期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Major Technologies for Safe Construction of High Earth-Rockfill Dams 被引量:26
1
作者 Hongqi Ma Fudong Chi 《Engineering》 SCIE EI 2016年第4期498-509,共12页
The earth-rockfill dam is one of the primary dam types in the selection of high dams to be constructed in Western China, since it is characterized by favorable adaptability of the dam foundation; full utilization of l... The earth-rockfill dam is one of the primary dam types in the selection of high dams to be constructed in Western China, since it is characterized by favorable adaptability of the dam foundation; full utilization of local earth, rock, and building-excavated materials; low construction cost; and low cement consumption. Many major technical issues regarding earth-rockfill dams with a height of over 250 m were studied and solved successfully in the construction of the 261.5 m Nuozhadu earth core rockfill dam. This paper describes research achievements and basic conclusions; systematically summarizes the accumulated experiences from the construction of the Nuozhadu Dam and other high earth-rockfill dams; and discusses major technical issues, such as deformation control, seepage control, dam slope stability, safety and control of flood discharging, safety and quality control of dam construction, safety assessments, early warning, and other key technical difficulties. This study also provides a reference and technological support for the future construction of 300 m high earth-rockfill dams. 展开更多
关键词 High earth-rockfill dam Safe construction Major technologies
下载PDF
Key Technologies in the Design and Construction of 300 m Ultra-High Arch Dams 被引量:14
2
作者 RenkunWang 《Engineering》 SCIE EI 2016年第3期350-359,共10页
Starting with the Ertan arch dam (240 m high, 3300 MW) in 2000, China successfully built a total of seven ultra-high arch dams over 200 m tall by the end of 2014. Among these, the ]inping 1 (305 m), Xiaowan (294... Starting with the Ertan arch dam (240 m high, 3300 MW) in 2000, China successfully built a total of seven ultra-high arch dams over 200 m tall by the end of 2014. Among these, the ]inping 1 (305 m), Xiaowan (294.5m), and Xiluodu (285.5 m) arch dams have reached the 300 m height level (i.e., near or over 300 m), making them the tallest arch dams in the world. The design and construction of these 300 m ultra-high arch dams posed significant challenges, due to high water pressures, high seismic de- sign criteria, and complex geological conditions. The engineering team successfully tackled these chal- lenges and made critical breakthroughs, especially in the area of safety control. In this paper, the author summarizes various key technological aspects involved in the design and construction of 300 m ultra- high arch dams, including the strength and stability of foundation rock, excavation of the dam base and surface treatment, dam shape optimization, safety design guidelines, seismic analysis and design, treatment of a complex foundation, concrete temperature control, and crack prevention. The experience gained from these projects should be valuable for future practitioners. 展开更多
关键词 ultra-high arch dam Shape optimization Arch dam overall safety Seismic safety Concrete temperature contro
下载PDF
Safety evaluation of replacement reinforcement quality in abutment contact zones of ultra-high arch dam in first impoundment period based on prototype monitoring 被引量:2
3
作者 Bo HU Zhong-ru WU +2 位作者 Guan-biao LIU Bin ZHAO Bo XU 《Water Science and Engineering》 EI CAS 2012年第2期210-218,共9页
Reinforcement quality evaluation at the abutment is an important research direction. Prototype monitoring and theoretical derivation were integrated to study the replacement reinforcement quality in abutment contact z... Reinforcement quality evaluation at the abutment is an important research direction. Prototype monitoring and theoretical derivation were integrated to study the replacement reinforcement quality in abutment contact zones of the Xiaowan ultra-high arch dam. The principles of monitoring layout and design are introduced in detail. Prototype monitoring shows that the increment of the interfacial compressive stress is much larger in the impoundment stage than in the regulating stage. The water pressure and time-effect are two main factors affeeting the interfacial stress. The time-effect is the key factor in the initial impoundment stage, and the water pressure is the key factor after impoundment. The contact properties are significantly improved by grouting. This study shows that there are three typical stages in the joint opening hydrographs, namely the compression stage, opening stage, and stable stage. There is a nonlinear relationship between the joint opening and temperature, which can be well described by the S-function. In conclusion, the reinforcement effect is satisfying, and the abutment is safe. 展开更多
关键词 ultra-high arch dam prototype monitoring compressive stress joint opening safety evaluation
下载PDF
Nonlinear finite element analysis of effect of seismic waves on dynamic response of Shiziping dam 被引量:7
4
作者 DING Xuan-ming LIU Han-long +1 位作者 YU Tao KONG Gang-qiang 《Journal of Central South University》 SCIE EI CAS 2013年第8期2323-2332,共10页
