The instability of extremely narrow keyholes is the main challenge in high-power laser welding.In this work,the spatial energy distribution and its influence on the stability of extremely narrow keyholes during ultra-...The instability of extremely narrow keyholes is the main challenge in high-power laser welding.In this work,the spatial energy distribution and its influence on the stability of extremely narrow keyholes during ultra-high power laser welding are studied.A multiphase flow model that considers the vapor plume impact and the multiple scattering of laser radiation is built to simulate the topology and downstream wave flow on the keyhole wall.Drastic keyhole fluctuation is due to excessive energy accumulation,which arises from the abnormal wrinkle structures that form on the front keyhole wall.Suppressing the periodic cutting phenomena on the keyhole opening and the hump accumulation effect on the solid-liquid interface help smooth the keyhole surface.Optimized welding processes are obtained,producing fine,closed,and evenly distributed wrinkle structures,and the keyhole stability is correspondingly improved.The simulation results agree well with the experiment.展开更多
We study the strong nonlinear optical dynamics of nanosecond pulsed Laguerre–Gaussian laser beams of high-order radial modes with zero orbital angular momentum propagating in the fullerene C60molecular medium. It is ...We study the strong nonlinear optical dynamics of nanosecond pulsed Laguerre–Gaussian laser beams of high-order radial modes with zero orbital angular momentum propagating in the fullerene C60molecular medium. It is found that the spatiotemporal profile of the incident pulsed Laguerre–Gaussian laser beam is strongly reshaped during its propagation in the C60molecular medium. The centrosymmetric temporal profile of the incident pulse gradually evolves into a noncentrosymmetric meniscus shape, and the on-axis pulse duration is clearly depressed. Furthermore, the field intensity is distinctly attenuated due to the field-intensity-dependent reverse saturable absorption, and clear optical power limiting behavior is observed for different orders of the input pulsed Laguerre–Gaussian laser beams before the takeover of the saturation effect;the lower the order of the Laguerre–Gaussian beam, the lower the energy transmittance.展开更多
A method for measuring the intensity of focused high-power laser pulses based on numerical simulation of high-harmonic generation in the laser peeler regime is proposed.The dependence of the efficiency of high-harmoni...A method for measuring the intensity of focused high-power laser pulses based on numerical simulation of high-harmonic generation in the laser peeler regime is proposed.The dependence of the efficiency of high-harmonic generation on the laser pulse intensity and the spatial parameters during interaction with solid targets is studied numerically.The simulation clearly shows that the amplitude of the generated harmonics depends on the laser pulse parameters.The proposed method is simpler than similar intensity measurement techniques and does not require complex preparation.展开更多
A miniaturized atomic spin-exchange relaxation-free(SERF)co-magnetometer measures angular velocity using a balanced polarimetry technique which is easily affected by the laser power.A laser power closed-loop control s...A miniaturized atomic spin-exchange relaxation-free(SERF)co-magnetometer measures angular velocity using a balanced polarimetry technique which is easily affected by the laser power.A laser power closed-loop control system is usually used to suppress the fluctuation of the laser power.Although this method can greatly eliminate the fluctuation of the in-loop laser power(the feedback laser),it cannot fully eliminate the fluctuation of the out-of-loop laser power(the signal measurement laser).This leads to SERF gyroscope laser power error,which reduces the inertial measurement accuracy.In this paper,the influence mechanism of the split ratio(the ratio of the in-loop laser power to the out-of-loop laser power)on the out-of-loop laser power control accuracy is analyzed by establishing a laser power transmission model inside and outside the loop.Moreover,a method is developed to improve the out-of-loop laser power stability by optimizing the split ratio.Comparative experiments showed that the relative Allan standard deviation of the out-of-loop laser power decreased from 5.48×10^(-6)to 2.62×10^(-6)at 100 s,and decreased by an order of magnitude from 1.76×10^(-5)to 3.30×10^(-6)at1000 s.Correspondingly,the rate ramp coefficient in the Allan standard deviation curve of the SERF gyroscope test data decreased from 1.312[(°/h)/h]to 0.246[(°/h)/h].And the bias stability increased from 0.032°/h to 0.019°/h.Therefore,the proposed method can improve the long-term stability of the probe laser power and effectively suppress the laser power error of the SERF gyroscope.展开更多
The 975 nm multimode diode lasers with high-order surface Bragg diffraction gratings have been simulated and calcu-lated using the 2D finite difference time domain(FDTD)algorithm and the scattering matrix method(SMM)....The 975 nm multimode diode lasers with high-order surface Bragg diffraction gratings have been simulated and calcu-lated using the 2D finite difference time domain(FDTD)algorithm and the scattering matrix method(SMM).The periods and etch depth of the grating parameters have been optimized.A board area laser diode(BA-LD)with high-order diffraction grat-ings has been designed and fabricated.At output powers up to 10.5 W,the measured spectral width of full width at half maxi-mum(FWHM)is less than 0.5 nm.The results demonstrate that the designed high-order surface gratings can effectively nar-row the spectral width of multimode semiconductor lasers at high output power.展开更多
