期刊文献+
共找到3,251篇文章
< 1 2 163 >
每页显示 20 50 100
Prediction on Failure Pressure of Pipeline Containing Corrosion Defects Based on ISSA-BPNNModel
1
作者 Qi Zhuang Dong Liu Zhuo Chen 《Energy Engineering》 EI 2024年第3期821-834,共14页
Oil and gas pipelines are affected by many factors,such as pipe wall thinning and pipeline rupture.Accurate prediction of failure pressure of oil and gas pipelines can provide technical support for pipeline safety man... Oil and gas pipelines are affected by many factors,such as pipe wall thinning and pipeline rupture.Accurate prediction of failure pressure of oil and gas pipelines can provide technical support for pipeline safety management.Aiming at the shortcomings of the BP Neural Network(BPNN)model,such as low learning efficiency,sensitivity to initial weights,and easy falling into a local optimal state,an Improved Sparrow Search Algorithm(ISSA)is adopted to optimize the initial weights and thresholds of BPNN,and an ISSA-BPNN failure pressure prediction model for corroded pipelines is established.Taking 61 sets of pipelines blasting test data as an example,the prediction model was built and predicted by MATLAB software,and compared with the BPNN model,GA-BPNN model,and SSA-BPNN model.The results show that the MAPE of the ISSA-BPNN model is 3.4177%,and the R2 is 0.9880,both of which are superior to its comparison model.Using the ISSA-BPNN model has high prediction accuracy and stability,and can provide support for pipeline inspection and maintenance. 展开更多
关键词 Oil and gas pipeline corrosion defect failure pressure prediction sparrow search algorithm BP neural network logistic chaotic map
下载PDF
Research of Risk Identification and Prevention of Underground Pressure Pipelines Damage Caused by External Disturbance
2
作者 Xinxing Han Zhuangzhuang Zhang 《Journal of Architectural Research and Development》 2023年第3期31-39,共9页
External disturbance is an important cause of underground pressure pipeline damage,which leads to accidents,and it is crucial to study the risk of damage caused by external disturbance and come up with proper preventi... External disturbance is an important cause of underground pressure pipeline damage,which leads to accidents,and it is crucial to study the risk of damage caused by external disturbance and come up with proper prevention and control measures.We reviewed literature on risk identification of underground pressure pipelines damage due to external disturbance was conducted,and a list of risk factors was formed.Based on the list of risk factors,fault tree analysis was carried out on underground pressure pipelines damage caused by external disturbances,and risk prevention and control measures were proposed through the calculation of minimum cut sets,minimum path sets,and structural importance,in hopes of providing reference for the normal operation of underground pressure pipelines. 展开更多
关键词 Underground pressure pipeline damage External disturbance Risk identification Fault tree Risk prevention and control
下载PDF
Novel Methodologies for Preventing Crack Propagation in Steel Gas Pipelines Considering the Temperature Effect
3
作者 Nurlan Zhangabay Ulzhan Ibraimova +4 位作者 Marco Bonopera Ulanbator Suleimenov Konstantin Avramov Maryna Chernobryvko Aigerim Yessengali 《Structural Durability & Health Monitoring》 EI 2025年第1期1-23,共23页
Using the software ANSYS-19.2/Explicit Dynamics,this study performedfinite-element modeling of the large-diameter steel pipeline cross-section for the Beineu-Bozoy-Shymkent gas pipeline with a non-through straight crac... Using the software ANSYS-19.2/Explicit Dynamics,this study performedfinite-element modeling of the large-diameter steel pipeline cross-section for the Beineu-Bozoy-Shymkent gas pipeline with a non-through straight crack,strengthened by steel wire wrapping.The effects of the thread tensile force of the steel winding in the form of single rings at the crack edges and the wires with different winding diameters and pitches were also studied.The results showed that the strengthening was preferably executed at a minimum value of the thread tensile force,which was 6.4%more effective than that at its maximum value.The analysis of the influence of the winding dia-meters showed that the equivalent stresses increased by 32%from the beginning of the crack growth until the wire broke.The increment in winding diameter decelerated the disclosure of the edge crack and reduced its length by 8.2%.The analysis of the influence of the winding pitch showed that decreasing the distance between the winding turns also led to a 33.6%reduction