Ultra-high temperature ceramic coatings have ultra-high melting points,excellent mechanical properties and high temperature ablation resistance.These unique performance combinations turn it into a promising material f...Ultra-high temperature ceramic coatings have ultra-high melting points,excellent mechanical properties and high temperature ablation resistance.These unique performance combinations turn it into a promising material for use in extreme environment structures in rockets and hypersonic vehicles,particularly nozzles,leading edges and engine components.In this paper,various preparation methods of ultra-high temperature ceramic coatings were reviewed,including plasma spraying,chemical vapor deposition,pack cementation,slurry sintering,hot pressing and their research progress.Meanwhile,some new preparation methods of high temperature coatings,such as ion beam deposition,ultrasonic spraying,metal organic frame work coating,and magnetron sputtering,were introduced.The development trend of ultra-high temperature coatings was prospected as well.展开更多
Breaking down the entire structure of a material implies severing all the bonds between its atoms either by applying work or by heat transfer. Because bond-breaking is indifferent to either means, there is a kind of e...Breaking down the entire structure of a material implies severing all the bonds between its atoms either by applying work or by heat transfer. Because bond-breaking is indifferent to either means, there is a kind of equivalence between heat energy and strain energy. Based on this equivalence, we assume the existence of a constant maximum storage of energy that includes both the strain energy and the corresponding equivalent heat energy. A temperaturedependent fracture strength model is then developed for ultrahigh temperature ceramics (UHTCs). Model predictions for UHTCs, HfB2, TiC and ZrB2, are presented and compared with the experimental results. These predictions are found to be largely consistent with experimental results.展开更多
ZrB_2-SiC based ultra-high temperature ceramic(UHTC) struts were firstly proposed and fabricated with the potential application in the combustor of scramjets for fuel injection and flame-holding for their machinabil...ZrB_2-SiC based ultra-high temperature ceramic(UHTC) struts were firstly proposed and fabricated with the potential application in the combustor of scramjets for fuel injection and flame-holding for their machinability and excellent oxidation/ablation resistance in the extreme harsh environment. The struts were machined with electrospark wire-electrode cutting techniques to form UHTC into the desired shape, and with laser drilling to drill tiny holes providing the channels for fuel injection. The integrated thermal-structural characteristic of the struts was evaluated in high-temperature combustion environment by the propane-oxygen free jet facility, subject to the heat flux of 1.5 MW/m^2 lasting for 300 seconds, and the struts maintained integrity during and after the first experiment. The experiments were repeated for verifying the reusability of the struts. Fracture occurred during the second repeated experiment with the crack propagating through the hole. Finite element analysis(FEA) was carried out to study the thermal stress distribution in the UHTC strut. The simulation results show a high thermal stress concentration occurs at the hole which is the crack initiation position. The phenomenon is in good agreement with the experimental results. The study shows that the thermal stress concentration is a practical key issue in the applications of the reusable UHTC strut for fuel injection structure in scramjets.展开更多
The effects of mechanical boundary conditions, often encountered in thermalstructural engineering, on the thermal shock resistance(TSR) of ultra-high temperature ceramics(UHTCs) are studied by investigating the TS...The effects of mechanical boundary conditions, often encountered in thermalstructural engineering, on the thermal shock resistance(TSR) of ultra-high temperature ceramics(UHTCs) are studied by investigating the TSR of a UHTC plate with various types of constraints under the first, second, and third type of thermal boundary conditions. The TSR of UHTCs is strongly dependent on the heat transfer modes and severity of the thermal environments. Constraining the displacement of the lower surface in the thickness direction can significantly decrease the TSR of the UHTC plate, which is subject to the thermal shock at the upper surface. In contrast, the TSR of the UHTC plate with simply supported edges or clamped edges around the lower surface is much better.展开更多
Ultra-high temperature ceramics(UHTCs)are a family of borides,carbides and nitrides of transition elements such as hafnium,zirconium,tantalum and niobium.They exhibit the highest known melting points,good mechanical s...Ultra-high temperature ceramics(UHTCs)are a family of borides,carbides and nitrides of transition elements such as hafnium,zirconium,tantalum and niobium.They exhibit the highest known melting points,good mechanical strength,good chemical and thermal stability under certain conditions.In last decade,researchers dedicated to characterize porous UHTCs aiming to develop novel thermal insulating materials that could withstand temperatures over 2000℃.In this article,the preparation and characteristics of porous UHTCs were reviewed.Dry processing,colloidal processing and solution processing routes have been used to prepare porous UHTCs with porosities ranging from 5%to 97%and pore sizes ranging from hundreds of nanometers to hundreds of micrometers.The obtained porous UHTCs are chemically and dimensionally stable at temperatures up to 2000℃ during static state high-temperature thermal aging.展开更多