Many high earth-rockfill dams are constructed in the west of China. The seismic intensity at the dam site is usually very high, thus it is of great importance to ensure the safety of the dam in meizoseismal area. A 3D... Many high earth-rockfill dams are constructed in the west of China. The seismic intensity at the dam site is usually very high, thus it is of great importance to ensure the safety of the dam in meizoseismal area. A 3D FEM model is established to analyze the seismic responses of Shiziping earth-rockfill dam. The nonlinear elastic Duncan-Chang constitutive model and the equivalent viscoelastic constitutive model are used to simulate the static and dynamic stress strain relationships of the dam materials, respectively. Four groups of seismic waves are inputted from the top of the bedrock to analyze the dynamic responses of the dam. The numerical results show that the calculated dynamic magnification factors display a good consistency with the specification values. The site spectrum results in larger acceleration response than the specification spectrum. The analysis of relative dynamic displacement indicates that the displacement at the downstream side of the dam is larger than that at the upstream side. The displacement response reduces from the center of river valley to two banks. The displacement responses corresponding to the specification spectrum are a little smaller than those corresponding to the site spectrum. The analysis of shear stress indicates that a large shear stress area appears in the upstream overburden layer, where the shear stress caused by site waves is larger than that caused by specification waves. The analysis of dynamic principal stress indicates that the minimum dynamic stresses in corridor caused by specification and site waves have little difference. The maximum and minimum dynamic stresses are relatively large at two sides. The largest tensile stress occurs at two sides of the floor of grouting corridor, which may result in the crack near the corridor side. The numerical results present good consistency with the observation data of the grouting corridor in Wenchuan earthquake. 展开更多
关键词 finite element method earth-rockfill dam dynamic response acceleration response seismic wave
下载PDF
Chebyshev Spectral Element Analysis for Pore-Pressure of ERDs during Construction Period
5
作者 Chujia Zhou Mingyuan Chang Nansheng Li 《World Journal of Engineering and Technology》 2018年第2期393-407,共15页
Chebyshev spectral elements are applied to dissipation analysis of pore-pressure of roller compaction earth-rockfilled dams (ERD) during their construction. Nevertheless, the conventional finite element, for its excel... Chebyshev spectral elements are applied to dissipation analysis of pore-pressure of roller compaction earth-rockfilled dams (ERD) during their construction. Nevertheless, the conventional finite element, for its excellent adaptability to complex geometrical configuration, is the most common way of spatial discretization for the pore-pressure solution of ERDs now [1]. The spectral element method, by means of the spectral isoparametric transformation, surmounts the disadvantages of disposing with complex geometry. According to the illustration of numerical examples, one can conclude that the spectral element methods have the following obvious advantages: 1) large spectral elements can be used in spectral element methods for the domains of homogeneous material;2) in the application of large spectral elements to spatial discretization, only a few leading terms of Chebyshev interpolation polynomial are taken to arrive at the solutions of better accuracy;3) spectral element methods have excellent convergence as well-known. Spectral method also is used to integrate the evolution equation in time to avoid the limitation of conditional stability of time-history 展开更多
关键词 SPECTRAL Element Method (SEM) CHEBYSHEV Series earth-rockfilled damS (ERD) ROLLING COMPACTION Pore-Pressure
下载PDF
Key technical innovations in the construction of Baihetan Hydropower Station Project
6
作者 Zhilin WANG Bingliu ZHANG 《Frontiers of Engineering Management》 CSCD 2023年第2期367-372,共6页
1 Project positioning Baihetan Hydropower Station is classified as the second of the four hydropower cascades in the lower reaches of the Jinsha River:Wudongde,Baihetan,Xiluodu and Xiangjiaba.As an important backbone ... 1 Project positioning Baihetan Hydropower Station is classified as the second of the four hydropower cascades in the lower reaches of the Jinsha River:Wudongde,Baihetan,Xiluodu and Xiangjiaba.As an important backbone project for China to implement the strategy of West-to-East Power Transmission and optimize the energy structure,it constitutes an important part of the Yangtze River flood control system.Located at the junction of Ningnan County,Sichuan Province and Qiaojia County,Yunnan Province,the hydropower station is the largest hydropower project under construction in the world,with a unit capacity of million-kilowatts ranking the highest in the world and a total installed capacity of 16 million kW,second only to the Three Gorges Project,ranking the second in the world. 展开更多
关键词 ultra-high arch dam columnar jointed basalt low-heat cement concrete temperature controlled crack prevention million-kilowatt unit intelligent construction
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部