Laser nitriding is one of the effective techniques to improve the surface properties of titanium alloys and has potential application in the life extension of last-stage steam turbine blades. However, cracking of surf...Laser nitriding is one of the effective techniques to improve the surface properties of titanium alloys and has potential application in the life extension of last-stage steam turbine blades. However, cracking of surface coating is a common problem due to heat concentration in laser nitriding process. Conventionally, the cracks can be avoided through heat treatment, which may have an important influence on the mechanical properties of coating. Crack-free TiN/Ti3Al IMC coatings on Ti6Al4V are prepared by plasma spraying and laser nitriding. The microstructures, phase constitutes and compositions of the coating are observed and analyzed with scanning electron microscopy(SEM), X-ray diffraction(XRD) and X-ray energy-dispersive spectroscopy(EDS). Microhardness, elastic modulus, fracture toughness of the coating are measured. The results show that the crackand pore-free IMC coatings can be made through the proposed method; with increasing laser power, the amount and density of TiN phase in the coating first increased and then decreased, leading to the similar trend of microhardness and elastic modulus and the reverse trend of fracture toughness of the coating. Both the average microhardness and elastic modulus of the coating increase three times higher than those of the substrate. The volume fraction of the TiN reinforced phase in composite can be controlled by varying the laser power and the cracking problem in laser nitriding process is successfully solved.展开更多
Laser cladding nickel-based alloy coating (Ni60) and nickel-based composite coating doped with WC particles by 35 % (WCp/Ni) were produced on the low-carbon steel substrate by CO2 continuous wave laser with power ...Laser cladding nickel-based alloy coating (Ni60) and nickel-based composite coating doped with WC particles by 35 % (WCp/Ni) were produced on the low-carbon steel substrate by CO2 continuous wave laser with power of 5 kW using the injected powder technique. The effect of laser power on microstructure and wear resistance of laser cladding WCp/Ni cermet coating was investigated. The WCp/Ni alloy coating with evenly distributed WC ceramic phases and the better bond with the substrate alloy was obtained at a power of 2.2 kW. Diffusion solution reaction happened between WC particles and the substrate alloy during laser cladding, and led to the formation of block rich-tungsten carbide on the edges of the WC particles, especially at higher power. The WCp/Ni alloy coating consists of the undissolved WC particles, the block or dendritic rich-tungsten carbide, the bar-like rich-chromium carbide, and dendrite solid solution and eutectic structure among the carbides. Microhardness and wear resistance of the WCp/Ni coating at different powers were much higher or better than those of Ni60 alloy coating, and the best results were obtained at power of 2.2 kW.展开更多
Al-Si alloy coatings were prepared on AZ91HP magnesium alloy by broad-beam laser cladding; the influences of the powers on the microstructure and properties of the coatings were discussed. It was found that the micros...Al-Si alloy coatings were prepared on AZ91HP magnesium alloy by broad-beam laser cladding; the influences of the powers on the microstructure and properties of the coatings were discussed. It was found that the microstructure of the coatings at the powers of 3 and 3.5 kW was characterized by Mg2Si dendrites, and needle-like Mg2Al3 (hcp) dispersing in the Mg17Al12 matrix, whereas the coating at the power of 2.5 kW was composed of the petal-like Mg2Al3 (fcc) as well as the needle-like Mg2Al3 (hcp). The coating at the power of 4 kW appeared as α-Mg solid solution and Mg2Si, Mg17Al12, as well as Mg2Al3 (hcp). The coatings with the powers of 3 and 3.5 kW exhibited higher microhardness and better wear resistance because of more Mg2Si and Mg17Al12. However, the coating at the power of 2.5 kW displayed better corrosion resistance.展开更多
In this work,we reported the room-temperature continuous-wave operation of 6.0 W GaN-based blue laser diode(LD),and its stimulated emission wavelength is around 442 nm.The GaN-based high power blue LD is grown on a c-...In this work,we reported the room-temperature continuous-wave operation of 6.0 W GaN-based blue laser diode(LD),and its stimulated emission wavelength is around 442 nm.The GaN-based high power blue LD is grown on a c-plane GaN substrate by metal organic chemical vapor deposition(MOCVD),and the width and length of the ridge waveguide structure are 30 and 1200μm,respectively.The threshold current is about 400 mA,and corresponding threshold current density is 1.1 kA/cm2.展开更多
AerMet100 ultra-high strength steel plates with a thickness of 2 mm were welded using a COz laser welding system. The influences of the welding process parameters on the morphology and microstructure of the welding jo...AerMet100 ultra-high strength steel plates with a thickness of 2 mm were welded using a COz laser welding system. The influences of the welding process parameters on the morphology and microstructure of the welding joints were investigated, and the mechanical property of the welding joints was analyzed. The experimental results showed that the fusion zone of welding joint mainly consisted of columnar grains and a fine dendrite substructure grew epitaxially from the matrix. With the other conditions remaining unchanged, a finer weld microstructure was along with the scanning speed increase. The solidification microstructure gradually transformed from cellular crystal into dendrite crystal and the spaces of dendrite secondary arms rose from the fusion line to the center of the fusion zone. In the fusion zone of the weld, the rapid cooling caused the formation of martensite, which led the microhardness of the fusion zone higher than that of the matrix and the heat affected zone. The tensile strength of the welding joints was tested as 1 700 MPa, which was about 87% of the matrix. However, the tensile strength of the welding joints without defects existed was tested as 1832 MPa, which was about 94% of the matrix.展开更多
