期刊文献+
共找到1,118篇文章
< 1 2 56 >
每页显示 20 50 100
Mechanical Behavior Based on Aggregates Microstructure of Ultra-high Performance Concrete
1
作者 丁庆军 ZHOU Changsheng +4 位作者 张高展 GUO Hong LI Yang ZHANG Yongyuan GUO Kaizheng 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第3期673-681,共9页
We developed ultra-high performance concrete(UHPC)incorporating mullite sand and brown corundum sand(BCS),and the quartz sand UHPC was utilized to prepare for comparison.The properties of compressive strength,elastic ... We developed ultra-high performance concrete(UHPC)incorporating mullite sand and brown corundum sand(BCS),and the quartz sand UHPC was utilized to prepare for comparison.The properties of compressive strength,elastic modulus,ultrasonic pulse velocity,flexural strength,and toughness were investigated.Scanning electron microscopy and nanoindentation were also conducted to reveal the underlying mechanisms affecting macroscopic performance.Due to the superior interface bonding properties between mullite sand and matrix,the compressive strength and flexural toughness of UHPC have been significantly improved.Mullite sand and BCS aggregates have higher stiffness than quartz sand,contributing to the excellent elastic modulus exhibited by UHPC.The stiffness and volume of aggregates have a more significant impact on the elastic modulus of UHPC than interface performance,and the latter contributes more to the strength of UHPC.This study will provide a reference for developing UHPC with superior elastic modulus for structural engineering. 展开更多
关键词 ultra-high performance concrete mechanical properties fine aggregates MICROSTRUCTURE NANOINDENTATION
下载PDF
Effect of Shrinkage Reducing Agent and Steel Fiber on the Fluidity and Cracking Performance of Ultra-High Performance Concrete
2
作者 Yong Wan Li Li +4 位作者 Jiaxin Zou Hucheng Xiao Mengdi Zhu Ying Su Jin Yang 《Fluid Dynamics & Materials Processing》 EI 2024年第9期1941-1956,共16页
Due to the low water-cement ratio of ultra-high-performance concrete(UHPC),fluidity and shrinkage cracking are key aspects determining the performance and durability of this type of concrete.In this study,the effects ... Due to the low water-cement ratio of ultra-high-performance concrete(UHPC),fluidity and shrinkage cracking are key aspects determining the performance and durability of this type of concrete.In this study,the effects of different types of cementitious materials,chemical shrinkage-reducing agents(SRA)and steel fiber(SF)were assessed.Compared with M2-UHPC and M3-UHPC,M1-UHPC was found to have better fluidity and shrinkage cracking performance.Moreover,different SRA incorporation methods,dosage and different SF types and aspect ratios were implemented.The incorporation of SRA and SF led to a decrease in the fluidity of UHPC.SRA internal content of 1%(NSRA-1%),SRA external content of 1%(WSRA-1%),STS-0.22 and STE-0.7 decreased the fluidity of UHPC by 3.3%,8.3%,9.2%and 25%,respectively.However,SRA and SF improved the UHPC shrinkage cracking performance.NSRA-1%and STE-0.7 reduced the shrinkage value of UHPC by 40%and 60%,respectively,and increased the crack resistance by 338%and 175%,respectively.In addition,the addition of SF was observed to make the microstructure of UHPC more compact,and the compressive strength and flexural strength of 28 d were increased by 26.9%and 19.9%,respectively. 展开更多
关键词 ultra-high performance concrete chemical shrinkage reducing agent steel fiber shrinkage cracking repair and reinforcement
下载PDF
Influence Mechanism of Curing Regimes on Interfacial Transition Zone of Lightweight Ultra-High Performance Concrete
3
作者 李洋 张高展 +3 位作者 YANG Jun ZHANG Jian DING Qingjun ZHAO Mingyu 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第3期591-603,共13页