Ultra-high temperature ceramic(UHTC)coatings are used to protect the hot-end components of hypervelocity aerocrafts from thermal ablation.This study provides a new approach to fabricate UHTC coatings with high speed l...Ultra-high temperature ceramic(UHTC)coatings are used to protect the hot-end components of hypervelocity aerocrafts from thermal ablation.This study provides a new approach to fabricate UHTC coatings with high speed laser cladding(HSLC)technology,and places more emphasis on investigating the formation mechanism,phase compositions,and mechanical properties of HSLC-UHTC coatings.Results show that a well-bonded interface between the coating and the tantalum alloy substrate can be formed.The coating is mainly composed of(Zr,Ta)C ceramic solid solution phase with a content of higher than 90% by volume and Ta(W)metal solid solution phase.At a relatively high powder feeding rate,the ZrC ceramic phase appears in the coating while a dense ZrC UHTC top layer with a thickness of up to~50μm is successfully fabricated.As for the mechanical properties of the HSLC coatings,the fracture toughness of the coating decreases with the increase of powder feeding rate.The increase of carbide solid solution phase can significantly improve the high temperature microhardness(552.7±1.8 HV0.5@1000℃).The innovative design of HSLC ZrC-based coatings on refractory alloys accomplishes continuous transitions on microstructure and properties from the substrate to the UHTC top layer,which is a very promising candidate scheme for thermal protection coating.展开更多
Ultra-high temperature ceramics(UHTCs)are generally referred to the carbides,nitrides,and borides of the transition metals,with the Group IVB compounds(Zr&Hf)and TaC as the main focus.The UHTCs are endowed with ul...Ultra-high temperature ceramics(UHTCs)are generally referred to the carbides,nitrides,and borides of the transition metals,with the Group IVB compounds(Zr&Hf)and TaC as the main focus.The UHTCs are endowed with ultra-high melting points,excellent mechanical properties,and ablation resistance at elevated temperatures.These unique combinations of properties make them promising materials for extremely environmental structural applications in rocket and hypersonic vehicles,particularly nozzles,leading edges,and engine components,etc.In addition to bulk UHTCs,UHTC coatings and fiber reinforced UHTC composites are extensively developed and applied to avoid the intrinsic brittleness and poor thermal shock resistance of bulk ceramics.Recently,high-entropy UHTCs are developed rapidly and attract a lot of attention as an emerging direction for ultra-high temperature materials.This review presents the state of the art of processing approaches,microstructure design and properties of UHTCs from bulk materials to composites and coatings,as well as the future directions.展开更多
Carbon fiber reinforced ultra-high temperature ceramic (UHTC) composites, consisting of carbon fibers embedded in a UHTC-matrix or a C-SiC-UHTC-matrix, are deemed as the most viable class of materials that can overc...Carbon fiber reinforced ultra-high temperature ceramic (UHTC) composites, consisting of carbon fibers embedded in a UHTC-matrix or a C-SiC-UHTC-matrix, are deemed as the most viable class of materials that can overcome the poor fracture toughness and thermal shock resistance of monolithic UHTC ma- terials, and also improve the oxidation resistance and ablation resistance of C/C and C/SiC composites at ultra-high temperatures. In this review, we summarize the different processing routes of the compos- ites based on the UHTC introducing methods, including chemical vapor infiltration/deposition (CVI/D), precursor infiltration and pyrolysis (PIP), reactive melt infiltration (RMI), slurry infiltration (SI). in-sito reaction, hot pressing (HP), etc; and the advantages and drawbacks of each method are briefly dis- cussed. The carbon fiber reinforced UHTC composites can be highly tailorable materials in terms of fiber. interface, and matrix. From the perspective of service environmental applications for engine propul- sions anti hypersonic vehicles, the material designs (mainly focusing on the composition, quantity, structure of matrix, as well as the architecture of carbon fibers, UHTCs and pores), their relevant processing routes and properties (emphasizing on the mechanical and ablation properties) are discussed in this paper. In addition, we propose a material architecture to realize the multi-function through changing the distri- bution of carbon fibers, UHTCs and pores, which will be an important issue for future development of carbon fiber reinforced UHTC composites.展开更多
Ultra-high temperature ceramics(UHTCs)are considered as a family of nonmetallic and inorganic materials that have melting point over 3000℃.Chemically,nearly all UHTCs are borides,carbides,and nitrides of early transi...Ultra-high temperature ceramics(UHTCs)are considered as a family of nonmetallic and inorganic materials that have melting point over 3000℃.Chemically,nearly all UHTCs are borides,carbides,and nitrides of early transition metals(e.g.,Zr,Hf,Nb,Ta).Within the last two decades,except for the great achievements in the densification,microstructure tailoring,and mechanical property improvements of UHTCs,many methods have been established for the preparation of porous UHTCs,aiming to develop high-temperature resistant,sintering resistant,and lightweight materials that will withstand temperatures as high as 2000℃for long periods of time.Amongst the synthesis methods for porous UHTCs,sol–gel methods enable the preparation of porous UHTCs with pore sizes from 1 to 500μm and porosity within the range of 60%–95%at relatively low temperature.In this article,we review the currently available sol–gel methods for the preparation of porous UHTCs.Templating,foaming,and solvent evaporation methods are described and compared in terms of processing–microstructure relations.The properties and high temperature resistance of sol–gel derived porous UHTCs are discussed.Finally,directions to future investigations on the processing and applications of porous UHTCs are proposed.展开更多