A very highly efficient InGaAlAs/AlGaAs quantum-well structure was designed for 808 nm emission,and laser diode chips 390-μm-wide aperture and 2-mm-long cavity length were fabricated.Special pretreatment and passivat...A very highly efficient InGaAlAs/AlGaAs quantum-well structure was designed for 808 nm emission,and laser diode chips 390-μm-wide aperture and 2-mm-long cavity length were fabricated.Special pretreatment and passivation for the chip facets were performed to achieve improved reliability performance.The laser chips were p-side-down mounted on the AlN submount,and then tested at continuous wave(CW)operation with the heat-sink temperature setting to 25℃using a thermoelectric cooler(TEC).As high as 60.5%of the wall-plug efficiency(WPE)was achieved at the injection current of 11 A.The maximum output power of 30.1 W was obtained at 29.5 A when the TEC temperature was set to 12°C.Accelerated life-time test showed that the laser diodes had lifetimes of over 62111 h operating at rated power of 10 W.展开更多
A high power GaSb-based laser diode with lasing wavelength at 2 μm was fabricated and optimized. With the optimized epitaxial laser structure, the internal loss and the threshold current density decreased and the int...A high power GaSb-based laser diode with lasing wavelength at 2 μm was fabricated and optimized. With the optimized epitaxial laser structure, the internal loss and the threshold current density decreased and the internal quantum efficiency increased. For uncoated broad-area lasers, the threshold current density was as low as 144 A/cm2 (72 A/cm^2 per quantum well), and the slope efficiency was 0.2 W/A. The internal loss was 11 cm^-1 and the internal quantum efficiency was 27.1%. The maximum output power of 357 mW under continuous-wave operation at room temperature was achieved. The electrical and optical properties of the laser diode were improved.展开更多
We presented 980-nm oxide-confined vertical-cavity surface-emitting lasers (VCSELs) with a 16 -um oxide aperture. Optical power, voltage, and emission wavelength are measured in an ambient temperature range of 5 ℃-...We presented 980-nm oxide-confined vertical-cavity surface-emitting lasers (VCSELs) with a 16 -um oxide aperture. Optical power, voltage, and emission wavelength are measured in an ambient temperature range of 5 ℃-80 ℃. Measurements combined with an empirical model are used to analyse the power dissipation in the device and the physical mechanism contributing to the thermal rollover phenomenon in VCSEL. It is found that the carrier leakage induced selfheating in the active region and the Joule heating caused by the series resistance are the main sources of power dissipation. In addition, carrier leakage induced self-heating increases as the injection current increases, resulting in a rapid decrease of the internal quantum efficiency, which is a dominant contribution to the thermal rollover of the VCSEL at a larger current. Our study provides useful guidelines to design a 980-nm oxide-confined VCSEL for thermal performance enhancement.展开更多
We report on the design and fabrication of λ-7.2μm distributed feedback quantum cascade lasers lot very high temperature cw operation and low electrical power consumption. The cw operation is reported above 90℃. Fo...We report on the design and fabrication of λ-7.2μm distributed feedback quantum cascade lasers lot very high temperature cw operation and low electrical power consumption. The cw operation is reported above 90℃. For a 2-mm-long and 10-μm-wide laser coated with high-reflectivity on the rear facet, more than 170mW of output power is obtained at 20℃ with a threshold power consumption of 2.4 W, corresponding to 30mW with a threshold power consumption of 3.9 W at 90℃. Robust single-mode emission with a side-mode suppression ratio above 25 dB is continuously tunable by the heat sink temperature or injection current.展开更多
The model of heat source(MHS) which reflects the thermal interaction between materials and laser during processing determines the accuracy of simulation results. To acquire desirable simulations results, although vari...The model of heat source(MHS) which reflects the thermal interaction between materials and laser during processing determines the accuracy of simulation results. To acquire desirable simulations results, although various modifications of heat sources in the aspect of absorption process of laser by materials have been purposed, the distribution of laser power density(DLPD) in MHS is still modeled theoretically. However, in the actual situations of laser processing, the DLPD is definitely different from the ideal models. So, it is indispensable to build MHS using actual DLPD to improve the accuracy of simulation results. Besides, an automatic modeling method will be benefit to simplify the tedious pre-processing of simulations. This paper presents a modeling method and corresponding algorithm to model heat source using measured DLPD. This algorithm automatically processes original data to get modeling parameters and provides a step MHS combining with absorption models. Simulations and experiments of heat transfer in steel plates irradiated by laser prove the mothed and the step MHS. Moreover, the investigations of laser induced thermal-crack propagation in glass highlight the signification of modeling heat source based on actual DLPD and demonstrate the enormous application of this method in the simulation of laser processing.展开更多
