The independently designed and manufactured ultra-high-strength aluminum alloy Al-12.18 Zn-3.31 Mg-1.43 Cu-0.20 Zr-0.04 Sr was investigated via scanning electron microscopy observations, X-ray diffraction analysis, ha...The independently designed and manufactured ultra-high-strength aluminum alloy Al-12.18 Zn-3.31 Mg-1.43 Cu-0.20 Zr-0.04 Sr was investigated via scanning electron microscopy observations, X-ray diffraction analysis, hardness tests, electrical conductivity tests, tensile tests, intergranular corrosion tests, and exfoliation corrosion tests. The effect of pre-recovery on the microstructure and mechanical properties of this aluminum alloy was also studied. The results show that the pre-recovery heat treatment releases deformation energy, inhibits recrystallization, and decreases the dislocation density. Although the pre-recovery heat treatment has little effect on the hardness, electrical conductivity, and elongation of this aluminum alloy, it can dramatically improve the alloy's tensile strength(the maximum tensile strength increased from 785.0 MPa to 809.2 MPa). Moreover, the tensile properties of this aluminum alloy have a certain degree of isotropy, and the pre-recovery heat treatment does not affect this property. In addition, the rolled aluminum alloy exhibits good corrosion resistance, but the effect of the pre-recovery heat treatment on the alloy's resistance to intergranular and exfoliation corrosion is negligible.展开更多
基金financially supported by the Jiangsu Provincial Industrial Science and Technology Support Program (No. BE2008118)the Basic Research on Isotropic Ultra-high Strength Aluminum Matrix Composite (No. 6140922010201)
文摘The independently designed and manufactured ultra-high-strength aluminum alloy Al-12.18 Zn-3.31 Mg-1.43 Cu-0.20 Zr-0.04 Sr was investigated via scanning electron microscopy observations, X-ray diffraction analysis, hardness tests, electrical conductivity tests, tensile tests, intergranular corrosion tests, and exfoliation corrosion tests. The effect of pre-recovery on the microstructure and mechanical properties of this aluminum alloy was also studied. The results show that the pre-recovery heat treatment releases deformation energy, inhibits recrystallization, and decreases the dislocation density. Although the pre-recovery heat treatment has little effect on the hardness, electrical conductivity, and elongation of this aluminum alloy, it can dramatically improve the alloy's tensile strength(the maximum tensile strength increased from 785.0 MPa to 809.2 MPa). Moreover, the tensile properties of this aluminum alloy have a certain degree of isotropy, and the pre-recovery heat treatment does not affect this property. In addition, the rolled aluminum alloy exhibits good corrosion resistance, but the effect of the pre-recovery heat treatment on the alloy's resistance to intergranular and exfoliation corrosion is negligible.