Multicomponent ultra-high temperature ceramics(UHTCs)are promising candidates for thermal protection materials(TPMs)used in aerospace field.However,finding out desirable compositions from an enormous number of possibl...Multicomponent ultra-high temperature ceramics(UHTCs)are promising candidates for thermal protection materials(TPMs)used in aerospace field.However,finding out desirable compositions from an enormous number of possible compositions remains challenging.Here,through elucidating the role of preferential oxidation in ablation behavior of multicomponent UHTCs via the thermodynamic analysis and experimental verification,the correlation between the composition and ablation performance of multicomponent UHTCs was revealed from the aspect of thermodynamics.We found that the metal components in UHTCs can be thermodynamically divided into preferentially oxidized component(denoted as MP),which builds up a skeleton in oxide layer,and laggingly oxidized component(denoted as ML),which fills the oxide skeleton.Meanwhile,a thermodynamically driven gradient in the concentration of MP and ML forms in the oxide layer.Based on these findings,a strategy for pre-evaluating the ablation performance of multicomponent UHTCs was developed,which provides a preliminary basis for the composition design of multicomponent UHTCs.展开更多
Novel ZrB_(2)-matrix composites were designed and prepared by in-situ introducing SiC and Zr_(2)[Al(Si)]_(4)C_(5) simultaneously for the first time.The obtained composites were dense and showed good mechanical propert...Novel ZrB_(2)-matrix composites were designed and prepared by in-situ introducing SiC and Zr_(2)[Al(Si)]_(4)C_(5) simultaneously for the first time.The obtained composites were dense and showed good mechanical properties,especially the strength and toughness,706 MPa and 7.33 MPa·m^(1/2),respectively,coupled with high hardness of 21.3 GPa,and stiffness of 452 GPa.SiC and Zr_(2)[Al(Si)]_(4)C_(5) constituted a reinforcing system with synergistic effects including grain refinement,grain pull-out as well as crack branching,bridging,and deflection.Besides,the oxidation results of the composites showed that the oxidation kinetics followed the parabolic law at 1600℃,and the oxidation rate constants increased with the increase of Zr_(2)[Al(Si)]_(4)C_(5) content.The formation and evolution model of the oxidation structure was also investigated,and the oxide scale of the composite exhibited a three-layer structure.展开更多
Proton conducting ceramic cells(PCCs)are an attractive emerging technology operating in the intermediate temperature range of 500 to 700℃.In this work,we evaluate the production of hydrogen at intermediate temperatur...Proton conducting ceramic cells(PCCs)are an attractive emerging technology operating in the intermediate temperature range of 500 to 700℃.In this work,we evaluate the production of hydrogen at intermediate temperatures by proton conducting ceramic cell electrolysis(PCCEL).We demonstrate a highperformance steam electrolysis owing to a composite positrode based on BaGd_(0.8)La_(0.2)Co_(2)O_(6-δ)(BGLC1082)and BaZr0.5Ce0.4Y0.1O3-δ(BZCY541).The high reliability of PCCEL is demonstrated for 1680 h at a current density as high as-0.8 A cm^(-2)close to the thermoneutral cell voltage at 600℃.The electrolysis cell showed a specific energy consumption ranging from 54 to 66 kW h kg^(-1)that is comparable to state-of-the-art low temperature electrolysis technologies,while showing hydrogen production rates systematically higher than commercial solid oxide ceramic cells(SOCs).Compared to SOCs,the results verified the higher performances of PCCs at the relevant operating temperatures,due to the lower activation energy for proton transfer comparing with oxygen ion conduction.However,because of the p-type electronic conduction in protonic ceramics,the energy conversion rate of PCCs is relatively lower in steam electrolysis.The faradaic efficiency of the PCC in electrolysis mode can be increased at lower operating temperatures and in endothermic conditions,making PCCEL a technology of choice to valorize high temperature waste heat from industrial processes into hydrogen.To increase the faradaic efficiency by optimizing the materials,the cell design,or the operating strategy is a key challenge to address for future developments of PCCEL in order to achieve even more superior techno-economic merits.展开更多
With the rapid industrialization and urbanization,the demand for air quality management is more and more urgent.High temperature dust filtration is one important environmental management technology.Porous ceramics are...With the rapid industrialization and urbanization,the demand for air quality management is more and more urgent.High temperature dust filtration is one important environmental management technology.Porous ceramics are used as filter materials in the field of high-temperature dust filtration because of their unique advantages such as high filtration efficiency,as well as high temperature stability,particle loss resistance,corrosion resistance and durability.This paper mainly introduced several common preparation techniques of porous ceramics,including the traditional organic foam impregnation method,foaming method,in-situ combustion method,pore-forming method and other new methods such as the template method,gel injection molding method,freeze-drying method,multi-component co-precipitation method and hydrogel method.The principle,advantages and disadvantages of these preparation technologies and their research status were described.The application of these technologies in the field of high temperature dust filtration was briefly reviewed.Finally,the application prospect of the porous ceramics in the field of high temperature dust filtration was prospected.展开更多