The energy model was founded to calculate the critical power of keyhole formation by using the limit principle in CW ( continuous wave ) Nd: YAG laser deep penetration welding process. The model was validated by ex...The energy model was founded to calculate the critical power of keyhole formation by using the limit principle in CW ( continuous wave ) Nd: YAG laser deep penetration welding process. The model was validated by experiments. The results show that '.there are two errors between the calculated critical power of keyhole formation and that of experiments : one is that the calculated results is less than those of experiments, which is caused by not considering the energy loss by heat conduction in the model of keyhole formation. The other is that there is 0. 9 mm error between the axis of the calculated curve of critical power with location of laser focus and that of experimental curve, which is induced by the excursion of laser focus in laser deep penetration welding. At last, the two errors were revised according to the analyses of the errors.展开更多
Keyhole is one of the important phenomena in high-power laser welding process. By studying the keyhole characteristic and detecting the seam offset during high-power fiber laser welding, an infrared sensitive high-spe...Keyhole is one of the important phenomena in high-power laser welding process. By studying the keyhole characteristic and detecting the seam offset during high-power fiber laser welding, an infrared sensitive high-speed camera arranged off-axis orientation of laser beam was applied to capture the dynamic thermal images of a molten pool. The 304 austenitic stainless steel plate butt joint welding experiment with laser power 10 kW was carried out. Through analyzing the keyhole infrared image, the weld position was calculated. Least squares method was used to determine the actual weld position. Image filtering technique was used to process the keyhole image, and the keyhole centroid coordinate were calculated. Also, least squares method was used to fit the keyhole centroid curve equation and establish a nonlinear continuous model which described the deviation between keyhole centroid and weld seam. The heat accumulation effect affected by the infrared radiation was analyzed to determine whether the laser beam focus spot deviated from the desired welding seam. Experimental results showed that the keyhole centroid has related to the seam offset, and can reflect the welding quality.展开更多
Laser-structuring is an effective method to promote ion diffusion and improve the performance of lithium-ion battery(LIB)electrodes.In this work,the effects of laser structuring parameters(groove pitch and depth)on th...Laser-structuring is an effective method to promote ion diffusion and improve the performance of lithium-ion battery(LIB)electrodes.In this work,the effects of laser structuring parameters(groove pitch and depth)on the fundamental characteristics of LIB electrode,such as interfacial area,internal resistances,material loss and electrochemical performance,are investigated,LiNi_(0.5)Co_(0.2)Mn_(0.3)O_(2) cathodes were structured by a femtosecond laser by varying groove depth and pitch,which resulted in a material loss of 5%-14%and an increase of 140%-260%in the in terfacial area between electrode surface and electrolyte.It is shown that the importance of groove depth and pitch on the electrochemical performance(specific capacity and areal discharge capacity)of laser-structured electrode varies with current rates.Groove pitch is more im porta nt at low current rate but groove depth is at high curre nt rate.From the mapping of lithium concentration within the electrodes of varying groove depth and pitch by laser-induced breakdown spectroscopy,it is verified that the groove functions as a diffusion path for lithium ions.The ionic,electronic,and charge transfer resistances measured with symmetric and half cells showed that these internal resistances are differently affected by laser structuring parameters and the changes in porosity,ionic diffusion and electronic pathways.It is demonstrated that the laser structuring parameters for maximum electrode performance and minimum capacity loss should be determined in consideration of the main operating conditions of LIBs.展开更多
We fabricate the Tm-doped double cladding silica fiber by using the vapor-solution hybrid-doping method, then build up an all-fiber Tin-doped fiber laser which can provide the output power of up to 121 W, correspondin...We fabricate the Tm-doped double cladding silica fiber by using the vapor-solution hybrid-doping method, then build up an all-fiber Tin-doped fiber laser which can provide the output power of up to 121 W, corresponding to a slope efficiency of 51% and an optical-optical efficiency of 48%. By using the domestic Tin-doped fiber, it is the first time a hundred-watt level output at 1915nm has been achieved, to the best of our knowledge. The thermal effect of Tm-doped fiber laser is also analyzed.展开更多
Laser photovoltaic devices converting 1064 nm light energy into electric energy present a promising prospect in wireless energy transmission due to the commercial availability of high power 1064 nm lasers with very sm...Laser photovoltaic devices converting 1064 nm light energy into electric energy present a promising prospect in wireless energy transmission due to the commercial availability of high power 1064 nm lasers with very small divergence. Besides their high conversion efficiency, a high output voltage is also expected in a laser energy transmission system. Meanwhile,1064 nm InGaAsP multi-junction laser power converters have been developed using p^+-InGaAs/n^+-InGaAs tunnel junctions to connect sub-cells in series to obtain a high output voltage. The triple-junction laser power converter structures are grown on p-type InP substrates by metal-organic chemical vapor deposition(MOCVD), and InGaAsP laser power converters are fabricated by conventional photovoltaic device processing. The room-temperature I–V measurements show that the 1 × 1 cm^2 triplejunction InGaAsP laser power converters demonstrate a conversion efficiency of 32.6% at a power density of 1.1 W/cm^2, with an open-circuit voltage of 2.16 V and a fill factor of 0.74. In this paper, the characteristics of the laser power converters are analyzed and ways to improve the conversion efficiency are discussed.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.52075201 and 52188102)the Postdoctoral Science Foundation of China(Grant No.2020M682407)。