in the length of the straight crack and a 7.9%reduction in the maximum stres-ses on the strengthened pipeline cross-section.The analysis of the temperature effect on the pipeline material,within a range from-40℃ to+50℃,resulted in a crack length change of up to 5.8%.As the temperature dropped,the crack length decreased.Within such a temperature range,the maximum stresses were observed along the cen-tral area of the crack,which were equal to 413 MPa at+50℃ and 440 MPa at-40℃.The results also showed that the presence of the steel winding in the pipeline significantly reduced the length of crack propagation up to 8.4 times,depending on the temperature effect and design parameters of prestressing.This work integrated the existing methods for crack localization along steel gas pipelines. 展开更多
关键词 Crack propagation finite-element internal pressure PRESTRESSING steel gas pipeline temperature effect
下载PDF
Experimental investigation on the wave-induced pore pressure around shallowly embedded pipelines 被引量:2
4
作者 PAN Dongzi WANG Lizhong +1 位作者 PAN Cunhong HU Jinchun 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2007年第5期125-135,共11页
A series of regular wave experiments have been done in a large-scale wave flume to investigate the wave-induced pore pressure around the submarine shallowly embedded pipelines. The model pipelines are buried in three ... A series of regular wave experiments have been done in a large-scale wave flume to investigate the wave-induced pore pressure around the submarine shallowly embedded pipelines. The model pipelines are buried in three kinds of soils, including gravel, sand and silt with different burial depth. The input waves change with height and period. The results show that the amplitudes of wave-induced pore pressure increase as the wave period increase, and decay from the surface to the bottom of seabed. Higher pore pressures are recorded at the pipeline top and the lower pore pressures at the bottom, especially in the sand seabed. The normalized pressure around pipeline decreases as the relative water depth, burial depth or scattering parameters increase. For the silt seabed, the wavelet transform has been successfully used to analyze the signals of wave - induced pore pressure, and the oscillatory and residual pore pressure can be extracted by wavelet analysis. Higher oscillatory pressures are recorded at the bottom and the lower pressures at the top of the pipeline. However, higher residual pressures are recorded at the top and the lower pressures at the bottom of the pipeline. 展开更多
关键词 ocean engineering model test submarine pipeline pore pressure wavelet analysis
下载PDF
Prediction of Collapse Pressure of Submarine Pipelines in A Wide Range of Diameter–Thickness Ratio 被引量:3
5
作者 XU Wan-hai PANG Tao +3 位作者 YAN Shu-ming ZHAI Li-bin KANG You-wei ZHANG Shu-hai 《China Ocean Engineering》 SCIE EI CSCD 2022年第4期565-574,共10页
Submarine pipelines play an important role in offshore oil and gas development.A touchy issue in pipeline design and application is how to avoid the local collapse of pipelines under external pressure.The pipe diamete... Submarine pipelines play an important role in offshore oil and gas development.A touchy issue in pipeline design and application is how to avoid the local collapse of pipelines under external pressure.The pipe diameter-thickness ratio D/t is one of the key factors that determine the local critical collapse pressure of the submarine pipelines.Based on the pipeline collapse experiment and finite element simulation,this paper explores the pressure-bearing capacity of the pipeline under external pressure in a wide range of diameter-thickness ratio D/t.Some interesting and important phenomena have been observed and discussed.In the range of 16<D/t<80,both DNV specification and finite element simulation can predict the collapse pressure of pipeline quite well;in the range of 10<D/t<16,the DNV specification is conservative compared with the experimental results,while the finite element simulation results are slightly larger than the experimental results.Further parameter analysis shows that compared with thin-walled pipes,improving the material grade of thick-walled pipes has higher benefits,and for thin-walled pipes,the ovality f_(0)should be controlled even more.In addition,combining the results of finite element simulation and model experiment,an empirical formula of critical collapse pressure for thick-walled pipelines is proposed,which is used to correct the error of DNV specification in the range of 10<D/t<16. 展开更多