ZrB_(2)-based ceramics typically necessitate high temperature and pressure for sintering,whereas ZrB_(2)-SiC ceramics can be fabricated at 1500℃using the process of reactive melt infiltration with Si.In comparison to...ZrB_(2)-based ceramics typically necessitate high temperature and pressure for sintering,whereas ZrB_(2)-SiC ceramics can be fabricated at 1500℃using the process of reactive melt infiltration with Si.In comparison to the conventional preparation method,reactive synthesis allows for the more facile production of ultra-high temperature ceramics with fine particle size and homogeneous composition.In this work,ZrSi_(2),B4C,and C were used as raw materials to prepare ZrB_(2)-SiC via combination of tape casting and reactive melt infiltration herein referred to as ZBC ceramics.Control sample of ZrB_(2)-SiC was also prepared using ZrB_(2) and SiC as raw materials through an identical process designated as ZS ceramics.Microscopic analysis of both ceramic groups revealed smaller and more uniformly distributed particles of the ZrB_(2) phase in ZBC ceramics compared to the larger particles in ZS ceramics.Both sets of ceramics underwent cyclic oxidation testing in the air at 1600℃for a cumulative duration of 5 cycles,each cycle lasting 2 h.Analysis of the oxidation behavior showed that both ZBC ceramics and ZS ceramics developed a glassy SiO_(2)-ZrO_(2) oxide layer on their surfaces during the oxidation.This layer severed as a barrier against oxygen.In ZBC ceramics,ZrO_(2) is finely distributed in SiO_(2),whereas in ZS ceramics,larger ZrO_(2) particles coexist with glassy SiO_(2).The surface oxide layer of ZBC ceramics maintains a dense structure because the well-dispersed ZrO_(2) increases the viscosity of glassy SiO_(2),preventing its crystallization during the cooling.Conversely,some SiO_(2) in the oxide layer of ZS ceramics may crystallize and form a eutectic with ZrO_(2),leading to the formation of ZrSiO_(4).This leads to cracking of the oxide layer due to differences in thermal expansion coefficients,weakening its barrier effect.An analysis of the oxidation resistance shows that ZBC ceramics exhibit less increase in oxide layer thickness and mass compared to ZS ceramics,suggesting superior oxidation resistance of ZBC ceramics.展开更多
Ultra-high temperature ceramic(UHTC) composites are widely used in high-temperature environments in aerospace applications. They experience extremely complex environmental conditions during service, including thermal,...Ultra-high temperature ceramic(UHTC) composites are widely used in high-temperature environments in aerospace applications. They experience extremely complex environmental conditions during service, including thermal, mechanical and chemical loading. Therefore, it is critical to evaluate the mechanical properties of UHTCs subject to an environment with elevated temperature, mechanical stress and oxygen. In this paper, an experimental investigation of the uniaxial tensile properties of a ZrB_2-SiC-graphite subject to an environment with a simultaneously elevated temperature, mechanical stress and oxygen is conducted based on a high-temperature mechanical testing system. To improve efficiency, an orthogonal experimental design is used. It is suggested that the temperature has the most important effect on the properties, and the oxidation time and stress have an almost equal effect. Finally, the fracture morphology is characterized using scanning electron microscopy(SEM), and the mechanism is investigated. It was concluded that the main fracture mode involved graphite flakes pulling out of the matrix and crystalline fracture, which indicates the presence of a weak interface in the composites.展开更多
β-SiC ceramic powders were obtained by pyrolyzing polycarbosilane in vacuum at 800-1200 °C. The β-SiC ceramic powders were characterized by TGA/DSC, XRD and Raman spectroscopy. The dielectric properties of β-S...β-SiC ceramic powders were obtained by pyrolyzing polycarbosilane in vacuum at 800-1200 °C. The β-SiC ceramic powders were characterized by TGA/DSC, XRD and Raman spectroscopy. The dielectric properties of β-SiC ceramic powders were investigated by measuring their complex permittivity by rectangle wave guide method in the frequency range of 8.2-18 GHz. The results show that both real part ε′ and imaginary part ε″ of complex permittivity increase with increasing pyrolysis temperature. The mechanism was proposed that order carbon formed at high temperature resulted in electron relaxation polarization and conductance loss, which contributes to the increase in complex permittivity.展开更多
Pb(Mg_(1/3)Nb_(2/3))O_(3)–PbTiO_(3)(PMN-PT)piezoelectric ceramics have excellent piezoelectric properties and are used in a wide range of applications.Adjusting the solid solution ratios of PMN/PT and different conce...Pb(Mg_(1/3)Nb_(2/3))O_(3)–PbTiO_(3)(PMN-PT)piezoelectric ceramics have excellent piezoelectric properties and are used in a wide range of applications.Adjusting the solid solution ratios of PMN/PT and different concentrations of elemental doping are the main methods to modulate their piezoelectric coefficients.The combination of these controllable conditions leads to an exponential increase of possible compositions in ceramics,which makes it not easy to extend the sample data by additional experimental or theoretical calculations.In this paper,a physics-embedded machine learning method is proposed to overcome the difficulties in obtaining piezoelectric coefficients and Curie temperatures of Sm-doped PMN-PT ceramics with different components.In contrast to all-data-driven model,physics-embedded machine learning is able to learn nonlinear variation rules based on small datasets through potential correlation between ferroelectric properties.Based on the model outputs,the positions of morphotropic phase boundary(MPB)with different Sm doping amounts are explored.We also find the components with the best piezoelectric property and comprehensive performance.Moreover,we set up a database according to the obtained results,through which we can quickly find the optimal components of Sm-doped PMN-PT ceramics according to our specific needs.展开更多