This study aims to clarify the effects of curing regimes and lightweight aggregate(LWA)on the morphology, width and mechanical properties of the interfacial transition zone(ITZ) of ultra-high performance concrete(UHPC... This study aims to clarify the effects of curing regimes and lightweight aggregate(LWA)on the morphology, width and mechanical properties of the interfacial transition zone(ITZ) of ultra-high performance concrete(UHPC), and provide reference for the selection of lightweight ultra-high performance concrete(L-UHPC) curing regimes and the pre-wetting degree LWA. The results show that, under the three curing regimes(standard curing, steam curing and autoclaved curing), LWA is tightly bound to the matrix without obvious boundaries. ITZ width increases with the water absorption of LWA and decreases with increasing curing temperature. The ITZ microhardness is the highest when water absorption is 3%, and the microhardness value is more stable with the distance from LWA. Steam and autoclaved curing increase ITZ microhardness compared to standard curing. As LWA pre-wetting and curing temperatures increase, the degree of hydration at the ITZ increases, generating high-density CSH(HD CSH) and ultra-high-density CSH(UHD CSH), and reducing unhydrated particles in ITZ. ITZ micro-mechanical properties are optimized due to hydration products being denser. 展开更多
关键词 curing regime ultra-high performance concrete lightweight aggregate interfacial transition zone meso-mechanical properties micro-mechanical properties
下载PDF
Design of Eco-friendly Ultra-high Performance Concrete with Supplementary Cementitious Materials and Coarse Aggregate 被引量:4
4
作者 蒋金洋 ZHOU Wenjing +4 位作者 CHU Hongyan WANG Fengjuan WANG Liguo FENG Taotao GUO Dong 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2019年第6期1350-1359,共10页
Aiming to investigate the mix design of eco-friendly UHPC with supplementary cementitious materials and coarser aggregates, we comprehensively studied the workability, microstructure, porosity, compressive strength, f... Aiming to investigate the mix design of eco-friendly UHPC with supplementary cementitious materials and coarser aggregates, we comprehensively studied the workability, microstructure, porosity, compressive strength, flexural strength, and Young’s modulus of UHPC. Relationship between compressive strength and Young’s modulus was obtained eventually. It is found that the compressive strength, flexural strength, and Young’s modulus of UHPC increase by 19.01%, 10.81%, and 5.99%, respectively, when 40 wt% cement is replaced with supplementary cementitious materials. The relationship between compressive strength and Young’s modulus of UHPC is an exponential form. 展开更多
关键词 ultra-high perform ance concrete ECO-FRIENDLY POROSITY compressive strength flexural strength Young’s modulus
下载PDF
Seismic Performance of High-Strength Short Concrete Column with High-Strength Stirrups Constraints 被引量:2
5
作者 Hongyan Ding Yuan Liu +1 位作者 Chao Han Yaohua Guo 《Transactions of Tianjin University》 EI CAS 2017年第4期360-369,共10页
The seismic performance of four short concrete columns was investigated under low cycle and repeated loads, including the failure characteristics, hysteretic behavior, rigidity degeneracy and steel-bar stress. The inf... The seismic performance of four short concrete columns was investigated under low cycle and repeated loads, including the failure characteristics, hysteretic behavior, rigidity degeneracy and steel-bar stress. The influences of reinforcement strength, stirrup ratio and shear span ratio were also compared. Test results reveal that the restriction effect of stirrups can improve the peak stress, so the bearing capacity of specimen can be improved; for the high-strength