文摘The instability of extremely narrow keyholes is the main challenge in high-power laser welding.In this work,the spatial energy distribution and its influence on the stability of extremely narrow keyholes during ultra-high power laser welding are studied.A multiphase flow model that considers the vapor plume impact and the multiple scattering of laser radiation is built to simulate the topology and downstream wave flow on the keyhole wall.Drastic keyhole fluctuation is due to excessive energy accumulation,which arises from the abnormal wrinkle structures that form on the front keyhole wall.Suppressing the periodic cutting phenomena on the keyhole opening and the hump accumulation effect on the solid-liquid interface help smooth the keyhole surface.Optimized welding processes are obtained,producing fine,closed,and evenly distributed wrinkle structures,and the keyhole stability is correspondingly improved.The simulation results agree well with the experiment.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11974108 and 11574082)Fundamental Research Funds for the Central Universities (Grant No. 2021MS046)the Natural Science Foundation of Shandong Province, China (Grant No. ZR2019MA020)。
文摘We study the strong nonlinear optical dynamics of nanosecond pulsed Laguerre–Gaussian laser beams of high-order radial modes with zero orbital angular momentum propagating in the fullerene C60molecular medium. It is found that the spatiotemporal profile of the incident pulsed Laguerre–Gaussian laser beam is strongly reshaped during its propagation in the C60molecular medium. The centrosymmetric temporal profile of the incident pulse gradually evolves into a noncentrosymmetric meniscus shape, and the on-axis pulse duration is clearly depressed. Furthermore, the field intensity is distinctly attenuated due to the field-intensity-dependent reverse saturable absorption, and clear optical power limiting behavior is observed for different orders of the input pulsed Laguerre–Gaussian laser beams before the takeover of the saturation effect;the lower the order of the Laguerre–Gaussian beam, the lower the energy transmittance.
基金This work was supported by the Russian Science Foundation within the framework of Project No.20-62-46050.
文摘A method for measuring the intensity of focused high-power laser pulses based on numerical simulation of high-harmonic generation in the laser peeler regime is proposed.The dependence of the efficiency of high-harmonic generation on the laser pulse intensity and the spatial parameters during interaction with solid targets is studied numerically.The simulation clearly shows that the amplitude of the generated harmonics depends on the laser pulse parameters.The proposed method is simpler than similar intensity measurement techniques and does not require complex preparation.
基金the National Natural Science Foundation of China(Grant Nos.61925301 and 62103026).
文摘A miniaturized atomic spin-exchange relaxation-free(SERF)co-magnetometer measures angular velocity using a balanced polarimetry technique which is easily affected by the laser power.A laser power closed-loop control system is usually used to suppress the fluctuation of the laser power.Although this method can greatly eliminate the fluctuation of the in-loop laser power(the feedback laser),it cannot fully eliminate the fluctuation of the out-of-loop laser power(the signal measurement laser).This leads to SERF gyroscope laser power error,which reduces the inertial measurement accuracy.In this paper,the influence mechanism of the split ratio(the ratio of the in-loop laser power to the out-of-loop laser power)on the out-of-loop laser power control accuracy is analyzed by establishing a laser power transmission model inside and outside the loop.Moreover,a method is developed to improve the out-of-loop laser power stability by optimizing the split ratio.Comparative experiments showed that the relative Allan standard deviation of the out-of-loop laser power decreased from 5.48×10^(-6)to 2.62×10^(-6)at 100 s,and decreased by an order of magnitude from 1.76×10^(-5)to 3.30×10^(-6)at1000 s.Correspondingly,the rate ramp coefficient in the Allan standard deviation curve of the SERF gyroscope test data decreased from 1.312[(°/h)/h]to 0.246[(°/h)/h].And the bias stability increased from 0.032°/h to 0.019°/h.Therefore,the proposed method can improve the long-term stability of the probe laser power and effectively suppress the laser power error of the SERF gyroscope.
基金supported by the National Key R&D Program of China,No.2022YFB4601201.
文摘The 975 nm multimode diode lasers with high-order surface Bragg diffraction gratings have been simulated and calcu-lated using the 2D finite difference time domain(FDTD)algorithm and the scattering matrix method(SMM).The periods and etch depth of the grating parameters have been optimized.A board area laser diode(BA-LD)with high-order diffraction grat-ings has been designed and fabricated.At output powers up to 10.5 W,the measured spectral width of full width at half maxi-mum(FWHM)is less than 0.5 nm.The results demonstrate that the designed high-order surface gratings can effectively nar-row the spectral width of multimode semiconductor lasers at high output power.