The influence of the composition (Yb2O3, MgO, CeO2, Li2CO3) on the dielectric properties of medium temperature sintering (Ba, Sr)TiO3 (BST) series capacitor ceramics was investigated by means of conventional tec...The influence of the composition (Yb2O3, MgO, CeO2, Li2CO3) on the dielectric properties of medium temperature sintering (Ba, Sr)TiO3 (BST) series capacitor ceramics was investigated by means of conventional technology process and orthogonal design experiments. The major secondary influencing factors and the influencing tendency of various factor's levels for the dielectric properties of BST ceramics were obtained. The optimum formula for maximum dielectric constant (ε) and for minimum dielectric loss (tanδ) was obtained under the experimental conditions. The BST ceramics with optimum comprehensive properties was obtained by means of orthogonal design experiments, with the sintering temperature at 1200 ℃, the dielectric constant 5239, the dielectric loss 0.0097, withstand electric voltage over 6 MV·m^-1, capacitance temperature changing ence of various components on the providing the basis for preparation rate (△C/C) - 75.67%, and suited for Y5V character. The mechanism of the infludielectric properties of medium temperature sintering BST ceramics was studied, thus of multilayer capacitor ceramics and single-chip capacitor ceramics.展开更多
The ceramics with Pb1.04Zr0.52Ti0.48O3 + z wt.% Cr2O3 were prepared using the traditional technique. The effects of Cr2O3 doping on the phase structure, the microstructure, and the electrical properties of ceramics w...The ceramics with Pb1.04Zr0.52Ti0.48O3 + z wt.% Cr2O3 were prepared using the traditional technique. The effects of Cr2O3 doping on the phase structure, the microstructure, and the electrical properties of ceramics were investigated. Meanwhile, the temperature stabilities of the resonant frequency (fx) were studied. The results showed that the △fr/fr,25℃ decreased with the addition of 0.2 wt.% - 0.8 wt.% Cr2O3 as compared with the undoped samples. The minimum value (-0.182%) of △fr/fr,25℃ was obtained for z = 0.6 wt.% Cr2O3 samples that sintered at 1260℃. The values of ε^τ33/ε0 = 1650, tanδ = 0.006, d33 = 328 pC/N, Kp = 0.63, Qm = 2300 were obtained when Cr2O3 was 0.6 wt.%, which exhibited more excellent piezoelectric properties than other compositions such as those with z = 0.2 wt.%, 0.4 wt.%, and 0.8 wt.%, but had a similar value as compared with the tmdoped samples. When the Cr2O3 additive increased, the Curie temperature moved toward low temperature and the changes of resonant frequency changed from positive to negative with increasing temperature.展开更多
The fabrication of Fe2O3-MnO2-Co2O3-CuO system ceramics, and the composite system ceramics of transitional metal oxides-cordierite and transitional metal oxides-kaolinit are presented in this work. The research was ca...The fabrication of Fe2O3-MnO2-Co2O3-CuO system ceramics, and the composite system ceramics of transitional metal oxides-cordierite and transitional metal oxides-kaolinit are presented in this work. The research was carried out with the main attention to the infrared emissivity in the band of 8 similar to 14 mu m at room temperature, the microstructure of the ceramics and the relation between them. High infrared emissivities exceeding 0.9 in the band of 8 similar to 14 mu m at room temperature were gained in the transitional metal oxide ceramics and the composite system ceramics. It is suggested that the formation of inverse spinels and partially inverse spinels, such as Fe3O4, CoFe2O4, CuFe2O4 and CuMn2O4, is beneficial to the enhancement of the infrared emissivity of the transitional metal oxide ceramics. The transitional metal oxides play an important role in determining the infrared emissivity of the composite system ceramics.展开更多
基金supported by the Henan College Students Innovation and Entrepreneurship Training Program(202211070009 and 202211070016).
文摘Ultra-high temperature ceramic coatings have ultra-high melting points,excellent mechanical properties and high temperature ablation resistance.These unique performance combinations turn it into a promising material for use in extreme environment structures in rockets and hypersonic vehicles,particularly nozzles,leading edges and engine components.In this paper,various preparation methods of ultra-high temperature ceramic coatings were reviewed,including plasma spraying,chemical vapor deposition,pack cementation,slurry sintering,hot pressing and their research progress.Meanwhile,some new preparation methods of high temperature coatings,such as ion beam deposition,ultrasonic spraying,metal organic frame work coating,and magnetron sputtering,were introduced.The development trend of ultra-high temperature coatings was prospected as well.
基金The project was supported by the National Natural Science Foundation of China (90505015 and 10702035).
文摘Breaking down the entire structure of a material implies severing all the bonds between its atoms either by applying work or by heat transfer. Because bond-breaking is indifferent to either means, there is a kind of equivalence between heat energy and strain energy. Based on this equivalence, we assume the existence of a constant maximum storage of energy that includes both the strain energy and the corresponding equivalent heat energy. A temperaturedependent fracture strength model is then developed for ultrahigh temperature ceramics (UHTCs). Model predictions for UHTCs, HfB2, TiC and ZrB2, are presented and compared with the experimental results. These predictions are found to be largely consistent with experimental results.