关键词 collapse pressure submarine pipelines diameter-thickness ratio DNV specification finite element simulation
下载PDF
Failure Pressure Analysis of Corroded Moderate-to-High Strength Pipelines 被引量:6
6
作者 苏晨亮 李昕 周晶 《China Ocean Engineering》 SCIE EI CSCD 2016年第1期69-82,共14页
Based on the elastic-plastic, large-deformation finite element method, burst capacity of steel pipeline with longitudinal corrosion defect subjected to internal pressure is studied. The appropriate stress-based criter... Based on the elastic-plastic, large-deformation finite element method, burst capacity of steel pipeline with longitudinal corrosion defect subjected to internal pressure is studied. The appropriate stress-based criterion is used to predict the failure pressure of finite element model of corroded pipeline under internal pressure. By considering the pipe steel grades and geometries of corrosion defects, a series of finite element analyses is conducted. The effects of corrosion depth, length and width on burst capacity are also discussed. A specific failure pressure solution for the assessment of corrosion defects in moderate-to-high strength pipeline is proposed on the base of numerical results. The failure pressures predicted by the proposed method are in better agreement with the experimental results than the results by the other methods. 展开更多
关键词 steel pipeline stress-based criteria failure pressure effect of corrosion width
下载PDF
Experimental Study on the Distribution of Velocity and Pressure near a Submarine Pipeline 被引量:2
7
作者 HAN Yan SHI Bing REN Xingyue JING Xiaodong 《Journal of Ocean University of China》 SCIE CAS 2009年第4期404-408,共5页
As a transport means of oil and gas the submarine pipeline has many merits, such as continuous delivery, large conveying capacity, convenient management, etc. A tube was chosen in our study to simulate the submarine p... As a transport means of oil and gas the submarine pipeline has many merits, such as continuous delivery, large conveying capacity, convenient management, etc. A tube was chosen in our study to simulate the submarine pipeline in the experiments. A high accuracy instrument ADV and high precision point-type pressure sensors were used to measure the parameters of the flow field, including the pressure distribution, velocities at seven cross sections near the submarine pipeline with five different clearance ratios, and twelve dynamic pressure values around the pipeline. The pressure distributions and velocity changes around the pipe under dif- ferent flow velocities and clearance ratios were analyzed. These results might be useful for further study of submarine pipeline ero- sion and protection. 展开更多
关键词 submarine pipeline velocity field pressure distribution EXPERIMENT
下载PDF
Data-driven Methods to Predict the Burst Strength of Corroded Line Pipelines Subjected to Internal Pressure 被引量:1
8
作者 Jie Cai Xiaoli Jiang +2 位作者 Yazhou Yang Gabriel Lodewijks Minchang Wang 《Journal of Marine Science and Application》 CSCD 2022年第2期115-132,共18页
A corrosion defect is recognized as one of the most severe phenomena for high-pressure pipelines,especially those served for a long time.Finite-element method and empirical formulas are thereby used for the strength p... A corrosion defect is recognized as one of the most severe phenomena for high-pressure pipelines,especially those served for a long time.Finite-element method and empirical formulas are thereby used for the strength prediction of such pipes with corrosion.However,it is time-consuming for finite-element method and there is a limited application range by using empirical formulas.In order to improve the prediction of strength,this paper investigates the burst pressure of line pipelines with a single corrosion defect subjected to internal pressure based on data-driven methods.Three supervised ML(machine learning)algorithms,including the ANN(artificial neural network),the SVM(support vector machine)and the LR(linear regression),are deployed to train models based on experimental data.Data analysis is first conducted to determine proper pipe features for training.Hyperparameter tuning to control the learning process is then performed to fit the best strength models for corroded pipelines.Among all the proposed data-driven models,the ANN model with three neural layers has the highest training accuracy,but also presents the largest variance.The SVM model provides both high training accuracy and high validation accuracy.The LR model has the best performance in terms of generalization ability.These models can be served as surrogate models by transfer learning with new coming data in future research,facilitating a sustainable and intelligent decision-making of corroded pipelines. 展开更多