基金supported by National Natural Science Foundations of China(Grant Nos. 51175177, 10672058)Shanghai Municipal Leading Academic Discipline Project of China (Grant No. B503)
文摘Laser nitriding is one of the effective techniques to improve the surface properties of titanium alloys and has potential application in the life extension of last-stage steam turbine blades. However, cracking of surface coating is a common problem due to heat concentration in laser nitriding process. Conventionally, the cracks can be avoided through heat treatment, which may have an important influence on the mechanical properties of coating. Crack-free TiN/Ti3Al IMC coatings on Ti6Al4V are prepared by plasma spraying and laser nitriding. The microstructures, phase constitutes and compositions of the coating are observed and analyzed with scanning electron microscopy(SEM), X-ray diffraction(XRD) and X-ray energy-dispersive spectroscopy(EDS). Microhardness, elastic modulus, fracture toughness of the coating are measured. The results show that the crackand pore-free IMC coatings can be made through the proposed method; with increasing laser power, the amount and density of TiN phase in the coating first increased and then decreased, leading to the similar trend of microhardness and elastic modulus and the reverse trend of fracture toughness of the coating. Both the average microhardness and elastic modulus of the coating increase three times higher than those of the substrate. The volume fraction of the TiN reinforced phase in composite can be controlled by varying the laser power and the cracking problem in laser nitriding process is successfully solved.
基金Item Sponsored by Research Programof Anhui Science and Technology Office (2005KJ030) and Korea Research FoundationGrant (KRF-2004-005-D00096)
文摘Laser cladding nickel-based alloy coating (Ni60) and nickel-based composite coating doped with WC particles by 35 % (WCp/Ni) were produced on the low-carbon steel substrate by CO2 continuous wave laser with power of 5 kW using the injected powder technique. The effect of laser power on microstructure and wear resistance of laser cladding WCp/Ni cermet coating was investigated. The WCp/Ni alloy coating with evenly distributed WC ceramic phases and the better bond with the substrate alloy was obtained at a power of 2.2 kW. Diffusion solution reaction happened between WC particles and the substrate alloy during laser cladding, and led to the formation of block rich-tungsten carbide on the edges of the WC particles, especially at higher power. The WCp/Ni alloy coating consists of the undissolved WC particles, the block or dendritic rich-tungsten carbide, the bar-like rich-chromium carbide, and dendrite solid solution and eutectic structure among the carbides. Microhardness and wear resistance of the WCp/Ni coating at different powers were much higher or better than those of Ni60 alloy coating, and the best results were obtained at power of 2.2 kW.
基金supported by the Chinese Post-Doctoral Fund (No.20070421011)the Jiangsu Province Post-Doctoral Fund (No.0702029B)
文摘Al-Si alloy coatings were prepared on AZ91HP magnesium alloy by broad-beam laser cladding; the influences of the powers on the microstructure and properties of the coatings were discussed. It was found that the microstructure of the coatings at the powers of 3 and 3.5 kW was characterized by Mg2Si dendrites, and needle-like Mg2Al3 (hcp) dispersing in the Mg17Al12 matrix, whereas the coating at the power of 2.5 kW was composed of the petal-like Mg2Al3 (fcc) as well as the needle-like Mg2Al3 (hcp). The coating at the power of 4 kW appeared as α-Mg solid solution and Mg2Si, Mg17Al12, as well as Mg2Al3 (hcp). The coatings with the powers of 3 and 3.5 kW exhibited higher microhardness and better wear resistance because of more Mg2Si and Mg17Al12. However, the coating at the power of 2.5 kW displayed better corrosion resistance.
基金This work was supported by the National Key R&D Program of China(Grant Nos.2018YFB0406903,2017YFB0405001,2016YFB0400803 and 2016YFB0401801)the Science Challenge Project(Grant No.TZ2016003)+5 种基金the National Natural Science Foundation of China(Grant Nos.62034008,62074142,62074140,61974162,61904172,and 61874175)the Youth Innovation Promotion Association of Chinese Academy of Sciences(Grant No.2019115)Beijing Nova Program(Grant No.202093)Beijing Municipal Science and Technology Project(Grant No.Z161100002116037)Jiangsu Institute of Advanced Semiconductors(IASEMI 2020-CRP-02)Young Elite Scientists Sponsorship Program by CAST.
文摘In this work,we reported the room-temperature continuous-wave operation of 6.0 W GaN-based blue laser diode(LD),and its stimulated emission wavelength is around 442 nm.The GaN-based high power blue LD is grown on a c-plane GaN substrate by metal organic chemical vapor deposition(MOCVD),and the width and length of the ridge waveguide structure are 30 and 1200μm,respectively.The threshold current is about 400 mA,and corresponding threshold current density is 1.1 kA/cm2.
基金Funded by the National Natural Science Foundation of China(Nos.51201087,51165038)the Project of Jiangxi Province of Education(No.GJJ13493)+1 种基金the State Key Laboratory of Solidification Processing in NWPU(No.SKLSP201306)the China Postdoctoral Science Foundation(No.2014M552485)
文摘AerMet100 ultra-high strength steel plates with a thickness of 2 mm were welded using a COz laser welding system. The influences of the welding process parameters on the morphology and microstructure of the welding joints were investigated, and the mechanical property of the welding joints was analyzed. The experimental results showed that the fusion zone of welding joint mainly consisted of columnar grains and a fine dendrite substructure grew epitaxially from the matrix. With the other conditions remaining unchanged, a finer weld microstructure was along with the scanning speed increase. The solidification microstructure gradually transformed from cellular crystal into dendrite crystal and the spaces of dendrite secondary arms rose from the fusion line to the center of the fusion zone. In the fusion zone of the weld, the rapid cooling caused the formation of martensite, which led the microhardness of the fusion zone higher than that of the matrix and the heat affected zone. The tensile strength of the welding joints was tested as 1 700 MPa, which was about 87% of the matrix. However, the tensile strength of the welding joints without defects existed was tested as 1832 MPa, which was about 94% of the matrix.