基金Funded by the Major Research Plan of the National Natural Science Foundation of China(No.91216302)the Major State Basic Research Development Program of China(973 Program)(No.2015CB655200)the National Natural Science Foundation of China(Nos.11672088,11472092,and 11502058)
文摘ZrB_2-SiC based ultra-high temperature ceramic(UHTC) struts were firstly proposed and fabricated with the potential application in the combustor of scramjets for fuel injection and flame-holding for their machinability and excellent oxidation/ablation resistance in the extreme harsh environment. The struts were machined with electrospark wire-electrode cutting techniques to form UHTC into the desired shape, and with laser drilling to drill tiny holes providing the channels for fuel injection. The integrated thermal-structural characteristic of the struts was evaluated in high-temperature combustion environment by the propane-oxygen free jet facility, subject to the heat flux of 1.5 MW/m^2 lasting for 300 seconds, and the struts maintained integrity during and after the first experiment. The experiments were repeated for verifying the reusability of the struts. Fracture occurred during the second repeated experiment with the crack propagating through the hole. Finite element analysis(FEA) was carried out to study the thermal stress distribution in the UHTC strut. The simulation results show a high thermal stress concentration occurs at the hole which is the crack initiation position. The phenomenon is in good agreement with the experimental results. The study shows that the thermal stress concentration is a practical key issue in the applications of the reusable UHTC strut for fuel injection structure in scramjets.
基金Project supported by the National Natural Science Foundation of China(Nos.11472066 and11172336)the Chongqing Natural Science Foundation(No.cstc2013jcyj A50018)+1 种基金the Program for New Century Excellent Talents in University(No.ncet-13-0634)the Fundamental Research Funds for the Central Universities(Nos.CDJZR13240021 and CDJZR14328801)
文摘The effects of mechanical boundary conditions, often encountered in thermalstructural engineering, on the thermal shock resistance(TSR) of ultra-high temperature ceramics(UHTCs) are studied by investigating the TSR of a UHTC plate with various types of constraints under the first, second, and third type of thermal boundary conditions. The TSR of UHTCs is strongly dependent on the heat transfer modes and severity of the thermal environments. Constraining the displacement of the lower surface in the thickness direction can significantly decrease the TSR of the UHTC plate, which is subject to the thermal shock at the upper surface. In contrast, the TSR of the UHTC plate with simply supported edges or clamped edges around the lower surface is much better.
文摘Ultra-high temperature ceramics(UHTCs)are a family of borides,carbides and nitrides of transition elements such as hafnium,zirconium,tantalum and niobium.They exhibit the highest known melting points,good mechanical strength,good chemical and thermal stability under certain conditions.In last decade,researchers dedicated to characterize porous UHTCs aiming to develop novel thermal insulating materials that could withstand temperatures over 2000℃.In this article,the preparation and characteristics of porous UHTCs were reviewed.Dry processing,colloidal processing and solution processing routes have been used to prepare porous UHTCs with porosities ranging from 5%to 97%and pore sizes ranging from hundreds of nanometers to hundreds of micrometers.The obtained porous UHTCs are chemically and dimensionally stable at temperatures up to 2000℃ during static state high-temperature thermal aging.
基金supported by the National Natural Science Foundation of China(Nos.52105233 and 52275366)the Tianjin Science and Technology Plan Project(No.22JCYBJC01590).
文摘Ultra-high temperature ceramic(UHTC)coatings are used to protect the hot-end components of hypervelocity aerocrafts from thermal ablation.This study provides a new approach to fabricate UHTC coatings with high speed laser cladding(HSLC)technology,and places more emphasis on investigating the formation mechanism,phase compositions,and mechanical properties of HSLC-UHTC coatings.Results show that a well-bonded interface between the coating and the tantalum alloy substrate can be formed.The coating is mainly composed of(Zr,Ta)C ceramic solid solution phase with a content of higher than 90% by volume and Ta(W)metal solid solution phase.At a relatively high powder feeding rate,the ZrC ceramic phase appears in the coating while a dense ZrC UHTC top layer with a thickness of up to~50μm is successfully fabricated.As for the mechanical properties of the HSLC coatings,the fracture toughness of the coating decreases with the increase of powder feeding rate.The increase of carbide solid solution phase can significantly improve the high temperature microhardness(552.7±1.8 HV0.5@1000℃).The innovative design of HSLC ZrC-based coatings on refractory alloys accomplishes continuous transitions on microstructure and properties from the substrate to the UHTC top layer,which is a very promising candidate scheme for thermal protection coating.
基金support from the National Natural Science Foundation of China(52032001,52022072,52032003,51972243,92060202,51872239,51872059,51772061,52061135102,52002321,50632070,51272266,and 52102093)bilateral project of NSFC-JSPS(51111140017 and 51611140121)+4 种基金China Postdoctoral Science Foundation(2021M690817)Fundamental Research Funds for the Central Universities(G2020KY05125)Key Research Program of Frontier Sciences,CAS(QYZDY-SSW-JSC031)the projects supported by fee State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,Wuhan University of Technology(2021-KF-5)fee State Key Laboratory for Modification of Chemical Fibers and Polymer Materials,Donghua University(KF2116)are greatly acknowledged.
文摘Ultra-high temperature ceramics(UHTCs)are generally referred to the carbides,nitrides,and borides of the transition metals,with the Group IVB compounds(Zr&Hf)and TaC as the main focus.The UHTCs are endowed with ultra-high melting points,excellent mechanical properties,and ablation resistance at elevated temperatures.These unique combinations of properties make them promising materials for extremely environmental structural applications in rocket and hypersonic vehicles,particularly nozzles,leading edges,and engine components,etc.In addition to bulk UHTCs,UHTC coatings and fiber reinforced UHTC composites are extensively developed and applied to avoid the intrinsic brittleness and poor thermal shock resistance of bulk ceramics.Recently,high-entropy UHTCs are developed rapidly and attract a lot of attention as an emerging direction for ultra-high temperature materials.This review presents the state of the art of processing approaches,microstructure design and properties of UHTCs from bulk materials to composites and coatings,as well as the future directions.
