In this paper,we focus on the partially linear varying-coefficient quantile regression with missing observations under ultra-high dimension,where the missing observations include either responses or covariates or the ...In this paper,we focus on the partially linear varying-coefficient quantile regression with missing observations under ultra-high dimension,where the missing observations include either responses or covariates or the responses and part of the covariates are missing at random,and the ultra-high dimension implies that the dimension of parameter is much larger than sample size.Based on the B-spline method for the varying coefficient functions,we study the consistency of the oracle estimator which is obtained only using active covariates whose coefficients are nonzero.At the same time,we discuss the asymptotic normality of the oracle estimator for the linear parameter.Note that the active covariates are unknown in practice,non-convex penalized estimator is investigated for simultaneous variable selection and estimation,whose oracle property is also established.Finite sample behavior of the proposed methods is investigated via simulations and real data analysis.展开更多
In the article, hypothesis test for coefficients in high dimensional regression models is considered. I develop simultaneous test statistic for the hypothesis test in both linear and partial linear models. The derived...In the article, hypothesis test for coefficients in high dimensional regression models is considered. I develop simultaneous test statistic for the hypothesis test in both linear and partial linear models. The derived test is designed for growing p and fixed n where the conventional F-test is no longer appropriate. The asymptotic distribution of the proposed test statistic under the null hypothesis is obtained.展开更多
This paper proposes a test procedure for testing the regression coefficients in high dimensional partially linear models based on the F-statistic. In the partially linear model, the authors first estimate the unknown ...This paper proposes a test procedure for testing the regression coefficients in high dimensional partially linear models based on the F-statistic. In the partially linear model, the authors first estimate the unknown nonlinear component by some nonparametric methods and then generalize the F-statistic to test the regression coefficients under some regular conditions. During this procedure, the estimation of the nonlinear component brings much challenge to explore the properties of generalized F-test. The authors obtain some asymptotic properties of the generalized F-test in more general cases,including the asymptotic normality and the power of this test with p/n ∈(0, 1) without normality assumption. The asymptotic result is general and by adding some constraint conditions we can obtain the similar conclusions in high dimensional linear models. Through simulation studies, the authors demonstrate good finite-sample performance of the proposed test in comparison with the theoretical results. The practical utility of our method is illustrated by a real data example.展开更多
This paper considers tests for regression coefficients in high dimensional partially linear Models.The authors first use the B-spline method to estimate the unknown smooth function so that it could be linearly express...This paper considers tests for regression coefficients in high dimensional partially linear Models.The authors first use the B-spline method to estimate the unknown smooth function so that it could be linearly expressed.Then,the authors propose an empirical likelihood method to test regression coefficients.The authors derive the asymptotic chi-squared distribution with two degrees of freedom of the proposed test statistics under the null hypothesis.In addition,the method is extended to test with nuisance parameters.Simulations show that the proposed method have a good performance in control of type-I error rate and power.The proposed method is also employed to analyze a data of Skin Cutaneous Melanoma(SKCM).展开更多
This paper focuses on error density estimation in ultrahigh dimensional sparse linear model,where the error term may have a heavy-tailed distribution.First,an improved two-stage refitted crossvalidation method combine...This paper focuses on error density estimation in ultrahigh dimensional sparse linear model,where the error term may have a heavy-tailed distribution.First,an improved two-stage refitted crossvalidation method combined with some robust variable screening procedures such as RRCS and variable selection methods such as LAD-SCAD is used to obtain the submodel,and then the residual-based kernel density method is applied to estimate the error density through LAD regression.Under given conditions,the large sample properties of the estimator are also established.Especially,we explicitly give the relationship between the sparsity and the convergence rate of the kernel density estimator.The simulation results show that the proposed error density estimator has a good performance.A real data example is presented to illustrate our methods.展开更多
基金Supported by National Natural Science Foundation of China(Grant No.12071348)Fundamental Research Funds for Central Universities,China(Grant No.2023-3-2D-04)。
文摘In this paper,we focus on the partially linear varying-coefficient quantile regression with missing observations under ultra-high dimension,where the missing observations include either responses or covariates or the responses and part of the covariates are missing at random,and the ultra-high dimension implies that the dimension of parameter is much larger than sample size.Based on the B-spline method for the varying coefficient functions,we study the consistency of the oracle estimator which is obtained only using active covariates whose coefficients are nonzero.At the same time,we discuss the asymptotic normality of the oracle estimator for the linear parameter.Note that the active covariates are unknown in practice,non-convex penalized estimator is investigated for simultaneous variable selection and estimation,whose oracle property is also established.Finite sample behavior of the proposed methods is investigated via simulations and real data analysis.
文摘In the article, hypothesis test for coefficients in high dimensional regression models is considered. I develop simultaneous test statistic for the hypothesis test in both linear and partial linear models. The derived test is designed for growing p and fixed n where the conventional F-test is no longer appropriate. The asymptotic distribution of the proposed test statistic under the null hypothesis is obtained.
基金supported by the Natural Science Foundation of China under Grant Nos.11231010,11471223,11501586BCMIIS and Key Project of Beijing Municipal Educational Commission under Grant No.KZ201410028030
文摘This paper proposes a test procedure for testing the regression coefficients in high dimensional partially linear models based on the F-statistic. In the partially linear model, the authors first estimate the unknown nonlinear component by some nonparametric methods and then generalize the F-statistic to test the regression coefficients under some regular conditions. During this procedure, the estimation of the nonlinear component brings much challenge to explore the properties of generalized F-test. The authors obtain some asymptotic properties of the generalized F-test in more general cases,including the asymptotic normality and the power of this test with p/n ∈(0, 1) without normality assumption. The asymptotic result is general and by adding some constraint conditions we can obtain the similar conclusions in high dimensional linear models. Through simulation studies, the authors demonstrate good finite-sample performance of the proposed test in comparison with the theoretical results. The practical utility of our method is illustrated by a real data example.
基金supported by the University of Chinese Academy of Sciences under Grant No.Y95401TXX2Beijing Natural Science Foundation under Grant No.Z190004Key Program of Joint Funds of the National Natural Science Foundation of China under Grant No.U19B2040。
文摘This paper considers tests for regression coefficients in high dimensional partially linear Models.The authors first use the B-spline method to estimate the unknown smooth function so that it could be linearly expressed.Then,the authors propose an empirical likelihood method to test regression coefficients.The authors derive the asymptotic chi-squared distribution with two degrees of freedom of the proposed test statistics under the null hypothesis.In addition,the method is extended to test with nuisance parameters.Simulations show that the proposed method have a good performance in control of type-I error rate and power.The proposed method is also employed to analyze a data of Skin Cutaneous Melanoma(SKCM).
基金Supported by National Natural Science Foundation of China (10571036) the Key Discipline Development Program of Beijing Municipal Commission (XK100080537)
基金Supported by the National Natural Science Foundation of China(Grant No.11971324)the State Key Program of National Natural Science Foundation of China(Grant No.12031016)。
文摘This paper focuses on error density estimation in ultrahigh dimensional sparse linear model,where the error term may have a heavy-tailed distribution.First,an improved two-stage refitted crossvalidation method combined with some robust variable screening procedures such as RRCS and variable selection methods such as LAD-SCAD is used to obtain the submodel,and then the residual-based kernel density method is applied to estimate the error density through LAD regression.Under given conditions,the large sample properties of the estimator are also established.Especially,we explicitly give the relationship between the sparsity and the convergence rate of the kernel density estimator.The simulation results show that the proposed error density estimator has a good performance.A real data example is presented to illustrate our methods.