized coal, and suitable to inferior coal combustion in practice. In the present furnace, the igniting distance at 1st and 3rd corner is longer than that at 2nd and 4th corner. The results from numerical calculations are in good agreement with those of observed in practice.展开更多
The imbibition ability of extinguishant is an important factor influencing the extinguishing effect for smoldering fire in pulverized coals. The coal particle size, bulk compactness, and aqueous solution properties si...The imbibition ability of extinguishant is an important factor influencing the extinguishing effect for smoldering fire in pulverized coals. The coal particle size, bulk compactness, and aqueous solution properties significantly affect the imbibition ability of extinguishment. This work aims to reveal the influence of the properties of pulverized coals and aqueous solution on the imbibition ability of extinguishant for smoldering fire through experiments and capillary theories. The imbibition height and rate were adopted to evaluate the imbibition ability of extinguishment. The results showed that a relatively small bulk compactness and a fine coal particle size negatively influenced the extinguishing process dominantly because of its high surface energy and low wettability. An additive was used to adjust the properties of aqueous solution. The liquid with a larger surface tension, a smaller contact angle, and a lower viscosity induced a better imbibition ability of extinguishment.展开更多
In order to apply ultra-fine water mist technology on spontaneous coal combustion in the goaf of a coal mine, we built a small scale compartment with ultra-fine water mist for restraining coal combustion in a confined...In order to apply ultra-fine water mist technology on spontaneous coal combustion in the goaf of a coal mine, we built a small scale compartment with ultra-fine water mist for restraining coal combustion in a confined space and then investigated the restraining efficiency and related factors. The study obtained the following results: a descending rate of heat release, an increase in 02, the production of CO2 decreased gradually, while the production of CO increased dramatically and quickly and then decreased; ultimately it tended to become stable after the discharge of an ultra-fine water mist. The technology showed that the ultra-fine water mist can effectively reduce the heat release rate of coal and the rate to generate components. We found that the restraining effect relied on the mist flux, the discharge time and other factors. A sufficient amount of mist has a better effect compared to an insufficient amount of mist. To combat coal combustion, the greater the discharge time, the better coal flames are extinguished.展开更多
Considering the fact that the temperature distribution in furnace of a tangential fired pulverized coal boiler is difficult to be measured and monitored, two-stage numerical simulation method was put forward. First, m...Considering the fact that the temperature distribution in furnace of a tangential fired pulverized coal boiler is difficult to be measured and monitored, two-stage numerical simulation method was put forward. First, multi-field coupling simulation in typical work conditions was carried out off-line with the software CFX-4.3, and then the expression of temperature profile varying with operating parameter was obtained. According to real-time operating parameters, the temperature at arbitrary point of the furnace can be calculated by using this expression. Thus the temperature profile can be shown on-line and monitoring for combustion state in the furnace is realized. The simul-(ation) model was checked by the parameters measured in an operating boiler, (DG130-9.8/540.) The maximum of relative error is less than 12% and the absolute error is less than 120℃, which shows that the proposed two-stage simulation method is reliable and able to satisfy the requirement of industrial application.展开更多
This paper presents a new approach to the on-line tracking of pulverized coal and biomass fuels through flame spectrum analysis.A flame detector containing four photodiodes is used to derive multiple signals covering ...This paper presents a new approach to the on-line tracking of pulverized coal and biomass fuels through flame spectrum analysis.A flame detector containing four photodiodes is used to derive multiple signals covering a wide spectrum of the flame from visible,near-infrared and mid-infrared spectral bands as well as a part of far-infrared band.Different features are extracted in time and frequency domains to identify the dynamic "fingerprints" of the flame.Fuzzy logic inference techniques are employed to combine typical features together and infer the type of fuel being burnt.Four types of pulverized coal and five types of biomass are burnt on a laboratory-scale combustion test rig.Results obtained demonstrate that this approach is capable of tracking the type of fuel under steady combustion conditions.展开更多
In the present paper, a multifluid model of two-phase flows with pulverized-coal combustion, based on a continuum-trajectory model with reacting particle phase, is developed and employed to simulate the 3-D turbulent ...In the present paper, a multifluid model of two-phase flows with pulverized-coal combustion, based on a continuum-trajectory model with reacting particle phase, is developed and employed to simulate the 3-D turbulent two-phase hows and combustion in a new type of pulverized-coal combustor with one primary-air jet placed along the wall of the combustor. The results show that: (1) this continuum-trajectory model with reacting particle phase can be used in practical engineering to qualitatively predict the flame stability, concentrations of gas species, possibilities of slag formation and soot deposition, etc.; (2) large recirculation zones can be created in the combustor, which is favorable to the ignition and flame stabilization.展开更多
The equation for radiation heat transfer in a multiple combustion boiler furnace with nuidized bed and pulverized coal firing is derived from direct calculation of radiation heat transfer.
