High salinity industrial wastewater is difficult to treat using biological treatment system because of the high concentrations of salt.The potential of a sequencing batch biofilm reactor(SBBR)process in treating synth...High salinity industrial wastewater is difficult to treat using biological treatment system because of the high concentrations of salt.The potential of a sequencing batch biofilm reactor(SBBR)process in treating synthetic high salinity wastewater was evaluated at laboratory scale during a 110-day operation.The reactor was operated in a 12 h cycle,and each cycle consisted of 0.25 h influent addition,8 h aeration,3 h anoxic reaction,0.5 h sedimentation and 0.25 h effluent withdrawal.Gradual increase in salinity gradient was applied during the acclimatization period.The acclimated SBBR system was demonstrated to be an effective process to remove organic compounds and ammonia nitrogen under high salinity conditions with chemical oxygen demand(COD)and ammonia nitrogen(NH3-N)removal efficiencies of 88% and 80%,respectively.The microscopic examination indicated that rather than rotifers or vorticella,the zoogloea,filamentous fungus mingled with a small quantity of swimming infusorians were dominant bacteria in SBBR system.The removal efficiencies close to 80% in COD and 75% in NH3-N were achieved at an organic loading rate(OLR)of 0.96 kg COD/(m3·d),pH of 7.0,salinity of 14 g/L and NH3-N of 30 mg/L.展开更多
The influencing factors and kinetics of oxidative degradation of ammonia nitrogen in high salinity wastewater by sodium hypochlorite oxidation( Na Cl O) were studied. The results showed that the degradation process of...The influencing factors and kinetics of oxidative degradation of ammonia nitrogen in high salinity wastewater by sodium hypochlorite oxidation( Na Cl O) were studied. The results showed that the degradation process of ammonia nitrogen by sodium hypochlorite accorded with a pseudo first-order kinetics model,and the influencing factors included Na Cl O dosage,initial concentration of ammonia nitrogen,salinity,temperature,and so on. When Na Cl O dosage was 0. 6%( MCl∶ MN= 13. 76),the reaction rate constant was up to 0. 015 75 min^(-1). The higher the initial concentration of ammonia nitrogen was,the worse the effect of oxidation reaction was. When the initial concentration did not exceed 45 mg/L,the effect on oxidation reaction rate constant increased with the increase of the initial concentration. Low salinity had no effect on ammonia nitrogen oxidation.When salinity was higher than 2. 0%,the inhibition effect on ammonia nitrogen oxidation would increase,and the reaction rate constant decreased obviously with the increase of salinity. The improvement of reaction temperature was beneficial to ammonia oxidation degradation. As temperature increased from 10 to 35 ℃,the reaction rate constant rose from 0. 00188 to 0. 01043 min^(-1).展开更多
In this study,an up-flow anaerobic sludge blanket(UASB) reactor was applied to treat the high salinity wastewater from heavy oil production process.At a HRT of ≥24 h,the COD removal reached as high as 65.08% at an in...In this study,an up-flow anaerobic sludge blanket(UASB) reactor was applied to treat the high salinity wastewater from heavy oil production process.At a HRT of ≥24 h,the COD removal reached as high as 65.08% at an influent COD ranging from 350mg/L to 640mg/L.An average of 74.33% oil reduction was also achieved in the UASB reactor at an initial oil concentration between 112mg/L and 205mg/L.These results indicated that this heavy oil production related wastewater could be degraded efficiently in the UASB reactor.Granular sludge was formed in this reactor.In addition,two models,built on the back propagation neural network(BPNN) theory and linear regression techniques were developed for the simulation of the UASB system performance in the oily wastewater biodegradation.The average error of COD and oil removal was-0.65% and 0.84%,respectively.The results indicated that the models built on the BPNN theory were wellfitted to the detected data,and were able to simulate and predict the removal of COD and oil by the UASB reactor.展开更多