short concrete column with high-strength stirrups, it was more reasonable to use ultimate displacement angle to reflect the ductility of the specimen, and the yield strength of high-strength stirrups should be devalued when calculating the stirrup characteristic value; the seismic performance of short column would be improved with the increase of volume–stirrup ratio and shear span ratio;the high-strength stirrups and high-strength longitudinal reinforcements did not yield when the load acting on the specimen reached the peak value, which brought adequate safety stock to these short columns. 展开更多
关键词 HIGH-STRENGTH STIRRUP HIGH-STRENGTH longitudinal REINFORCEMENT HIGH-STRENGTH SHORT concrete column SEISMIC performance
下载PDF
Dynamic Mechanical Behaviour of Ultra-high Performance Fiber Reinforced Concretes 被引量:2
6
作者 赖建中 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2008年第6期938-945,共8页
Ultra-high performance fiber reinforced concretes (UHPFRC) were prepared by replacing 60% of cement with ultra-fine industrial waste powder. The dynamic mechanical behaviour of UHPFRC with different fiber volume fra... Ultra-high performance fiber reinforced concretes (UHPFRC) were prepared by replacing 60% of cement with ultra-fine industrial waste powder. The dynamic mechanical behaviour of UHPFRC with different fiber volume fraction was researched on repeated compressive impact in four kinds of impact modes through split Hopkinson pressure bar (SHPB). The experimental results show that the peak stress and elastic modulus decrease and the strain rate and peak strain increase gradually with the increasing of impact times. The initial material damage increases and the peak stress of the specimen decreases from the second impact with the increasing of the initial incident wave. Standard strength on repeated impact is defined to compare the ability of resistance against repeated impact among different materials. The rate of reduction of standard strength is decreased by fiber reinforcement under repeated impact. The material damage is reduced and the ability of repeated impact resistance of UHPFRC is improved with the increasing of fiber volume fraction. 展开更多
关键词 ultra-high performance fiber reinforced concretes split Hopkinson pressurebar DYNAMIC repeated impact
下载PDF
Preparation of Heavyweight Ultra-high Performance Concrete Using Barite Sand and Titanium-rich Heavy Slag Sand 被引量:1
7
作者 丁庆军 DENG Chao +2 位作者 杨军 ZHANG Gaozhan HOU Dongshuai 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2021年第5期644-652,共9页
The heavyweight ultra-high performance concrete(HUHPC)was prepared with barite sand partially replaced by titanium-rich heavy slag sand(THS)at replacement proportion of 0%,30%,50%,70%and 100%in this work.The results s... The heavyweight ultra-high performance concrete(HUHPC)was prepared with barite sand partially replaced by titanium-rich heavy slag sand(THS)at replacement proportion of 0%,30%,50%,70%and 100%in this work.The results show that THS incorporation can effectively improve the mechanical properties and reduce the volume shrinkage of HUHPC.The HUHPC with 50%THS replacement reaches an apparent density of 2890 kg/m^(3)(for fresh HUHPC),28 d compressive strength of 129 MPa,28 d flexural strength of 23 MPa,28 d flexural toughness of 28.4,56 d volume shrinkage of 359×10^(-4) and,as expected,excellent durability.Microstructural investigation demonstrates that the internal curing of pre-wetted THS promotes the hydration of the surrounding cement paste thereby strengthening the interfacial transition zone,resulting in the“hard shell”formation around aggregate to“protect”the aggregate.Additionally,the“pin structure”significantly improves the cement paste-aggregate interfacial connection.The combination of“hard shell protection”and“pin structure”remarkably improve the mechanical properties of HUHPC produced with porous THS aggregate. 展开更多