The final volatile yield of pulverized coal pyrolysis was investigated by means of thermobalance. The experimental conditions are as follows: heating rate, 500℃/min; final temperature, 400 ~1500K; particle diameter,...The final volatile yield of pulverized coal pyrolysis was investigated by means of thermobalance. The experimental conditions are as follows: heating rate, 500℃/min; final temperature, 400 ~1500K; particle diameter, 57~300μm. This paper gives the empirical formula indicating the relation among the final volatile yield, final temperature and coal type.展开更多
Researches on the NOx emission characteristics of HT (Huangtai coal), LC(Laicheng) coal are carried out in different atmosphere. The results show that the NOx emission time is postponed in O2/N2 atmosphere mixed w...Researches on the NOx emission characteristics of HT (Huangtai coal), LC(Laicheng) coal are carried out in different atmosphere. The results show that the NOx emission time is postponed in O2/N2 atmosphere mixed with CO. The releasing times of volatile nitrogen and char nitrogen approach, the amount of NOx reduces. In high 02 concentration atmosphere mixed with CO2, the nitrogen releasing times cane ahead of time, NOx congregate in the beginning of the combustion. On the contrary, nitrogen releases separately, and the amount of NOx reduces greatly.展开更多
This paper reports a field testing of full scale PCC (Pulverized Coal Combustion) boiler study into the influence of constricted air distribution on NO x emissions at unit 3 (125 MW power units, 420 t/h boiler) of Gui...This paper reports a field testing of full scale PCC (Pulverized Coal Combustion) boiler study into the influence of constricted air distribution on NO x emissions at unit 3 (125 MW power units, 420 t/h boiler) of Guixi power station, Jiangxi and puts forward the methods to decrease NO x emissions and the principle of boiler operation and regulation through analyzing NO x emissions state under real running condition. Based on boiler constricted air distribution, the experiment mainly tested the influence of primary air, excessive air, boiler load and milling sets (tertiary air) on NO x emissions and found its influence characteristics. A degraded bituminous coal is simply adopted to avoid the test results from other factors.展开更多
In China,the abrasion index and the free moisture are regarded as the criteria for determining whether the medium-speed pulverizer or the fan pulverizer could be selected.Based on comprehensive studies on foreign meth...In China,the abrasion index and the free moisture are regarded as the criteria for determining whether the medium-speed pulverizer or the fan pulverizer could be selected.Based on comprehensive studies on foreign methods for choosing the pulverizing system for lignite boilers,it is suggested that the particle size of coal,the drying time,the drying temperature and the humidity should be taken into account when measuring the free moisture of lignite,and the total moisture could also be the principle for type selection of pulverizer for lignite boilers.Furthermore,the determination of pulverized-coal moisture has great influence on the running of pulverizing systems.The actual moisture of certain pulverized coals is compared with that calculated with different methods and a feasible method for determining the moisture of the pulverized coal is suggested.展开更多
基金supported by the National Natural Science Foundation of China(Nos.52074086,51974073,52074072,52074074)the Fundamental Research Funds for the Central Universities,China(No.N2225039)the Liaoning Provincial Natural Science Foundation of China(No.2019-MS-132)。
文摘Combustion performance of pulverized coal(PC)in blast furnace(BF)process is regarded as a criteria parameter to assess the prop-er injection dosage of PC.In this paper,effects of two kinds of additives,Fe_(2)O_(3) and CaO,on PC combustion were studied using the thermo-gravimetric method.The results demonstrate that both the Fe_(2)O_(3) and CaO can promote combustion performance index of PC including igni-tion index(C_(i)),burnout index(D_(b)),as well as comprehensive combustibility index(S_(n)).The S_(n) increases from 1.37×10^(−6) to 2.16×10^(−6)%2·min^(−2)·℃^(−3) as the Fe_(2)O_(3) proportion increases from 0 to 5.0wt%.Additionally,the combustion kinetics of PC was clarified using the Coats-Redfern method.The results show that the activation energy(E)of PC combustion decreases after adding the above additives.For instance,the E decreases from 56.54 to 35.75 kJ/mol when the Fe_(2)O_(3) proportion increases from 0 to 5.0wt%,which supports the improved combustion per-formance.Moreover,it is uneconomic to utilize pure Fe_(2)O_(3) and CaO in production.Based on economy analysis,we selected the iron-bearing dust(IBD)which contains much Fe_(2)O_(3) and CaO component to investigate,and got the same effects.Therefore,the IBD is a potential option for catalytic PC combustion in BF process.