Advanced oxidation processes have been widely studied for organic pollutants treatment in water,but the degradation performance of radical-dominated pathway was severely inhibited by the side reactions between the ani...Advanced oxidation processes have been widely studied for organic pollutants treatment in water,but the degradation performance of radical-dominated pathway was severely inhibited by the side reactions between the anions and radicals,especially in high salinity conditions.Here,a singlet oxygen(^(1)O_(2))-dominated non-radical process was developed for organic pollutants degradation in high salinity wastewater,with layered crednerite(CuMnO_(2))as catalysts and peroxymonosulfate(PMS)as oxidant.Based on the experiments and density functional theory calculations,^(1)O_(2)was the dominating reactive species and the constructed Cu-O-Mn with electron-deficient Mn captured electron from PMS promoting the generation of^(1)O_(2).The rapid degradation of bisphenol A(BPA)was achieved by CuMnO_(2)/PMS system,which was 5-fold and 21-fold higher than that in Mn_(2)O_(3)/PMS system and Cu_(2)O/PMS system.The CuMnO_(2)/PMS system shown prominent BPA removal performance under high salinity conditions,prominent PMS utilization efficiency,outstanding total organic carbon removal rate,wide range of applicable pH and good stability.This work unveiled that the^(1)O_(2)-dominated non-radical process of CuMnO_(2)/PMS system overcame the inhibitory effect of anions in high salinity conditions,which provided a promising technique to remove organic pollutants from high saline wastewater.展开更多
This study evaluated the capability of a constructed wetland for treating saline wastewater. A pilot-scale constructed wetland system was set up and was initially operated at low, then increasing salt levels to determ...This study evaluated the capability of a constructed wetland for treating saline wastewater. A pilot-scale constructed wetland system was set up and was initially operated at low, then increasing salt levels to determine the effect of salinity on the contaminants' removal performance. The effect of hydraulic retention time (HRT) variation on treatment efficiency of the reed wetland was also discussed. Average removal efficiencies of the reed (Phragmites australis) wetland were found to be 79.0% for COD, 72.2% for ammonia nitrogen (NH3-N) and 82.8% for total phosphorus (TP). Reed planting had obvious improvement on COD and NH3-N removal efficiency when compared to an unplanted system. With the seawater proportion in the influent increasing from 20% to 30%, the TP removal efficiency improved obviously. COD removal efficiency of the reed wetland was positively correlated with HRT under high salinity condition, while excess HRT had adverse impacts on the NH3-N and TP removal. Optimal HRT for NH3-N and TP removal was 4 days. Results obtained can be beneficially used to improve the use of constructed wetlands in saline wastewater treatment.展开更多
The objective of this research was to examine if certain strains of Bacillus bacteria, could survive in dry powder products and if so, could the bacteria degrade organic contaminants in saline wastewater on a ship. As...The objective of this research was to examine if certain strains of Bacillus bacteria, could survive in dry powder products and if so, could the bacteria degrade organic contaminants in saline wastewater on a ship. As part of the study, we isolated 7 domesticated strains named NY1, NY2,..., and NY7, the strain NY6 showed to have the best performance for organic matter degradation and could survive in dry powder more than 3 months. NY6 was identified as Bacillus aerius, based on the morphological and physic-chemical properties. Its optimal growth conditions were as follows: salinity was 2%; temperature was 37℃; pH was in 6.5-7.0; best ratio of C: N: P was 100:5:1. The capability of its dry powder for Chemical Oxygen Demand (COD) removal was 800mg COD/g in synthesized marine wastewater with 2% salinity. The spores in the dry powder were 1.972×108 g-1.展开更多