关键词 heavyweight ultra-high performance concrete titanium-rich heavy slag sand mechanical properties durability internal curing
下载PDF
Low cyclic fatigue performance of concrete-filled steel tube columns 被引量:1
8
作者 秦鹏 谭杨 肖岩 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第10期4035-4042,共8页
Eight concrete-filled steel tubular(CFT) columns were tested subjected to cyclic loading under constant axial load. Experimental parameters included axial compression ratio, loading sequences, and strength of concrete... Eight concrete-filled steel tubular(CFT) columns were tested subjected to cyclic loading under constant axial load. Experimental parameters included axial compression ratio, loading sequences, and strength of concrete and steel. The seismic performance of CFT columns and failure modes were analyzed. The test results show that different axial load ratios and loading sequences have effects on the load carrying capacity, ductility and energy dissipation capacity of CFT columns, as well as the failure modes of the CFT columns. The failure pattern can be categorized into two types: local buckling failure of steel tube in compression zone, and low cycle fatigue tearing rupture failure of steel tube. The seismic behavior was evaluated through the energy index obtained from each cycle. 展开更多
关键词 钢管混凝土柱 低周疲劳性能 试验参数 加载顺序 承载能力 能量耗散 混凝土强度 轴向载荷
下载PDF
Seismic Performance of Steel Reinforced Ultra High-strength Concrete Columns 被引量:1
9
作者 贾金青 《四川大学学报(工程科学版)》 EI CAS CSCD 北大核心 2009年第3期216-222,230,共8页
The seismic performance of steel reinforced ultra-high-strength concrete columns(SRSHC) with various shear-span ratios(λ) were studied through a series of experiments.The concrete compressive cube strength value of e... The seismic performance of steel reinforced ultra-high-strength concrete columns(SRSHC) with various shear-span ratios(λ) were studied through a series of experiments.The concrete compressive cube strength value of experimental specimens ranged from 92.9 MPa to 108.1 MPa.The main experimental variables affecting seismic performance of specimens were axial load ratio and stirrup reinforcement ratio.The columns(λ=2.75) subjected to low cyclic reversed lateral loads failed mainly in the flexural-shear mode failure and columns(λ≤2.0) subjected to low cyclic reversed lateral loads failed mainly in the shear mode failure.Shear force-displacement hysteretic curves and skeleton curves were drawn.Coefficient of the specimen displacement ductility was calculated.Experimental results indicate that ductility decreases with axial pressure ratio increasing,and increases with stirrup reinforcement ratio increasing.Limit values of axial pressure ratio and minimum stirrup reinforcement ratio of columns are proposed to satisfy definite ductility requirement.The suggested values provide a reference for engineering application and for the amendment of the current Chinese design code of steel reinforced concrete composite structures. 展开更多
关键词 建筑结构 建筑物 抗震设计 混凝土结构
下载PDF
Different Curing Systems on Mechanical Properties of Ultra-High Performance Concrete with Coarse Aggregate
10
作者 赵秋 杨明 +1 位作者 庄一舟 聂宇 《Journal of Donghua University(English Edition)》 EI CAS 2017年第4期492-497,共6页