基金Supported by the Research and Development Project of Experimental Technology,China University of Mining and Technology(Study on mineral occurrence in coal based on SEM and EDS,S2023Y018)the National Natural Science Foundations of China under Grant 62371451.
文摘An important index to evaluate the process efficiency of coal preparation is the mineral liberation degree of pulverized coal,which is greatly influenced by the particle size and shape distribution acquired by image segmentation.However,the agglomeration effect of fine powders and the edge effect of granular images caused by scanning electron microscopy greatly affect the precision of particle image segmentation.In this study,we propose a novel image segmentation method derived from mask regional convolutional neural network based on deep learning for recognizing fine coal powders.Firstly,an atrous convolution is introduced into our network to learn the image feature of multi-sized powders,which can reduce the missing segmentation of small-sized agglomerated particles.Then,a new mask loss function combing focal loss and dice coefficient is used to overcome the false segmentation caused by the edge effect.The final comparative experimental results show that our method achieves the best results of 94.43%and 91.44%on AP50 and AP75 respectively among the comparison algorithms.In addition,in order to provide an effective method for particle size analysis of coal particles,we study the particle size distribution of coal powders based on the proposed image segmentation method and obtain a good curve relationship between cumulative mass fraction and particle size.
基金financially supported by the Young Talent Cultivation Fund in Universities (No. FRF-TP-12-020A)the National Natural Science Foundation of China (Nos. 51204013 and 51174023)
文摘An updated approach to refining the core indicators of pulverized coal used for blast furnace injection based on principal component analysis is proposed in view of the disadvantages of the existing performance indicator system of pulverized coal used in blast furnaces. This presented method takes into account all the performance indicators of pulverized coal injection, including calorific value, igniting point, combustibility, reactivity, flowability, grindability, etc. Four core indicators of pulverized coal injection are selected and studied by using principal component analysis, namely, comprehensive combustibility, comprehensive reactivity, comprehensive flowability, and comprehensive grindability. The newly established core index system is not only beneficial to narrowing down current evaluation indices but also effective to avoid previous overlapping problems among indicators by mutually independent index design. Furthermore, a comprehensive property indicator is introduced on the basis of the four core indicators, and the injection properties of pulverized coal can be overall evaluated.
基金financially supported by the National Natural Science Foundation of China (Nos. 51874080, 51604069, and 51774071)the Fundamental Research Funds for the Central Universities, China (No. N162504004)
文摘The combustion characteristics of two kinds of unburned pulverized coal (UPC) made from bituminous coal and anthracite were investigated by thermogravimetric analysis under air. The reaction kinetics mechanisms between UPC and CO2 in an isothermal experiment in the temperature range 1000–1100°C were investigated. The combustion performance of unburned pulverized coal made from bituminous coal (BUPC) was better than that of unburned pulverized coal made from anthracite (AUPC). The combustion characteristic indexes (S) of BUPC and AUPC are 0.47 × 10^-6 and 0.34 × 10^-6 %2·min^-2·°C^-3, respectively, and the combustion reaction apparent activation energies are 91.94 and 102.63 kJ·mol^-1, respectively. The reaction mechanism of BUPC with CO2 is random nucleation and growth, and the apparent activation energy is 96.24 kJ·mol^-1. By contrast, the reaction mechanism of AUPC with CO2 follows the shrinkage spherical function model and the apparent activation energy is 133.55 kJ·mol^-1.
文摘The relationship between two-dimensional radiant image and three-dimensional radiant energy in blast furnace raceway was studied by numerical simulation of combustion process. Taking radiant image as radiant boundary for numerical simulation of combustion process, the uneven radiation parameter can be calculated. A method to examine three-dimensional temperature distribution in blast furnace raceway was put forward by radiant image processing. The numeral temperature field matching the real combustion can be obtained by proposed numeric image processing technique.