关键词 pipelines CORROSION Burst strength Internal pressure Data-driven method Machine learning
下载PDF
Recent Research Advances in the Risk Assessment Method of an Underground Pressure Pipeline 被引量:1
9
作者 TAO Wen-liang WEI Tao 《International Journal of Plant Engineering and Management》 2005年第4期214-223,共10页
This paper reviews the risk assessment method of an underground pressure pipeline, introduces the risk assessment method of expert grading, fuzzy integrative assessment, probabilistic risk assessment and extenics asse... This paper reviews the risk assessment method of an underground pressure pipeline, introduces the risk assessment method of expert grading, fuzzy integrative assessment, probabilistic risk assessment and extenics assessment in an underground pressure pipeline. Moreover, it puts forward the developing orientation of risk assessment. 展开更多
关键词 RISK underground pressure pipeline risk assessment expert grading fuzzy integrativeassessment probabilistic risk assessment extenics assessment
下载PDF
Modeling of fluid dynamics interacting with ductile fraction propagation in high pressure pipeline
10
作者 Mihaela Popescu 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2009年第3期311-318,共8页
This paper presents a computational model for the fluid dynamics in a fractured ductile pipe under high pressure. The pressure profile in front of the crack tip, which is the driving source of crack propagation, is co... This paper presents a computational model for the fluid dynamics in a fractured ductile pipe under high pressure. The pressure profile in front of the crack tip, which is the driving source of crack propagation, is computed using a nonlinear wave equation. The solution is coupled with a one dimensional choked flow analysis behind the crack. The simulation utilizes a high order optimized prefactored compact-finite volume method in space, and low dispersion and dissipation Runge-Kutta in time. As the pipe fractures the rapid depressurization take place inside the pipe and the propagation of the crack-induced waves strongly influences the outflow dynamics. Consistent with the experimental observation, the model predicts the expansion wave inside the pipe, and the reflection and outflow of the wave. The model also helps characterize the propagation of the crack dynamics and fluid flows around the tip of the crack. 展开更多
关键词 Fluid dynamics High pressure pipeline -Ductile fracture propagation - Finite volume method
下载PDF
A NEW MODEL FOR CALCULATING PROPAGATION PRESSURE AND INITIATION PRESSURE OF PIPELINES WITH A LOCAL DENT
11
作者 Huang Yuying and Chen Keming Professor, Huazhong University of Science and Technology, Wuhan Lecturer, Huazhong University of Science and Technology, Wuhan 《China Ocean Engineering》 SCIE EI 1989年第1期119-130,共12页
An analytical model of a ring with six yield hinges and two deformable arc segments is presented for. the prediction of the buckle propagation pressure and initiation pressure in offshore pipelines. The configuration ... An analytical model of a ring with six yield hinges and two deformable arc segments is presented for. the prediction of the buckle propagation pressure and initiation pressure in offshore pipelines. The configuration of a fully collapsed ring is considered as a real dumbbell shape with a line touch between two 'bells', instead of the dumbbell shape with a point touch of two diametrically opposite points. Calculations are performed assuming that the dominant effect on the plastic energy dissipation has the circumferential bending mode. For the linear strain-hardening materials it is found that theoretical predictions based on the above model for both propagation pressure and initiation nressure are in good agreement with experimental results of Kyriakides et al. 展开更多
关键词 A NEW MODEL FOR CALCULATING PROPAGATION pressure AND INITIATION pressure OF pipelineS WITH A LOCAL DENT LENGTH mode
下载PDF
Pressure Surge Dependence on Valve Operations in a Pipeline Loading System
12
作者 Barinaadaa Thaddeus Lebele-Alawa Felix Ezekiel Oparadike 《Engineering(科研)》 2015年第6期322-330,共9页