High durability and high tensile strength makes ultra-high performance concrete( UHPC) an ideal material for bridges,while its early shrinkage in the construction of cast-in-situ mass concrete leads structure crack-ea... High durability and high tensile strength makes ultra-high performance concrete( UHPC) an ideal material for bridges,while its early shrinkage in the construction of cast-in-situ mass concrete leads structure crack-easily,which restricts the application of UHPC in deck system. Whether reasonable amount of coarse aggregate can influence the strength of UHPC and improve the shrinkage performance or reduce the cost is still in doubt. Besides,in order to improve its constructability and workability, whether autoclaved curing system of UHPC can be changed remains to be further researched. In response to these circumstances, a systematic experimental study on the strength of UHPC mixed with coarse aggregate in different ratios has been presented in this paper. The three curing systems,namely standard curing,180-200 ℃/1. 1 MPa autoclaved curing,and hot water curing were tested to reveal the relationship between UHPC's properties and curing systems,and the UHPC ' s microstructure was also preliminarily studied by scanning electron microscope( SEM). The experimental research can draw the following conclusions. Under the condition of the same mix ratio, autoclaved curing guarantees the highest compressive strength,followed by hot water curing and standard curing. The compressive strength of concrete increases with the temperature in the range of 25 to 90 ℃ hot water curing,and high temperature in precuring period can speed up the strength development of UHPC,but the sequence of precuring period does not obviously affect the results. In 90 ℃ hot water and autoclaved curing,the strength is over 150 MPa,and it has little relation with gravel ratio. While the value increases first and then decreases in a lower temperature curing with the increasing of gravel amount,even only about 80 MPa at room temperature. The strength increases moderately along with the increase of the curing age by standard curing,especially in the initial stage. 展开更多
关键词 ultra-high performance concrete(UHPC) coarse aggregate curing system STRENGTH MICROSTRUCTURE
下载PDF
Automatic detection and assessment of crack development in ultra-high performance concrete in the spatial and Fourier domains
11
作者 Jixing CAO Yao ZHANG +4 位作者 Haijie HE Weibing PENG Weigang ZHAO Zhiguo YAN Hehua ZHU 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2024年第3期350-364,共15页
Automatic detection and assessment of surface cracks are beneficial for understanding the mechanical performance of ultra-high performance concrete(UHPC).This study detects crack evolution using a novel dynamic mode d... Automatic detection and assessment of surface cracks are beneficial for understanding the mechanical performance of ultra-high performance concrete(UHPC).This study detects crack evolution using a novel dynamic mode decomposition(DMD)method.In this method,the sparse matrix‘determined’from images is used to reconstruct the foreground that contains cracks,and the global threshold method is adopted to extract the crack patterns.The application of the DMD method to the three-point bending test demonstrates the efficiency in inspecting cracks with high accuracy.Accordingly,the geometric features,including the area and its projection in two major directions,are evaluated over time.The relationship between the geometric properties of cracks and load-displacement curves of UHPC is discussed.Due to the irregular shape of cracks in the spatial domain,the cracks are then transformed into the Fourier domain to assess their development.Results indicate that crack patterns in the Fourier domain exhibit a distinct concentration around a central position.Moreover,the power spectral density of cracks exhibits an increasing trend over time.The investigation into crack evolution in both the spatial and Fourier domains contributes significantly to elucidating the mechanical behavior of UHPC. 展开更多