基金supported by the Natural Science Basic Research Plan in Shaanxi Province of China (No. 2018GY-005, No. 2017GY-065, No. 2017KJXX-72)
文摘A very highly efficient InGaAlAs/AlGaAs quantum-well structure was designed for 808 nm emission,and laser diode chips 390-μm-wide aperture and 2-mm-long cavity length were fabricated.Special pretreatment and passivation for the chip facets were performed to achieve improved reliability performance.The laser chips were p-side-down mounted on the AlN submount,and then tested at continuous wave(CW)operation with the heat-sink temperature setting to 25℃using a thermoelectric cooler(TEC).As high as 60.5%of the wall-plug efficiency(WPE)was achieved at the injection current of 11 A.The maximum output power of 30.1 W was obtained at 29.5 A when the TEC temperature was set to 12°C.Accelerated life-time test showed that the laser diodes had lifetimes of over 62111 h operating at rated power of 10 W.
基金supported by the Beijing Natural Science Foundation, China (Grant No. 4112058)
文摘A high power GaSb-based laser diode with lasing wavelength at 2 μm was fabricated and optimized. With the optimized epitaxial laser structure, the internal loss and the threshold current density decreased and the internal quantum efficiency increased. For uncoated broad-area lasers, the threshold current density was as low as 144 A/cm2 (72 A/cm^2 per quantum well), and the slope efficiency was 0.2 W/A. The internal loss was 11 cm^-1 and the internal quantum efficiency was 27.1%. The maximum output power of 357 mW under continuous-wave operation at room temperature was achieved. The electrical and optical properties of the laser diode were improved.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 60908012 and 61076148)the Foundation of Beijing Municipal Education Commission, China (Grant No. KM201010005030)
文摘We presented 980-nm oxide-confined vertical-cavity surface-emitting lasers (VCSELs) with a 16 -um oxide aperture. Optical power, voltage, and emission wavelength are measured in an ambient temperature range of 5 ℃-80 ℃. Measurements combined with an empirical model are used to analyse the power dissipation in the device and the physical mechanism contributing to the thermal rollover phenomenon in VCSEL. It is found that the carrier leakage induced selfheating in the active region and the Joule heating caused by the series resistance are the main sources of power dissipation. In addition, carrier leakage induced self-heating increases as the injection current increases, resulting in a rapid decrease of the internal quantum efficiency, which is a dominant contribution to the thermal rollover of the VCSEL at a larger current. Our study provides useful guidelines to design a 980-nm oxide-confined VCSEL for thermal performance enhancement.
基金Supported by the National Basic Research Program of China under Grant No 2013CB632801the National Key Research and Development Program under Grant No 2016YFB0402303+2 种基金the National Natural Science Foundation of China under Grant Nos61435014,61627822,61574136 and 61306058the Key Projects of Chinese Academy of Sciences under Grant No ZDRW-XH-2016-4the Beijing Natural Science Foundation under Grant No 4162060
文摘We report on the design and fabrication of λ-7.2μm distributed feedback quantum cascade lasers lot very high temperature cw operation and low electrical power consumption. The cw operation is reported above 90℃. For a 2-mm-long and 10-μm-wide laser coated with high-reflectivity on the rear facet, more than 170mW of output power is obtained at 20℃ with a threshold power consumption of 2.4 W, corresponding to 30mW with a threshold power consumption of 3.9 W at 90℃. Robust single-mode emission with a side-mode suppression ratio above 25 dB is continuously tunable by the heat sink temperature or injection current.
基金Project(2021YFF0500200) supported by the National Key R&D Program of ChinaProject(52105437) supported by the National Natural Science Foundation of China+1 种基金Project(202006120184) supported by the Heilongjiang Provincial Postdoctoral Science Foundation,ChinaProject(LBH-Z20054) supported by the China Scholarship Council。
文摘The model of heat source(MHS) which reflects the thermal interaction between materials and laser during processing determines the accuracy of simulation results. To acquire desirable simulations results, although various modifications of heat sources in the aspect of absorption process of laser by materials have been purposed, the distribution of laser power density(DLPD) in MHS is still modeled theoretically. However, in the actual situations of laser processing, the DLPD is definitely different from the ideal models. So, it is indispensable to build MHS using actual DLPD to improve the accuracy of simulation results. Besides, an automatic modeling method will be benefit to simplify the tedious pre-processing of simulations. This paper presents a modeling method and corresponding algorithm to model heat source using measured DLPD. This algorithm automatically processes original data to get modeling parameters and provides a step MHS combining with absorption models. Simulations and experiments of heat transfer in steel plates irradiated by laser prove the mothed and the step MHS. Moreover, the investigations of laser induced thermal-crack propagation in glass highlight the signification of modeling heat source based on actual DLPD and demonstrate the enormous application of this method in the simulation of laser processing.