There is recent trend of providing additional treatment of wastewater beyond tertiary level. The purpose is to refine water to a quality that is safe for reuse for unrestricted irrigation and other non potable uses. F...There is recent trend of providing additional treatment of wastewater beyond tertiary level. The purpose is to refine water to a quality that is safe for reuse for unrestricted irrigation and other non potable uses. For this purpose, Kuwait has built and operated an advanced wastewater treatment plant with capacity of 500,000 m3·dl. This plant providing treatment beyond tertiary utilizes the process of Ultra Filtration (UF) and Reverse Osmosis (RO). The reject water of this unit contains high concentration of total nitrogen and total phosphate. Safe disposal of this water into the environment or possible reuse needs substantial reduction of these chemicals. In this study, a bench scale up-flow sludge blanket filtration system was investigated. The system operated with an average Hydraulic-Retention Time (HRT) of 19 h, whereas, sludge age varied within the range of 14 days to 16.5 days. The results show that the average removal efficiencies of the system for Biological Oxygen Demand (BOD), Chemical Oxygen Demand (COD) were over 86% and 82% respectively. The phosphate and nitrogen's average removal were found to be 50% and 45% respectively.展开更多
To investigate the influence of salinity variations on the performance of activated sludge systems, treating domestic wastewater. Methods The completely mixed reactor was used and operated in a batch-wis...To investigate the influence of salinity variations on the performance of activated sludge systems, treating domestic wastewater. Methods The completely mixed reactor was used and operated in a batch-wise mode. The activated sludge taken from the Gaobeidian Wastewater Treatment Plant was used as a seeding sludge. Total organic carbon (TOC), oxygen uptake rate (OUR) and suspended solids (SS) were used as parameters to characterize the performance of the treatment systems. TOC was measured using a TOC-analyzer (TOC-5000, Japan). The OUR value was measured with a dissolved oxygen meter (YSI model-58). SS was measured gravimetrically. Results The TOC removal efficiency and the OUR value of activated sludge were not deteriorated when the NaCl shock concentration was less than 0.5 g/L. However, when the NaCl shock concentrations were up to 10g/L and 20 g/L, the OUR of activated sludge was reduced by 35% and TOC removal efficiency was dropped by 30%, compared with the control experiment without NaCl shock loading. Conclusion The effect of NaCl shock loading on the activated sludge wastewater treatment system is dependant upon the NaCl concentrations and the degree of influence can be inferred through the change of substrate utilization rate at different shock NaCl loadings.展开更多
Two-thirds of the world’s population has limited access to potable water.As we continue to use up our freshwater resources,new and improved techniques for potable water production are warranted.Here,we present a gene...Two-thirds of the world’s population has limited access to potable water.As we continue to use up our freshwater resources,new and improved techniques for potable water production are warranted.Here,we present a general concept called“salinity exchange”that transfers salts from seawater or brackish water to treated wastewater until their salinity values approximately switch,thus producing wastewater with an increased salinity for discharge and desalinated seawater as the potable water source.We have demonstrated this process using electrodialysis.Salinity exchange has been successfully achieved between influents of different salinities under various operating conditions.Laboratory-scale salinity exchange electrodialysis(SEE)systems can produce high-quality desalinated water at~1 mL/min with an energy consumption less than 1 kWh/m3.SEE has also been operated using real water,and the challenges of its implementation at a larger scale are evaluated.展开更多
疏水性差热导率高是制约膜蒸馏在高盐度废水处理领域运用的关键技术参数。为提高膜的疏水性的同时降低膜的导热性能,对自制的SiO_(2)/PVDF复合膜进行了分子模拟和污染物为Ni^(2+)、Co^(2+)和Mg^(2+)的耐污染实验。通过Materials Studio ...疏水性差热导率高是制约膜蒸馏在高盐度废水处理领域运用的关键技术参数。为提高膜的疏水性的同时降低膜的导热性能,对自制的SiO_(2)/PVDF复合膜进行了分子模拟和污染物为Ni^(2+)、Co^(2+)和Mg^(2+)的耐污染实验。通过Materials Studio (MS)软件建立了膜的分子模型。结果表明,羟基含量为40%膜的导热系数最低;采用膜蒸馏+MVR(机械蒸汽再压缩蒸发技术)组合工艺可降低30.61%的处理成本。各污染物与膜表面的非键作用力中,氢键作用能(E_(el))为负值且是污染物富集在膜表面的主要作用力。此外,Ni^(2+)离子对膜的渗透性能影响最大。展开更多