关键词 dynamic mode decomposition ultra-high performance concrete crack detection geometric features Fourier domain
原文传递
Effect of seismic design details on hysteresis performance of SRC-RC transfer columns 被引量:1
12
作者 Wu Kai Zhai Jiangpeng +2 位作者 Xue Jianyang Zhao Hongtie Chen Feng 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2020年第1期117-135,共19页
Four types of seismic design details were tested using 11 transfer column specimens and one comparison specimen of RC under low cyclic reversed loading. Test results show that diagonal cracks control the failure patte... Four types of seismic design details were tested using 11 transfer column specimens and one comparison specimen of RC under low cyclic reversed loading. Test results show that diagonal cracks control the failure pattern and damage occurs mainly in the RC section with weak shear capacity in the transfer columns. There is a large difference in the bearing capacity and ductility of the transfer columns according to the test results, which indicates that the strengthening effect of diverse structural measures is quite different. The section ratio of I-section-encased steel and the axial compression ratio also have a great influence on the bearing capacity and ductility. Although the bearing capacity of transfer columns with additional longitudinal bars and additional X bars is relatively large, they have poor deformation capacity. Setting more stirrups along the columns is the best structural measure to enhance the seismic performance. The studs on the I-sectionencased steel by welding can help to complete the stress transfer between the steel and concrete, and avoid performance degradation of the two materials due to bonding failure. 展开更多
关键词 seismic design details hysteresis performance steel reinforced concrete transfer column energy dissipation
下载PDF
Failure mode classification of reinforced concrete column using Fisher method 被引量:11
13
作者 戚永乐 韩小雷 季静 《Journal of Central South University》 SCIE EI CAS 2013年第10期2863-2869,共7页
In order to apply the performance-based seismic design, an engineer must first find out whether the column is expected to fail in shear before or after flexural yielding. According to column failure characteristics an... In order to apply the performance-based seismic design, an engineer must first find out whether the column is expected to fail in shear before or after flexural yielding. According to column failure characteristics and failure mode of reinforced concrete column, the UW-PEER structure performance database was discussed and analyzed. In order to investigate the relevance of failure mode and factors such as longitudinal reinforcement ratio, transverse reinforcement ratio, hoop spacing to depth ratio, aspect ratio, shearing resistance demand to shear capacity ratio and axial load ratio, Fisher's discriminant analysis(FDA) of the above factors was carried out. A discriminant function was developed to identify column failure mode. Results show that three factors, i.e., Vp /Vn, hoop spacing to depth ratio and aspect ratio have important influence on the failure mode. The failure mode has less to do with longitudinal reinforcement ratio, transverse reinforcement ratio and axial load ratio. Through using these three factors and the model proposed, over 85.6% of the original grouped cases were correctly classified. The value of coefficient of Vp /Vn is the largest, which means that discriminant equation is most sensitive to the shearing resistance demand to shear capacity ratio. 展开更多
关键词 Fisher’s DISCRIMINANT analysis(FDA) concrete column FAILURE mode identification performance-based SEISMIC design
下载PDF
Experimental Study on the Axial Compression Behavior of Short Columns of Steel-Fiber-Reinforced Recycled Aggregate Concrete 被引量:1