基金supported by the Major Program of Aerospace Advanced Manufacturing Technology Research Foundation NSFC and CASC, China (Grant No. U1537204)the Research Fund of Youth Innovation Promotion Association CAS, China (Grant No. 2014171)
文摘Carbon fiber reinforced ultra-high temperature ceramic (UHTC) composites, consisting of carbon fibers embedded in a UHTC-matrix or a C-SiC-UHTC-matrix, are deemed as the most viable class of materials that can overcome the poor fracture toughness and thermal shock resistance of monolithic UHTC ma- terials, and also improve the oxidation resistance and ablation resistance of C/C and C/SiC composites at ultra-high temperatures. In this review, we summarize the different processing routes of the compos- ites based on the UHTC introducing methods, including chemical vapor infiltration/deposition (CVI/D), precursor infiltration and pyrolysis (PIP), reactive melt infiltration (RMI), slurry infiltration (SI). in-sito reaction, hot pressing (HP), etc; and the advantages and drawbacks of each method are briefly dis- cussed. The carbon fiber reinforced UHTC composites can be highly tailorable materials in terms of fiber. interface, and matrix. From the perspective of service environmental applications for engine propul- sions anti hypersonic vehicles, the material designs (mainly focusing on the composition, quantity, structure of matrix, as well as the architecture of carbon fibers, UHTCs and pores), their relevant processing routes and properties (emphasizing on the mechanical and ablation properties) are discussed in this paper. In addition, we propose a material architecture to realize the multi-function through changing the distri- bution of carbon fibers, UHTCs and pores, which will be an important issue for future development of carbon fiber reinforced UHTC composites.
基金Financial support from the National Natural Science Foundation of China (Nos. 51602324 and 51532009)the Fundamental Research Funds for the Central Universities (No. 2232018D3-32)
文摘Ultra-high temperature ceramics(UHTCs)are considered as a family of nonmetallic and inorganic materials that have melting point over 3000℃.Chemically,nearly all UHTCs are borides,carbides,and nitrides of early transition metals(e.g.,Zr,Hf,Nb,Ta).Within the last two decades,except for the great achievements in the densification,microstructure tailoring,and mechanical property improvements of UHTCs,many methods have been established for the preparation of porous UHTCs,aiming to develop high-temperature resistant,sintering resistant,and lightweight materials that will withstand temperatures as high as 2000℃for long periods of time.Amongst the synthesis methods for porous UHTCs,sol–gel methods enable the preparation of porous UHTCs with pore sizes from 1 to 500μm and porosity within the range of 60%–95%at relatively low temperature.In this article,we review the currently available sol–gel methods for the preparation of porous UHTCs.Templating,foaming,and solvent evaporation methods are described and compared in terms of processing–microstructure relations.The properties and high temperature resistance of sol–gel derived porous UHTCs are discussed.Finally,directions to future investigations on the processing and applications of porous UHTCs are proposed.
基金supported by the National Natural Science Foundation of China(52072410 and 51602349)Innovation-driven Project of Central South University.
文摘Multicomponent ultra-high temperature ceramics(UHTCs)are promising candidates for thermal protection materials(TPMs)used in aerospace field.However,finding out desirable compositions from an enormous number of possible compositions remains challenging.Here,through elucidating the role of preferential oxidation in ablation behavior of multicomponent UHTCs via the thermodynamic analysis and experimental verification,the correlation between the composition and ablation performance of multicomponent UHTCs was revealed from the aspect of thermodynamics.We found that the metal components in UHTCs can be thermodynamically divided into preferentially oxidized component(denoted as MP),which builds up a skeleton in oxide layer,and laggingly oxidized component(denoted as ML),which fills the oxide skeleton.Meanwhile,a thermodynamically driven gradient in the concentration of MP and ML forms in the oxide layer.Based on these findings,a strategy for pre-evaluating the ablation performance of multicomponent UHTCs was developed,which provides a preliminary basis for the composition design of multicomponent UHTCs.
基金supported by the National Natural Science Foundation of China(No.51902031)the Natural Science Foundation of the Jiangsu Higher Education Institute of China(Nos.18KJB430002 and 18KJB430001)+1 种基金the Six Talent Peaks Project of Jiangsu Province(No.2018-SWYY-001)the Scientific Research Foundation of Changshu Institute of Technology(No.XZ1639).
文摘Novel ZrB_(2)-matrix composites were designed and prepared by in-situ introducing SiC and Zr_(2)[Al(Si)]_(4)C_(5) simultaneously for the first time.The obtained composites were dense and showed good mechanical properties,especially the strength and toughness,706 MPa and 7.33 MPa·m^(1/2),respectively,coupled with high hardness of 21.3 GPa,and stiffness of 452 GPa.SiC and Zr_(2)[Al(Si)]_(4)C_(5) constituted a reinforcing system with synergistic effects including grain refinement,grain pull-out as well as crack branching,bridging,and deflection.Besides,the oxidation results of the composites showed that the oxidation kinetics followed the parabolic law at 1600℃,and the oxidation rate constants increased with the increase of Zr_(2)[Al(Si)]_(4)C_(5) content.The formation and evolution model of the oxidation structure was also investigated,and the oxide scale of the composite exhibited a three-layer structure.