基金Projects(ZR2013BL010,ZR2012DL05)supported by the Natural Science Foundation of Shandong Province,ChinaProject(4041412016)supported by the Research Excellence Award of Shandong University of Technology,ChinaProjects(2013GG03116,2011GG02115)supported by the Science and Technology Development Planning Project of Zibo,China
文摘High salinity industrial wastewater is difficult to treat using biological treatment system because of the high concentrations of salt.The potential of a sequencing batch biofilm reactor(SBBR)process in treating synthetic high salinity wastewater was evaluated at laboratory scale during a 110-day operation.The reactor was operated in a 12 h cycle,and each cycle consisted of 0.25 h influent addition,8 h aeration,3 h anoxic reaction,0.5 h sedimentation and 0.25 h effluent withdrawal.Gradual increase in salinity gradient was applied during the acclimatization period.The acclimated SBBR system was demonstrated to be an effective process to remove organic compounds and ammonia nitrogen under high salinity conditions with chemical oxygen demand(COD)and ammonia nitrogen(NH3-N)removal efficiencies of 88% and 80%,respectively.The microscopic examination indicated that rather than rotifers or vorticella,the zoogloea,filamentous fungus mingled with a small quantity of swimming infusorians were dominant bacteria in SBBR system.The removal efficiencies close to 80% in COD and 75% in NH3-N were achieved at an organic loading rate(OLR)of 0.96 kg COD/(m3·d),pH of 7.0,salinity of 14 g/L and NH3-N of 30 mg/L.
基金Supported by Project for Achievement Transformation of High and New Technology in Shanghai City(201405267)
文摘The influencing factors and kinetics of oxidative degradation of ammonia nitrogen in high salinity wastewater by sodium hypochlorite oxidation( Na Cl O) were studied. The results showed that the degradation process of ammonia nitrogen by sodium hypochlorite accorded with a pseudo first-order kinetics model,and the influencing factors included Na Cl O dosage,initial concentration of ammonia nitrogen,salinity,temperature,and so on. When Na Cl O dosage was 0. 6%( MCl∶ MN= 13. 76),the reaction rate constant was up to 0. 015 75 min^(-1). The higher the initial concentration of ammonia nitrogen was,the worse the effect of oxidation reaction was. When the initial concentration did not exceed 45 mg/L,the effect on oxidation reaction rate constant increased with the increase of the initial concentration. Low salinity had no effect on ammonia nitrogen oxidation.When salinity was higher than 2. 0%,the inhibition effect on ammonia nitrogen oxidation would increase,and the reaction rate constant decreased obviously with the increase of salinity. The improvement of reaction temperature was beneficial to ammonia oxidation degradation. As temperature increased from 10 to 35 ℃,the reaction rate constant rose from 0. 00188 to 0. 01043 min^(-1).
基金the support provided by the Research & Technology Development Project of China National Petroleum Corporation (06A0302)Postdoctor Innovation Funds in Shandong Province (201002039)the Fundamental Research Funds for the Central Universities (27R1204023A)
文摘In this study,an up-flow anaerobic sludge blanket(UASB) reactor was applied to treat the high salinity wastewater from heavy oil production process.At a HRT of ≥24 h,the COD removal reached as high as 65.08% at an influent COD ranging from 350mg/L to 640mg/L.An average of 74.33% oil reduction was also achieved in the UASB reactor at an initial oil concentration between 112mg/L and 205mg/L.These results indicated that this heavy oil production related wastewater could be degraded efficiently in the UASB reactor.Granular sludge was formed in this reactor.In addition,two models,built on the back propagation neural network(BPNN) theory and linear regression techniques were developed for the simulation of the UASB system performance in the oily wastewater biodegradation.The average error of COD and oil removal was-0.65% and 0.84%,respectively.The results indicated that the models built on the BPNN theory were wellfitted to the detected data,and were able to simulate and predict the removal of COD and oil by the UASB reactor.