14
作者 Chunyang Liu Jia Xu +1 位作者 Yifan Gu Ruofan Shi 《Fluid Dynamics & Materials Processing》 EI 2021年第6期1129-1142,共14页
In order to study the axial compression performances of short columns made of recycled aggregate concrete,four samples were designed with different recycled aggregate replacement rates and carbon fibre reinforced plas... In order to study the axial compression performances of short columns made of recycled aggregate concrete,four samples were designed with different recycled aggregate replacement rates and carbon fibre reinforced plastics(CFRP)sheets.Then,monotonic loading was implemented to assess the variation trends of their axial compression properties.The ABAQUS finite element software was also used to determined the compression performances.Good agreement between experimental and numerical results has been found for the different parameters being considered.As shown by the results,recycled coarse aggregates result in improved ductility and better deformation performance of the specimens.The failure of specimens caused by pre damage can be compensated by using CFRP sheets,by which both the resistance to deformation and the axial carrying capacity of columns can be increased. 展开更多
关键词 Recycled aggregate concrete short column axial pressure performance ABAQUS finite element analysis carrying capacity calculation
下载PDF
A comparative study for the impact performance of shaped charge JET on UHPC targets 被引量:6
15
作者 Hao Wu Feng Hu Qin Fang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2019年第4期506-518,共13页
With the development of two-stage munitions(a precursor shaped charge(SC)and a following kinetic energy projectile)to attack the hard concrete targets,as well as the increasing applications of ultra-high performance c... With the development of two-stage munitions(a precursor shaped charge(SC)and a following kinetic energy projectile)to attack the hard concrete targets,as well as the increasing applications of ultra-high performance concrete(UHPC)in both civil and military protective structures,a comparative study on the impact performance of SC formed jet on UHPC target is performed experimentally and numerically at present.Firstly,a series of jet penetration/perforation test on the UHPC,45# steel and UHPC/45# steel composite targets are conducted.By assessing the penetration depth and borehole(crater and tunnel)diameter,the influences of target material and configuration as well as the standoff distance of SC on the impact performance of jet are experimentally discussed.Then,by adopting the 2 D multi-material Arbitrary Lagrange-Euler(ALE)algorithm,Fluid-Structure Interaction(FSI)method and erosion algorithm implemented in the finite element code LS-DYNA,the formation and impact performance of jet in the present test are well reproduced.Finally,based on the validated numerical algorithms,constitutive models and the corresponding parameters,the influences of target material(UHPC,NSC and 45# steel),standoff distance,target configuration(stacked and spaced)and weight efficiency on the impact performance of jet are further discussed.The derived conclusions could provide helpful references for evaluating the ballistic performance of jet and designing the protective structures. 展开更多
关键词 Shaped charge JET ultra-high performance concrete PENETRATION PERFORATION Numerical simulation
下载PDF
A Study on the Flexural Performance of UHPC Precast Deck-Joint Interface by the Exposure of Steel Fiber 被引量:1
16
作者 Kilje Jung Sung Yong Park +2 位作者 Sung Tae Kim Byung-Suk Kim Keunhee Cho 《Engineering(科研)》 2014年第13期1000-1006,共7页