This paper discusses the influence of valve operations on pressure surge in a pipeline. The valve is a protective type which remains open in a pipeline loading system during normal operation but shut down the system w... This paper discusses the influence of valve operations on pressure surge in a pipeline. The valve is a protective type which remains open in a pipeline loading system during normal operation but shut down the system when there is an emergency such as storm. The data for the study were obtained from measurements at Agbada 1 flow station as well as log sheets. Also, calculations were made using existing and derived formulas to obtain the values of Crude Oil and Pipe parameters that could not be measured directly or derived from data or log sheets. Surge analysis was carried out on the pipeline system to ascertain changes in pressure and flow rates along the pipeline following valve shut down at any time using developed pressure and flow equations. The results of the simulation analysis showed remarkable changes in the fluid pressure and flow rates along the pipe on shut down at any time. The pipeline recorded the highest pressure of 37.4 bar against initial pressure of 25 bar at length 6000 m in 1.5 second valve closure. There is also remarkable pressure drop along the pipe capable of reducing the crude oil pressure below its vapour pressure. The flow is turbulent even before valve operation with Reynolds number as high as 57024.53. The model equations compute changes in pressure and flow rates at different points in a pipeline installed with emergency-relief coupling valve. This enables point of extreme and low pressure to be detected accurately in a pipeline which guides the engineer while positioning surge suppression devices which cushion the effects of pressure surge in any pipeline. 展开更多
关键词 pressure SURGE VALVE pipeline CRUDE Oil
下载PDF
Simulating Error-Opening of Pressure Relief Valves of a Station on a Continuous Undulating Oil Pipeline with Large Elevation Difference
13
作者 Xiaohua Chen Caifu Lan +3 位作者 Honghao Zheng Wang Li Chao Zhao Wenjun Dang 《Energy Engineering》 EI 2022年第4期1439-1452,共14页
For oil pipeline in mountain areas,high hydrostatic pressure in the pipeline may cause error-opening of pressure relief valves,and oil is discharged from the pipeline to the pressure relief tanks,bringing spilling-ove... For oil pipeline in mountain areas,high hydrostatic pressure in the pipeline may cause error-opening of pressure relief valves,and oil is discharged from the pipeline to the pressure relief tanks,bringing spilling-over risk of the pressure relief tanks.Therefore,simulating the error-opening situations of the pressure relief valves and investigating the oil discharge process are necessary for checking the possibility of the spilling-over accident and then proposing measures to improve the pressure relief system.This research focuses on a continuous undulating oil pipeline with large elevation difference and a station along this pipeline,which is named B station in this paper,is studied.By OLGA software,simulation model of the pressure relief system of B station is established,and the accuracy of the model is verified by reconstructing a real accident and making a comparison with the actual accident data.The maximum discharge rate reached 8284 m3/h when the pressure relief valve was opened by mistake in the inlet and outlet of the station.The accumulated filling time of the two pressure relief tanks is 200 s,which is in good agreement with the accident data.On this basis,for error-opening of the pressure relief valves at the inlet and outlet of B station,simulation is performed to investigate variations of the discharge velocity,discharge flow rate,accumulated discharge volume and ventilation volume of the vent valve.The discharge velocity is found to be over the maximum velocity allowed for safety consideration.According to the accumulated discharge volume,it is inferred that spilling over of the pressure relief tanks will be caused once error-opening of the pressure relief valve occurs.Also it is judged that the existing breathing valve can not satisfy the ventilation requirement in case of failure of the pressure relief valves.From these simulation results,it is proposed that increasing the number of vent valves,replacing the manual valves with electrically operated valves,and employing security control interlock protection program are improvement measures to guarantee safe,efficient and reliable operation of the pressure relief system at B station. 展开更多
关键词 Continuous undulating oil pipeline large elevation difference pressure relief system error-opening oil dis-charge improvement measure
下载PDF
About the Change in Air Pressure in the Pipeline during the Pneumatic Transportation of Cotton
14
作者 Farhod Kholmirzaev Maftuna Yusupova +1 位作者 Abdul-Malik Kayumov Olimjon Sarimsakov 《Engineering(科研)》 CAS 2022年第7期228-234,共7页