基金supported by the Open Fund of Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling (No.2020B121201003)the National Natural Science Foundation of China (Nos.21876099,22106088,and 22276110)+1 种基金the Key Research&Developmental Program of Shandong Province (No.2021CXGC011202)the Fundamental Research Funds of Shandong University (No.zy202102)。
文摘Advanced oxidation processes have been widely studied for organic pollutants treatment in water,but the degradation performance of radical-dominated pathway was severely inhibited by the side reactions between the anions and radicals,especially in high salinity conditions.Here,a singlet oxygen(^(1)O_(2))-dominated non-radical process was developed for organic pollutants degradation in high salinity wastewater,with layered crednerite(CuMnO_(2))as catalysts and peroxymonosulfate(PMS)as oxidant.Based on the experiments and density functional theory calculations,^(1)O_(2)was the dominating reactive species and the constructed Cu-O-Mn with electron-deficient Mn captured electron from PMS promoting the generation of^(1)O_(2).The rapid degradation of bisphenol A(BPA)was achieved by CuMnO_(2)/PMS system,which was 5-fold and 21-fold higher than that in Mn_(2)O_(3)/PMS system and Cu_(2)O/PMS system.The CuMnO_(2)/PMS system shown prominent BPA removal performance under high salinity conditions,prominent PMS utilization efficiency,outstanding total organic carbon removal rate,wide range of applicable pH and good stability.This work unveiled that the^(1)O_(2)-dominated non-radical process of CuMnO_(2)/PMS system overcame the inhibitory effect of anions in high salinity conditions,which provided a promising technique to remove organic pollutants from high saline wastewater.
文摘This study evaluated the capability of a constructed wetland for treating saline wastewater. A pilot-scale constructed wetland system was set up and was initially operated at low, then increasing salt levels to determine the effect of salinity on the contaminants' removal performance. The effect of hydraulic retention time (HRT) variation on treatment efficiency of the reed wetland was also discussed. Average removal efficiencies of the reed (Phragmites australis) wetland were found to be 79.0% for COD, 72.2% for ammonia nitrogen (NH3-N) and 82.8% for total phosphorus (TP). Reed planting had obvious improvement on COD and NH3-N removal efficiency when compared to an unplanted system. With the seawater proportion in the influent increasing from 20% to 30%, the TP removal efficiency improved obviously. COD removal efficiency of the reed wetland was positively correlated with HRT under high salinity condition, while excess HRT had adverse impacts on the NH3-N and TP removal. Optimal HRT for NH3-N and TP removal was 4 days. Results obtained can be beneficially used to improve the use of constructed wetlands in saline wastewater treatment.
基金Supported by the International Science & Technology Cooperation Program of China (2010DFA92460), the National" Natural Science Foundation of China (51108112), the Natural Science Foundation of Heilongjiang Province(E201252), Fundamental Research Funding of Harbin Engineering University (HEUFT06029), and Open Project of State Key Laboratory of Urban Water Resource Environment, Harbin Institute of Techttology (ESK201004).
文摘The objective of this research was to examine if certain strains of Bacillus bacteria, could survive in dry powder products and if so, could the bacteria degrade organic contaminants in saline wastewater on a ship. As part of the study, we isolated 7 domesticated strains named NY1, NY2,..., and NY7, the strain NY6 showed to have the best performance for organic matter degradation and could survive in dry powder more than 3 months. NY6 was identified as Bacillus aerius, based on the morphological and physic-chemical properties. Its optimal growth conditions were as follows: salinity was 2%; temperature was 37℃; pH was in 6.5-7.0; best ratio of C: N: P was 100:5:1. The capability of its dry powder for Chemical Oxygen Demand (COD) removal was 800mg COD/g in synthesized marine wastewater with 2% salinity. The spores in the dry powder were 1.972×108 g-1.