As a solution against the serviceability problem caused by the cracks occurring at the UHPC precast deck-joint interface, this study proposes a method exposing the steel fiber at the interface and evaluates the corres... As a solution against the serviceability problem caused by the cracks occurring at the UHPC precast deck-joint interface, this study proposes a method exposing the steel fiber at the interface and evaluates the corresponding flexural performance of the lap spliced construction joint. After having slowed down the strength development of the concrete placed in the joint of the precast deck by means of a curing retardant, the concrete at the interface is crushed so as to expose the steel fibers and the change in the flexural performance is observed experimentally according to the exposure of the steel fibers. The results show that, even if the ultimate strength and stiffness of the UHPC precast deck including the joint are mostly determined by the arrangement details of the rebar lap splice, the exposure of the steel fibers can secure stable ductile behavior and reduce the width of the cracks generated at the precast deck-joint interface under service load. 展开更多
关键词 ultra-high performance concrete PRECAST DECK System Steel Fiber EXPOSURE Lap-Spliced Connection 4-Point Bending Test
下载PDF
3D打印混凝土永久模板叠合柱的抗压性能数值模拟研究 被引量:1
17
作者 张治成 叶志凯 +2 位作者 孙晓燕 王海龙 高君峰 《土木与环境工程学报(中英文)》 CSCD 北大核心 2024年第1期194-206,共13页
为深入研究3D打印混凝土永久模板叠合柱的抗压性能,基于3D打印混凝土永久模板叠合柱及同尺寸整体现浇对照柱试验建立构件数值模型,模拟分析其轴压荷载-位移响应及失效形态。针对界面粘结性能、现浇混凝土抗压强度、打印模板厚度、荷载... 为深入研究3D打印混凝土永久模板叠合柱的抗压性能,基于3D打印混凝土永久模板叠合柱及同尺寸整体现浇对照柱试验建立构件数值模型,模拟分析其轴压荷载-位移响应及失效形态。针对界面粘结性能、现浇混凝土抗压强度、打印模板厚度、荷载偏心距等参数开展3D打印混凝土永久模板叠合柱的抗压性能计算分析,研究表明:叠合柱轴压极限承载力随着薄弱界面剪切强度、刚度及现浇混凝土抗压强度的增大而增大。由于打印材料的抗压强度高于现浇混凝土,叠合柱抗压极限承载力提升率与打印模板厚度呈近似线性关系,叠合圆柱的抗压极限承载力随着荷载偏心距的增大而降低,呈近似线性负相关。此外,偏心距对叠合圆柱极限承载力下降幅度的影响大于现浇圆柱。 展开更多
关键词 3D打印混凝土 永久模板 叠合柱 抗压性能 数值模拟
下载PDF
部分包覆钢-混凝土组合梁柱节点抗震性能试验研究 被引量:1
18
作者 刘宏欣 贾水钟 +4 位作者 李杰 李亚明 张仪放 蔡艳清 潘法超 《建筑结构》 北大核心 2024年第4期18-23,共6页
为研究不同连接构造的部分包覆钢-混凝土组合梁柱节点(PEC梁柱节点)的抗震性能,对2个PEC梁柱节点试件进行了拟静力加载试验,研究了低周往复荷载作用下PEC梁柱节点试件的破坏现象、滞回曲线、骨架曲线、延性、耗能能力和刚度退化等抗震... 为研究不同连接构造的部分包覆钢-混凝土组合梁柱节点(PEC梁柱节点)的抗震性能,对2个PEC梁柱节点试件进行了拟静力加载试验,研究了低周往复荷载作用下PEC梁柱节点试件的破坏现象、滞回曲线、骨架曲线、延性、耗能能力和刚度退化等抗震性能。结果表明:强轴连接PEC梁柱节点的滞回曲线呈梭形和弓形,在达到极限承载力后仍能保持一定的延性和耗能能力;弱轴连接PEC梁柱节点牛腿与梁间的焊缝处发生破坏,未展现出预期的耗能能力,PEC梁仍在弹塑性状态,没有达到极限状态;PEC梁柱节点核心区混凝土替换为加劲肋板后,试件仍具有较好的承载力、延性和耗能能力,刚度退化规律无明显变化,且强轴连接节点与弱轴连接节点刚度变化规律基本一致;PEC柱牛腿设计过短会导致焊缝连接处断裂,试件延性和耗能能力得不到发挥,剩余刚度较大。 展开更多
关键词 部分包覆钢-混凝土组合梁柱节点 强轴连接 弱轴连接 破坏模式 抗震性能
下载PDF
拼接成型UHPC免拆模板钢筋混凝土柱的抗震性能
19
作者 王朋 尤学辉 +3 位作者 黄杰 史庆轩 陶毅 王秋维 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2024年第1期103-116,共14页
为研究超高性能混凝土(UHPC)免拆模板钢筋混凝土(URC)柱的抗震性能,选取UHPC免拆模板拼接方式和表面处理方式为试验设计参数,制作并完成了9个URC柱和1个钢筋混凝土(RC)柱的拟静力加载试验。模板拼接方式为螺栓加角钢连接、螺栓连接和环... 为研究超高性能混凝土(UHPC)免拆模板钢筋混凝土(URC)柱的抗震性能,选取UHPC免拆模板拼接方式和表面处理方式为试验设计参数,制作并完成了9个URC柱和1个钢筋混凝土(RC)柱的拟静力加载试验。模板拼接方式为螺栓加角钢连接、螺栓连接和环氧树脂砂浆连接;表面处理方式为光面处理、气泡膜印花处理和设肋处理,通过拟静力试验研究了模板拼接方式及表面处理方式对该类柱抗震性能的影响。此外,基于平截面假定,提出了URC柱的正截面偏压承载力计算式。结果表明:峰值荷载前,UHPC模板与核心混凝土黏结面无明显破坏,URC柱表现出良好的整体性,尤其是采用螺栓加角钢连接的URC柱,即使加载至极限位移时,也没有发生界面黏结失效破坏;与普通RC柱相比,URC柱的承载力提高了6.4%~43.3%,延性提高了11.4%~48.7%,耗能能力提高了27.7%~85.3%;三种连接方式中,采用螺栓加角钢连接的URC柱承载力最高,连接最可靠。最后,基于平截面假定提出的公式计算值与试验值吻合较好,可为工程应用提供参考。 展开更多
关键词 超高性能混凝土 免拆模板 钢筋混凝土柱 抗震性能 承载力计算
下载PDF
废弃玻璃粉风积沙混凝土柱抗震性能试验研究
20
作者 王尧鸿 张宇 +3 位作者 姜丽云 李志强 董伟 张巍 《世界地震工程》 北大核心 2024年第2期45-54,共10页
为研究玻璃粉等质量取代20%水泥与风积沙等质量取代30%天然砂对混凝土柱抗震性能的影响,本文设计和制作4根混凝土柱试件。第1根是普通混凝土柱,第2根是玻璃粉等质量取代20%水泥的混凝土柱,第3根是风积沙等质量取代30%河砂的混凝土柱,第... 为研究玻璃粉等质量取代20%水泥与风积沙等质量取代30%天然砂对混凝土柱抗震性能的影响,本文设计和制作4根混凝土柱试件。第1根是普通混凝土柱,第2根是玻璃粉等质量取代20%水泥的混凝土柱,第3根是风积沙等质量取代30%河砂的混凝土柱,第4根是同时用玻璃粉和风积沙分别等质量取代20%水泥和30%河砂的混凝土柱。通过低周往复荷载试验,对比分析各个试件的破坏形态、承载力、滞回性能、骨架曲线、耗能能力、延性系数、刚度退化规律和变形特点。结果表明:20%取代率的玻璃粉取代水泥和30%取代率的风积沙取代天然河砂均能提高混凝土柱的抗震性能,降低构件破坏程度;基于试验结果、Fajfar和Park-Ang提出的地震损伤模型,对其耗能因子β进行修正,得到了修正后的Park-Ang损伤模型,并与废弃玻璃粉风积沙混凝土柱的试验过程吻合较好。 展开更多
关键词 玻璃粉 风积沙 混凝土柱 抗震性能 损伤模型
下载PDF
上一页 1 2 56 下一页 到第
使用帮助 返回顶部