The article is devoted to the study of the issues of determining the patterns of changes in air pressure along the length of a pneumatic transmission pipeline for raw cotton at different flow parameters and different ... The article is devoted to the study of the issues of determining the patterns of changes in air pressure along the length of a pneumatic transmission pipeline for raw cotton at different flow parameters and different pipeline diameters. Theoretical studies have proved the reduction of static and total pressure along the line of pneumatic cotton transportation. The dependence of the pressure change on the diameter of the transport line and the aerodynamic drag of the pipeline is obtained. The results obtained are recommended for use in the design of raw cotton pneumatic transport systems. 展开更多
关键词 Pneumatic Conveying pipeline Raw Сotton Air pressure A Fan
下载PDF
Simulation Study on the Typical Influencing Factors for Negative Pressure Wave in Liquid Pipeline Leakage
15
作者 YANG Zi-xuan FAN Shi-dong XIONG Ting 《International Journal of Plant Engineering and Management》 2010年第3期175-180,共6页
We conduct simulation study on the typical influencing factors for negative pressure wave in liquid pipeline leakage. We first analyse the liquid pipeline leakage detection based on negative pressure wave method and o... We conduct simulation study on the typical influencing factors for negative pressure wave in liquid pipeline leakage. We first analyse the liquid pipeline leakage detection based on negative pressure wave method and obtain the essential simulation parameters. Then based on the physical model of pipeline and by introducing leakage boundary condition, we simulate the variation of pressure and flow rate in pipeline after leakage, the influence of leakage scale and leakage position on the pressure and flow rate in the pipeline. The results show that the leakage scale mainly influences the amplitude of negative pressure wave, and that the leakage position inflnenees both the amplitude and the shape of the curves of negative pressure wave. 展开更多
关键词 negative pressure wave pipeline leakage leakage simulation
下载PDF
Effects of Hydrogen Charging Time and Pressure on the Hydrogen Embrittlement Susceptibility of X52 Pipeline Steel Material 被引量:1
16
作者 Hong-Jiang Wan Xiao-Qi Wu +2 位作者 Hong-Liang Ming Jian-Qiu Wang En-Hou Han 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2024年第2期293-307,共15页
The effects of hydrogen charging time and pressure on the hydrogen embrittlement(HE)susceptibility of X52 pipeline steel material are studied by slow strain rate tensile tests.The fracture morphologies of the specimen... The effects of hydrogen charging time and pressure on the hydrogen embrittlement(HE)susceptibility of X52 pipeline steel material are studied by slow strain rate tensile tests.The fracture morphologies of the specimens are observed by scanning electron microscopy.The HE susceptibility of the X52 pipeline steel material increases with an increase in both hydrogen charging time and hydrogen pressure.At a charging time of 96 h,the HE susceptibility index reaches 45.86%,approximately 3.6 times that at a charging time of 0 h.Similarly,a charging pressure of 4 MPa results in a HE susceptibility index of 31.61%,approximately 2.5 times higher than that at a charging pressure of 0.3 MPa. 展开更多
关键词 Hydrogen embrittlement X52 pipeline steel material Tubular specimen Hydrogen charging time Hydrogen charging pressure
原文传递
Structural, Pasting, and Thermal Properties of Ultra-high Pressure-treated Lotus Seed Starch 被引量:3
17
作者 郭泽镔 陈秉彦 +2 位作者 卢旭 曾绍校 郑宝东 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2014年第4期647-653,共7页
Lotus seed starch (15%, w/w) was subjected to ultra-high pressure (UHP) at 500 MPa for 10~60 min. The effects of UHP on the structural, pasting, and thermal properties of starch were investigated using solid-stat... Lotus seed starch (15%, w/w) was subjected to ultra-high pressure (UHP) at 500 MPa for 10~60 min. The effects of UHP on the structural, pasting, and thermal properties of starch were investigated using solid-state 13C CP/MAS NMR, differential scanning calorimetry (DSC), HPSEC-MALLS-RI, and a rapid visco analyzer. The 13C CP/MAS NMR results revealed a reduction in the relative crystallinity and peak intensity of the crystalline state with increasing the UHP time. The molecular weight of native starch was 1.433 × 107 Da, which was higher than that of the UHP-treated starch. Viscograms of UHP-treated starch revealed an increase in paste viscosity, peak time, and pasting temperature and a reduction in breakdown and setback viscosity compared to the native starch. Furthermore, the DSC results showed a reduction in gelatinization temperature and gelatinization enthalpy with increasing the UHP time. 展开更多