基金Project(51134008)supported by the National Natural Science Foundation of ChinaProject(2012CB720401)supported by the National Basic Research Program of China
文摘The combustion process of pulverized coal injected into blast furnace involves a lot of physical and chemical reactions. Based on the combustion behaviors of pulverized coal, the conception of coal effective calorific value representing the actual thermal energy provided for blast furnace was proposed. A cost performance evaluation model of coal injection was built up for the optimal selection of various kinds of coal based on effective calorific value. The model contains two indicators: coal effective calorific value which has eight sub-indicators and coal injection cost which includes four sub-indicators. In addition, the calculation principle and application of cost performance evaluation model in a Chinese large-scale iron and steel company were comprehensively introduced. The evaluation results finally confirm that this novel model is of great significance to the optimal selection of blast furnace pulverized coal.
基金Funded by the National Natural Science Foundation of China and Iron & Steel Unite Research Funds (50374085).
文摘In order to establish correlativity between pulverized coal combustion in a blast furnace raceway and its radiant image, we investigated the relationships between two dimensional radiant images and three dimensional radiant energy in a blast furnace raceway, focusing on the correlativity of the numerical simulation of combustion processes with the connection of radiant images information and space temperature distribution. We calculated the uneven radiate characteristic parameterby taking radiant images as a kind of radiative boundary for numerical simulation of combustion processes, and put fonward a method to examine three-dimensional temperatures distribution in blast furnace raceway by radiant image processing. The numeral temperature fields matching the real combustion can be got by the numeric image processing technique.
文摘Aiming at the optimization of the operation condition, a general numerical method for calculating pulverized coal combustion in a full scale furnace fired tangentially at four corners is adopted. “ k ε ” turbulence model is used for the gas phases and a stochastic approach based on the Lagrangian technique is used for particle phases. Two competing reactions model for the coal devolatilization and PDF (the probability density function) method for the combustion of the gas phases are employed. In the numerical simulations, assuming the air distribution of second port level is of pagoda, waist drum and uniform type. The results show that pagoda type air distribution is advantageous to ignition and smooth combustion of pulverized coal, and suitable to inferior coal combustion in practice. In the present furnace, the igniting distance at 1st and 3rd corner is longer than that at 2nd and 4th corner. The results from numerical calculations are in good agreement with those of observed in practice.
基金supported by the Key Technical Research Plan of Ministry of Public Security (No. 2017JSYJA13)Independent Innovation Fund of Tianjin University (No. 1706)
文摘The imbibition ability of extinguishant is an important factor influencing the extinguishing effect for smoldering fire in pulverized coals. The coal particle size, bulk compactness, and aqueous solution properties significantly affect the imbibition ability of extinguishment. This work aims to reveal the influence of the properties of pulverized coals and aqueous solution on the imbibition ability of extinguishant for smoldering fire through experiments and capillary theories. The imbibition height and rate were adopted to evaluate the imbibition ability of extinguishment. The results showed that a relatively small bulk compactness and a fine coal particle size negatively influenced the extinguishing process dominantly because of its high surface energy and low wettability. An additive was used to adjust the properties of aqueous solution. The liquid with a larger surface tension, a smaller contact angle, and a lower viscosity induced a better imbibition ability of extinguishment.
基金Project 50274061 supported by the National Natural Science Foundation of Chinaprovided by the NSFC (50274061)+3 种基金the Program for Changjiang Scholars and Innovative Research Team in University (IRT0618)the Henan Province Basic and Lead-ing-edge Technology Research Program (082300 463205 and 072300420180)the Program for New Century Excellent Talents in University of Henan Province (2005HANCET-05) the Henan Poly-technic University Innovation Funds of Graduate Student Scientific Dissertation (M-20) is gratefully acknowledged
文摘In order to apply ultra-fine water mist technology on spontaneous coal combustion in the goaf of a coal mine, we built a small scale compartment with ultra-fine water mist for restraining coal combustion in a confined space and then investigated the restraining efficiency and related factors. The study obtained the following results: a descending rate of heat release, an increase in 02, the production of CO2 decreased gradually, while the production of CO increased dramatically and quickly and then decreased; ultimately it tended to become stable after the discharge of an ultra-fine water mist. The technology showed that the ultra-fine water mist can effectively reduce the heat release rate of coal and the rate to generate components. We found that the restraining effect relied on the mist flux, the discharge time and other factors. A sufficient amount of mist has a better effect compared to an insufficient amount of mist. To combat coal combustion, the greater the discharge time, the better coal flames are extinguished.
