Hydrocarbons are very often associated with salt structures. The oil and gas industry is often required to drill along and through long salt sections to reach and recover hydrocarbons. The unique physical properties o...Hydrocarbons are very often associated with salt structures. The oil and gas industry is often required to drill along and through long salt sections to reach and recover hydrocarbons. The unique physical properties of salt require special techniques to ensure borehole stability and adequate casing design. This paper assumed that the mechanical behavior of salt is regulated by the magnitude of mean stress and octahedral shear stress and under the influence of different stress conditions the deformation of rock salt can be represented by three domains, i.e. compression domain, volume unchanged domain, and dilatancy domain, which are separated by a stress dependent boundary. In the compression domain, the volume of salt decreases until all microcracks are closed, with only elastic deformation and pure creep; in the volume unchanged domain the deformation is considered steady incompressible flow controlled by pure creep; and in the dilatancy domain the volume of salt increases during deformation due to micro-cracking, causing damage and accelerating "creep" until failure. This paper presents a hypothesis that the borehole is stable only when the magnitude of octahedral shear stress is below the dilatancy boundary. It gives the design method for determining drilling fluids density, and calculates the closure rate ofborehole with the recommended drilling fluids density. If the closure rate of the borehole is less than 0.1%, the drilling fluids density window can be used during drilling through extremely thick salt formations.展开更多
To maintain tight control over rheological properties of high-density water-based drilling fluids, it is essential to understand the factors influencing the theology of water-based drilling fluids. This paper examines...To maintain tight control over rheological properties of high-density water-based drilling fluids, it is essential to understand the factors influencing the theology of water-based drilling fluids. This paper examines temperature effects on the rheological properties of two types of high-density water-based drilling fluids (fresh water-based and brine-based) under high temperature and high pressure (HTHP) with a Fann 50SL rheometer. On the basis of the water-based drilling fluid systems formulated in laboratory, this paper mainly describes the influences of different types and concentration of clay, the content of a colloid stabilizer named GHJ-1 and fluid density on the rheological parameters such as viscosity and shear stress. In addition, the effects of aging temperature and aging time of the drilling fluid on these parameters were also examined. Clay content and proportions for different densities of brine-based fluids were recommended to effectively regulate the rheological properties. Four theological models, the Bingham, power law, Casson and H-B models, were employed to fit the rheological parameters. It turns out that the H-B model was the best one to describe the rheological properties of the high-density drilling fluid under HTHP conditions and power law model produced the worst fit. In addition, a new mathematical model that describes the apparent viscosity as a function of temperature and pressure was established and has been applied on site.展开更多
In this work, a drilling fluid recipe has been developed by using nanoparticles, to increase the efficiency of drilling operations for maximum accessibility to new & matured oil reserves and suited to various dril...In this work, a drilling fluid recipe has been developed by using nanoparticles, to increase the efficiency of drilling operations for maximum accessibility to new & matured oil reserves and suited to various drilling conditions. The solution to severe drilling problems like pipe sticking, lost circulation, formation damage, erosion of borehole, thermal instability of drilling fluids and insufficient gel properties of the drilling fluids, lies in controlling and optimizing the rheology of the drilling fluid. The inefficiency of the drilling fluid in performing certain functions is mainly due to a lack in a particular rheological property. The performance of the clay composites water-based bentonite drilling mud in terms of its rheological behavior in drilling systems was investigated at various pressures and temperatures. It was found that temperature had a detrimental effect on the rheological properties. The behavior was investigated using synthesized nano bentonite water based drilling fluid. The fluid retained all the desired rheological properties at elevated temperatures and pressures, thus enhanced the possibility of its application in deep wells, where elevated temperatures and pressures were quite common.展开更多
It is difficult to define safe drilling mud density window for shale sections.To solve this problem,the general Biot effective stress principle developed by Heidug and Wong was modified.The Weibull statistical model w...It is difficult to define safe drilling mud density window for shale sections.To solve this problem,the general Biot effective stress principle developed by Heidug and Wong was modified.The Weibull statistical model was used to characterize the hydration strainrelated strength damage.Considering drilling fluid sealing barrier on shale,a calculation method of safe drilling mud density has been established for shale formation under drilling fluid sealing-inhibition-reverse osmosis effect,combined with a flow-diffusion coupling model.The influence of drilling fluid sealing and inhibiting parameters on safe drilling mud density window was analyzed.The study shows that enhancing drilling fluid sealing performance can reduce the pore pressure transmission and solute diffusion;the inhibiting performance of drilling fluid,especially inhibition to strength damage,is crucial for the wellbore collapse pressure of shale section with significant hydration property.The improvement of drilling fluid sealing and inhibition performance can lower collapse pressure and enhance fracturing pressure,and thus making the safe drilling fluid density window wider and the collapse period of wellbore longer.If there is osmosis flow in shale,induced osmosis flow can make the gap between collapse pressure and fracturing pressure wider,and the stronger the sealing ability of drilling fluid,the wider the gap will be.The safe drilling mud density window calculation method can analyze the relationships between collapse pressure,fracturing pressure and drilling fluid anti collapse performance,and can be used to optimize drilling fluid performance.展开更多
The Daqing oilfield is a multilayered heterogeneous oil field where the pressure are different in the same vertical profile causing many troubles to the adjustment well drillings. The approximately-balanced drilling t...The Daqing oilfield is a multilayered heterogeneous oil field where the pressure are different in the same vertical profile causing many troubles to the adjustment well drillings. The approximately-balanced drilling technique has been developed and proved to be efficient and successful in Daqing oilfield. This paper discusses the application of approximately-balanced drilling technique under the condition of multilayered pressure in Daqing oilfield, including the prediction of formation pressure, the pressure discharge technique for the drilling well and the control of the density of drilling fluid.展开更多
文摘Hydrocarbons are very often associated with salt structures. The oil and gas industry is often required to drill along and through long salt sections to reach and recover hydrocarbons. The unique physical properties of salt require special techniques to ensure borehole stability and adequate casing design. This paper assumed that the mechanical behavior of salt is regulated by the magnitude of mean stress and octahedral shear stress and under the influence of different stress conditions the deformation of rock salt can be represented by three domains, i.e. compression domain, volume unchanged domain, and dilatancy domain, which are separated by a stress dependent boundary. In the compression domain, the volume of salt decreases until all microcracks are closed, with only elastic deformation and pure creep; in the volume unchanged domain the deformation is considered steady incompressible flow controlled by pure creep; and in the dilatancy domain the volume of salt increases during deformation due to micro-cracking, causing damage and accelerating "creep" until failure. This paper presents a hypothesis that the borehole is stable only when the magnitude of octahedral shear stress is below the dilatancy boundary. It gives the design method for determining drilling fluids density, and calculates the closure rate ofborehole with the recommended drilling fluids density. If the closure rate of the borehole is less than 0.1%, the drilling fluids density window can be used during drilling through extremely thick salt formations.