文摘The energy model was founded to calculate the critical power of keyhole formation by using the limit principle in CW ( continuous wave ) Nd: YAG laser deep penetration welding process. The model was validated by experiments. The results show that '.there are two errors between the calculated critical power of keyhole formation and that of experiments : one is that the calculated results is less than those of experiments, which is caused by not considering the energy loss by heat conduction in the model of keyhole formation. The other is that there is 0. 9 mm error between the axis of the calculated curve of critical power with location of laser focus and that of experimental curve, which is induced by the excursion of laser focus in laser deep penetration welding. At last, the two errors were revised according to the analyses of the errors.
文摘Keyhole is one of the important phenomena in high-power laser welding process. By studying the keyhole characteristic and detecting the seam offset during high-power fiber laser welding, an infrared sensitive high-speed camera arranged off-axis orientation of laser beam was applied to capture the dynamic thermal images of a molten pool. The 304 austenitic stainless steel plate butt joint welding experiment with laser power 10 kW was carried out. Through analyzing the keyhole infrared image, the weld position was calculated. Least squares method was used to determine the actual weld position. Image filtering technique was used to process the keyhole image, and the keyhole centroid coordinate were calculated. Also, least squares method was used to fit the keyhole centroid curve equation and establish a nonlinear continuous model which described the deviation between keyhole centroid and weld seam. The heat accumulation effect affected by the infrared radiation was analyzed to determine whether the laser beam focus spot deviated from the desired welding seam. Experimental results showed that the keyhole centroid has related to the seam offset, and can reflect the welding quality.
基金supported by a GIST Research Institute(GRI)grant funded by the GIST in 2021supported by the Korea In stitute for Advancement of Tech no logy(KIAT)grant funded by the Korea Government(MOTIE).(P0008763,The Competency Development Program for Industry Specialist.)。
文摘Laser-structuring is an effective method to promote ion diffusion and improve the performance of lithium-ion battery(LIB)electrodes.In this work,the effects of laser structuring parameters(groove pitch and depth)on the fundamental characteristics of LIB electrode,such as interfacial area,internal resistances,material loss and electrochemical performance,are investigated,LiNi_(0.5)Co_(0.2)Mn_(0.3)O_(2) cathodes were structured by a femtosecond laser by varying groove depth and pitch,which resulted in a material loss of 5%-14%and an increase of 140%-260%in the in terfacial area between electrode surface and electrolyte.It is shown that the importance of groove depth and pitch on the electrochemical performance(specific capacity and areal discharge capacity)of laser-structured electrode varies with current rates.Groove pitch is more im porta nt at low current rate but groove depth is at high curre nt rate.From the mapping of lithium concentration within the electrodes of varying groove depth and pitch by laser-induced breakdown spectroscopy,it is verified that the groove functions as a diffusion path for lithium ions.The ionic,electronic,and charge transfer resistances measured with symmetric and half cells showed that these internal resistances are differently affected by laser structuring parameters and the changes in porosity,ionic diffusion and electronic pathways.It is demonstrated that the laser structuring parameters for maximum electrode performance and minimum capacity loss should be determined in consideration of the main operating conditions of LIBs.
基金Supported by the National High-Technology Research and Development Program of China under Grant No 2013AA031501the National Natural Science Foundation of China for Director Fund of WNLO
文摘We fabricate the Tm-doped double cladding silica fiber by using the vapor-solution hybrid-doping method, then build up an all-fiber Tin-doped fiber laser which can provide the output power of up to 121 W, corresponding to a slope efficiency of 51% and an optical-optical efficiency of 48%. By using the domestic Tin-doped fiber, it is the first time a hundred-watt level output at 1915nm has been achieved, to the best of our knowledge. The thermal effect of Tm-doped fiber laser is also analyzed.
基金partially supported by the Jiangsu Province Science Foundation for Youths (No. BK20170431)the National Natural Science Foundation of China (No. 61604171)。
文摘Laser photovoltaic devices converting 1064 nm light energy into electric energy present a promising prospect in wireless energy transmission due to the commercial availability of high power 1064 nm lasers with very small divergence. Besides their high conversion efficiency, a high output voltage is also expected in a laser energy transmission system. Meanwhile,1064 nm InGaAsP multi-junction laser power converters have been developed using p^+-InGaAs/n^+-InGaAs tunnel junctions to connect sub-cells in series to obtain a high output voltage. The triple-junction laser power converter structures are grown on p-type InP substrates by metal-organic chemical vapor deposition(MOCVD), and InGaAsP laser power converters are fabricated by conventional photovoltaic device processing. The room-temperature I–V measurements show that the 1 × 1 cm^2 triplejunction InGaAsP laser power converters demonstrate a conversion efficiency of 32.6% at a power density of 1.1 W/cm^2, with an open-circuit voltage of 2.16 V and a fill factor of 0.74. In this paper, the characteristics of the laser power converters are analyzed and ways to improve the conversion efficiency are discussed.