文摘Considering the fact that the temperature distribution in furnace of a tangential fired pulverized coal boiler is difficult to be measured and monitored, two-stage numerical simulation method was put forward. First, multi-field coupling simulation in typical work conditions was carried out off-line with the software CFX-4.3, and then the expression of temperature profile varying with operating parameter was obtained. According to real-time operating parameters, the temperature at arbitrary point of the furnace can be calculated by using this expression. Thus the temperature profile can be shown on-line and monitoring for combustion state in the furnace is realized. The simul-(ation) model was checked by the parameters measured in an operating boiler, (DG130-9.8/540.) The maximum of relative error is less than 12% and the absolute error is less than 120℃, which shows that the proposed two-stage simulation method is reliable and able to satisfy the requirement of industrial application.
基金Supported by the Key Program of the National Natural Science Foundation of China(60534030)
文摘This paper presents a new approach to the on-line tracking of pulverized coal and biomass fuels through flame spectrum analysis.A flame detector containing four photodiodes is used to derive multiple signals covering a wide spectrum of the flame from visible,near-infrared and mid-infrared spectral bands as well as a part of far-infrared band.Different features are extracted in time and frequency domains to identify the dynamic "fingerprints" of the flame.Fuzzy logic inference techniques are employed to combine typical features together and infer the type of fuel being burnt.Four types of pulverized coal and five types of biomass are burnt on a laboratory-scale combustion test rig.Results obtained demonstrate that this approach is capable of tracking the type of fuel under steady combustion conditions.
基金Sponsored by the National Key Projects of Fundamental Research of China.
文摘In the present paper, a multifluid model of two-phase flows with pulverized-coal combustion, based on a continuum-trajectory model with reacting particle phase, is developed and employed to simulate the 3-D turbulent two-phase hows and combustion in a new type of pulverized-coal combustor with one primary-air jet placed along the wall of the combustor. The results show that: (1) this continuum-trajectory model with reacting particle phase can be used in practical engineering to qualitatively predict the flame stability, concentrations of gas species, possibilities of slag formation and soot deposition, etc.; (2) large recirculation zones can be created in the combustor, which is favorable to the ignition and flame stabilization.
文摘The equation for radiation heat transfer in a multiple combustion boiler furnace with nuidized bed and pulverized coal firing is derived from direct calculation of radiation heat transfer.
文摘The final volatile yield of pulverized coal pyrolysis was investigated by means of thermobalance. The experimental conditions are as follows: heating rate, 500℃/min; final temperature, 400 ~1500K; particle diameter, 57~300μm. This paper gives the empirical formula indicating the relation among the final volatile yield, final temperature and coal type.
基金supported by the Natural Science Foundation for Young Scientists of Shanxi Province(No.2008041002)
文摘Researches on the NOx emission characteristics of HT (Huangtai coal), LC(Laicheng) coal are carried out in different atmosphere. The results show that the NOx emission time is postponed in O2/N2 atmosphere mixed with CO. The releasing times of volatile nitrogen and char nitrogen approach, the amount of NOx reduces. In high 02 concentration atmosphere mixed with CO2, the nitrogen releasing times cane ahead of time, NOx congregate in the beginning of the combustion. On the contrary, nitrogen releases separately, and the amount of NOx reduces greatly.
文摘This paper reports a field testing of full scale PCC (Pulverized Coal Combustion) boiler study into the influence of constricted air distribution on NO x emissions at unit 3 (125 MW power units, 420 t/h boiler) of Guixi power station, Jiangxi and puts forward the methods to decrease NO x emissions and the principle of boiler operation and regulation through analyzing NO x emissions state under real running condition. Based on boiler constricted air distribution, the experiment mainly tested the influence of primary air, excessive air, boiler load and milling sets (tertiary air) on NO x emissions and found its influence characteristics. A degraded bituminous coal is simply adopted to avoid the test results from other factors.
文摘In China,the abrasion index and the free moisture are regarded as the criteria for determining whether the medium-speed pulverizer or the fan pulverizer could be selected.Based on comprehensive studies on foreign methods for choosing the pulverizing system for lignite boilers,it is suggested that the particle size of coal,the drying time,the drying temperature and the humidity should be taken into account when measuring the free moisture of lignite,and the total moisture could also be the principle for type selection of pulverizer for lignite boilers.Furthermore,the determination of pulverized-coal moisture has great influence on the running of pulverizing systems.The actual moisture of certain pulverized coals is compared with that calculated with different methods and a feasible method for determining the moisture of the pulverized coal is suggested.