文摘To maintain tight control over rheological properties of high-density water-based drilling fluids, it is essential to understand the factors influencing the theology of water-based drilling fluids. This paper examines temperature effects on the rheological properties of two types of high-density water-based drilling fluids (fresh water-based and brine-based) under high temperature and high pressure (HTHP) with a Fann 50SL rheometer. On the basis of the water-based drilling fluid systems formulated in laboratory, this paper mainly describes the influences of different types and concentration of clay, the content of a colloid stabilizer named GHJ-1 and fluid density on the rheological parameters such as viscosity and shear stress. In addition, the effects of aging temperature and aging time of the drilling fluid on these parameters were also examined. Clay content and proportions for different densities of brine-based fluids were recommended to effectively regulate the rheological properties. Four theological models, the Bingham, power law, Casson and H-B models, were employed to fit the rheological parameters. It turns out that the H-B model was the best one to describe the rheological properties of the high-density drilling fluid under HTHP conditions and power law model produced the worst fit. In addition, a new mathematical model that describes the apparent viscosity as a function of temperature and pressure was established and has been applied on site.
文摘In this work, a drilling fluid recipe has been developed by using nanoparticles, to increase the efficiency of drilling operations for maximum accessibility to new & matured oil reserves and suited to various drilling conditions. The solution to severe drilling problems like pipe sticking, lost circulation, formation damage, erosion of borehole, thermal instability of drilling fluids and insufficient gel properties of the drilling fluids, lies in controlling and optimizing the rheology of the drilling fluid. The inefficiency of the drilling fluid in performing certain functions is mainly due to a lack in a particular rheological property. The performance of the clay composites water-based bentonite drilling mud in terms of its rheological behavior in drilling systems was investigated at various pressures and temperatures. It was found that temperature had a detrimental effect on the rheological properties. The behavior was investigated using synthesized nano bentonite water based drilling fluid. The fluid retained all the desired rheological properties at elevated temperatures and pressures, thus enhanced the possibility of its application in deep wells, where elevated temperatures and pressures were quite common.
基金Supported by the China National Science and Technology Major Project(2016ZX05020-003).
文摘It is difficult to define safe drilling mud density window for shale sections.To solve this problem,the general Biot effective stress principle developed by Heidug and Wong was modified.The Weibull statistical model was used to characterize the hydration strainrelated strength damage.Considering drilling fluid sealing barrier on shale,a calculation method of safe drilling mud density has been established for shale formation under drilling fluid sealing-inhibition-reverse osmosis effect,combined with a flow-diffusion coupling model.The influence of drilling fluid sealing and inhibiting parameters on safe drilling mud density window was analyzed.The study shows that enhancing drilling fluid sealing performance can reduce the pore pressure transmission and solute diffusion;the inhibiting performance of drilling fluid,especially inhibition to strength damage,is crucial for the wellbore collapse pressure of shale section with significant hydration property.The improvement of drilling fluid sealing and inhibition performance can lower collapse pressure and enhance fracturing pressure,and thus making the safe drilling fluid density window wider and the collapse period of wellbore longer.If there is osmosis flow in shale,induced osmosis flow can make the gap between collapse pressure and fracturing pressure wider,and the stronger the sealing ability of drilling fluid,the wider the gap will be.The safe drilling mud density window calculation method can analyze the relationships between collapse pressure,fracturing pressure and drilling fluid anti collapse performance,and can be used to optimize drilling fluid performance.
文摘The Daqing oilfield is a multilayered heterogeneous oil field where the pressure are different in the same vertical profile causing many troubles to the adjustment well drillings. The approximately-balanced drilling technique has been developed and proved to be efficient and successful in Daqing oilfield. This paper discusses the application of approximately-balanced drilling technique under the condition of multilayered pressure in Daqing oilfield, including the prediction of formation pressure, the pressure discharge technique for the drilling well and the control of the density of drilling fluid.