关键词 lotus seed Starch ultra-high pressure molecular weights pasting properties thermal properties
下载PDF
Modal Analysis and Multi-objective Optimization of Pressurizing Pipeline 被引量:1
18
作者 WANG Yeping LI Hang 《Journal of Donghua University(English Edition)》 EI CAS 2020年第1期43-49,共7页
The pressurizing pipeline of hot press resonates under the excitation load,which poses a serious hidden danger to the safety of the equipment and the operator.In order to increase the natural frequency of the pressuri... The pressurizing pipeline of hot press resonates under the excitation load,which poses a serious hidden danger to the safety of the equipment and the operator.In order to increase the natural frequency of the pressurizing pipeline,modal analysis of the pressurizing pipeline is carried out to study the mechanism of pipeline vibration and common vibration reduction measures.A method of increasing the natural frequency of the pressurizing pipeline was analyzed.The influence of pipeline clamp assembly stiffness,pipeline clamp number and pipeline clamp installation position on the mode of the pressurizing pipeline is studied.Sensitivity analysis is carried out to study the influence of the various parameters on the mode of the pressurizing pipeline.Genetic algorithm based on Pareto optimality is introduced for multi-objective optimization of pressurizing pipeline.The optimization results show that the natural frequency of the pressurizing pipeline increases by 2.4%and the displacement response is reduced by 17.7%. 展开更多
关键词 pressurizing pipeline MODAL ANALYSIS sensitivity ANALYSIS PARETO OPTIMALITY genetic algorithm MULTI-OBJECTIVE optimization
下载PDF
Effects of ultra-high hydrostatic pressure on foaming and physical-chemistry properties of egg white 被引量:1
19
作者 Rui-Xiang Yang Wen-Zhao Li +1 位作者 Chun-Qiu Zhu Qiang Zhang 《Journal of Biomedical Science and Engineering》 2009年第8期617-620,共4页
The influences of ultra-high hydrostatic pressure treatment on foaming and physical properties (solubility, hydrophobicity and sulfhydryl content) of egg white were investigated. A pressure range of 0-500 MPa, time ra... The influences of ultra-high hydrostatic pressure treatment on foaming and physical properties (solubility, hydrophobicity and sulfhydryl content) of egg white were investigated. A pressure range of 0-500 MPa, time range of 0-20 min and pH range of 7.5-8.5 were selected. The foaming property of egg white is improved by 350Mpa and 10min. The treatment resulted in in- crease of sulfhydryl content of egg white, while solubility and hydrophobicity were significantly decreased. 展开更多
关键词 ultra-high HYDROSTATIC pressure EGG WHITE FOAMING PROPERTY
下载PDF
Analysis on performance and test of a new type of ultra-high pressure pipe joint
20
作者 Zhai Fugang Kong Xiangdong +2 位作者 Sun Yugang Wang Zhong Hao Xiaobei 《High Technology Letters》 EI CAS 2018年第2期203-207,共5页
Analysis as well as application of ultra-high pressure hydraulic system and elements has become a trend. The structure and operation principle of a new type of ultra-high pressure pipe joint is introduced. The structu... Analysis as well as application of ultra-high pressure hydraulic system and elements has become a trend. The structure and operation principle of a new type of ultra-high pressure pipe joint is introduced. The structure of the new type of ultra-high pressure pipe joint is simple and is easy to be produced. The finite element model on two working conditions( preload condition with 30 N·m torque and static-loading condition with 70 MPa pressure) is built and computed. The width of contact area,the equivalent stress status,as well as the contact pressure status are plotted and analyzed. According to the national standard,test on air-tightness,blasting,and cyclic endurance is conducted and the results show that the new type of ultra-high pressure pipe joint has the sealability for ultra-high pressure up to 70 MPa,and the DN6 ultra-high pressure pipe joint can provide effective seal under70 MPa fluid pressure. The research can provide a thinking and method on designing ultra-high pressure pipe joint and push forward the development of ultra-high pressure hydraulic system. 展开更多
关键词 pipe joint ultra-high pressure sealing performance hydraulic system
下载PDF
上一页 1 2 163 下一页 到第
使用帮助 返回顶部