文摘There is recent trend of providing additional treatment of wastewater beyond tertiary level. The purpose is to refine water to a quality that is safe for reuse for unrestricted irrigation and other non potable uses. For this purpose, Kuwait has built and operated an advanced wastewater treatment plant with capacity of 500,000 m3·dl. This plant providing treatment beyond tertiary utilizes the process of Ultra Filtration (UF) and Reverse Osmosis (RO). The reject water of this unit contains high concentration of total nitrogen and total phosphate. Safe disposal of this water into the environment or possible reuse needs substantial reduction of these chemicals. In this study, a bench scale up-flow sludge blanket filtration system was investigated. The system operated with an average Hydraulic-Retention Time (HRT) of 19 h, whereas, sludge age varied within the range of 14 days to 16.5 days. The results show that the average removal efficiencies of the system for Biological Oxygen Demand (BOD), Chemical Oxygen Demand (COD) were over 86% and 82% respectively. The phosphate and nitrogen's average removal were found to be 50% and 45% respectively.
基金The work was supported by the National Natural Science Foundation of China (Grant No. 29637010 59978020 50325824).
文摘To investigate the influence of salinity variations on the performance of activated sludge systems, treating domestic wastewater. Methods The completely mixed reactor was used and operated in a batch-wise mode. The activated sludge taken from the Gaobeidian Wastewater Treatment Plant was used as a seeding sludge. Total organic carbon (TOC), oxygen uptake rate (OUR) and suspended solids (SS) were used as parameters to characterize the performance of the treatment systems. TOC was measured using a TOC-analyzer (TOC-5000, Japan). The OUR value was measured with a dissolved oxygen meter (YSI model-58). SS was measured gravimetrically. Results The TOC removal efficiency and the OUR value of activated sludge were not deteriorated when the NaCl shock concentration was less than 0.5 g/L. However, when the NaCl shock concentrations were up to 10g/L and 20 g/L, the OUR of activated sludge was reduced by 35% and TOC removal efficiency was dropped by 30%, compared with the control experiment without NaCl shock loading. Conclusion The effect of NaCl shock loading on the activated sludge wastewater treatment system is dependant upon the NaCl concentrations and the degree of influence can be inferred through the change of substrate utilization rate at different shock NaCl loadings.
基金supported by the U.S.Department of Interior Bureau of Reclamation(No.R19AC00101).
文摘Two-thirds of the world’s population has limited access to potable water.As we continue to use up our freshwater resources,new and improved techniques for potable water production are warranted.Here,we present a general concept called“salinity exchange”that transfers salts from seawater or brackish water to treated wastewater until their salinity values approximately switch,thus producing wastewater with an increased salinity for discharge and desalinated seawater as the potable water source.We have demonstrated this process using electrodialysis.Salinity exchange has been successfully achieved between influents of different salinities under various operating conditions.Laboratory-scale salinity exchange electrodialysis(SEE)systems can produce high-quality desalinated water at~1 mL/min with an energy consumption less than 1 kWh/m3.SEE has also been operated using real water,and the challenges of its implementation at a larger scale are evaluated.
文摘疏水性差热导率高是制约膜蒸馏在高盐度废水处理领域运用的关键技术参数。为提高膜的疏水性的同时降低膜的导热性能,对自制的SiO_(2)/PVDF复合膜进行了分子模拟和污染物为Ni^(2+)、Co^(2+)和Mg^(2+)的耐污染实验。通过Materials Studio (MS)软件建立了膜的分子模型。结果表明,羟基含量为40%膜的导热系数最低;采用膜蒸馏+MVR(机械蒸汽再压缩蒸发技术)组合工艺可降低30.61%的处理成本。各污染物与膜表面的非键作用力中,氢键作用能(E_(el))为负值且是污染物富集在膜表面的主要作用力。此外,Ni^(2+)离子对膜的渗透性能影响最大。