基金The China Scholarship Council is acknowledged for the doctoral scholarship of Haoyu Zheng(201806160173)The German Federal Ministry for Education and Research is acknowledged for funding via the Project ARCADE(03SF0580A)。
文摘Proton conducting ceramic cells(PCCs)are an attractive emerging technology operating in the intermediate temperature range of 500 to 700℃.In this work,we evaluate the production of hydrogen at intermediate temperatures by proton conducting ceramic cell electrolysis(PCCEL).We demonstrate a highperformance steam electrolysis owing to a composite positrode based on BaGd_(0.8)La_(0.2)Co_(2)O_(6-δ)(BGLC1082)and BaZr0.5Ce0.4Y0.1O3-δ(BZCY541).The high reliability of PCCEL is demonstrated for 1680 h at a current density as high as-0.8 A cm^(-2)close to the thermoneutral cell voltage at 600℃.The electrolysis cell showed a specific energy consumption ranging from 54 to 66 kW h kg^(-1)that is comparable to state-of-the-art low temperature electrolysis technologies,while showing hydrogen production rates systematically higher than commercial solid oxide ceramic cells(SOCs).Compared to SOCs,the results verified the higher performances of PCCs at the relevant operating temperatures,due to the lower activation energy for proton transfer comparing with oxygen ion conduction.However,because of the p-type electronic conduction in protonic ceramics,the energy conversion rate of PCCs is relatively lower in steam electrolysis.The faradaic efficiency of the PCC in electrolysis mode can be increased at lower operating temperatures and in endothermic conditions,making PCCEL a technology of choice to valorize high temperature waste heat from industrial processes into hydrogen.To increase the faradaic efficiency by optimizing the materials,the cell design,or the operating strategy is a key challenge to address for future developments of PCCEL in order to achieve even more superior techno-economic merits.
文摘With the rapid industrialization and urbanization,the demand for air quality management is more and more urgent.High temperature dust filtration is one important environmental management technology.Porous ceramics are used as filter materials in the field of high-temperature dust filtration because of their unique advantages such as high filtration efficiency,as well as high temperature stability,particle loss resistance,corrosion resistance and durability.This paper mainly introduced several common preparation techniques of porous ceramics,including the traditional organic foam impregnation method,foaming method,in-situ combustion method,pore-forming method and other new methods such as the template method,gel injection molding method,freeze-drying method,multi-component co-precipitation method and hydrogel method.The principle,advantages and disadvantages of these preparation technologies and their research status were described.The application of these technologies in the field of high temperature dust filtration was briefly reviewed.Finally,the application prospect of the porous ceramics in the field of high temperature dust filtration was prospected.
基金National Key R&D Program of China(2022YFB3707700)Shanghai Science and Technology Innovation Action Plan(21511104800)+3 种基金National Natural Science Foundation of China(52172111)National Science and Technology Major Project(2017-IV-0005-0042)Key Research Program of the Chinese Academy of Sciences(ZDRW-CN-2021-2-2)Science Center for Gas Turbine Project(P2022-B-IV-001-001)。
文摘ZrB_(2)-based ceramics typically necessitate high temperature and pressure for sintering,whereas ZrB_(2)-SiC ceramics can be fabricated at 1500℃using the process of reactive melt infiltration with Si.In comparison to the conventional preparation method,reactive synthesis allows for the more facile production of ultra-high temperature ceramics with fine particle size and homogeneous composition.In this work,ZrSi_(2),B4C,and C were used as raw materials to prepare ZrB_(2)-SiC via combination of tape casting and reactive melt infiltration herein referred to as ZBC ceramics.Control sample of ZrB_(2)-SiC was also prepared using ZrB_(2) and SiC as raw materials through an identical process designated as ZS ceramics.Microscopic analysis of both ceramic groups revealed smaller and more uniformly distributed particles of the ZrB_(2) phase in ZBC ceramics compared to the larger particles in ZS ceramics.Both sets of ceramics underwent cyclic oxidation testing in the air at 1600℃for a cumulative duration of 5 cycles,each cycle lasting 2 h.Analysis of the oxidation behavior showed that both ZBC ceramics and ZS ceramics developed a glassy SiO_(2)-ZrO_(2) oxide layer on their surfaces during the oxidation.This layer severed as a barrier against oxygen.In ZBC ceramics,ZrO_(2) is finely distributed in SiO_(2),whereas in ZS ceramics,larger ZrO_(2) particles coexist with glassy SiO_(2).The surface oxide layer of ZBC ceramics maintains a dense structure because the well-dispersed ZrO_(2) increases the viscosity of glassy SiO_(2),preventing its crystallization during the cooling.Conversely,some SiO_(2) in the oxide layer of ZS ceramics may crystallize and form a eutectic with ZrO_(2),leading to the formation of ZrSiO_(4).This leads to cracking of the oxide layer due to differences in thermal expansion coefficients,weakening its barrier effect.An analysis of the oxidation resistance shows that ZBC ceramics exhibit less increase in oxide layer thickness and mass compared to ZS ceramics,suggesting superior oxidation resistance of ZBC ceramics.
基金supported by the National Natural Science Foundation of China(Grant Nos.11472092,11672088,11502058)the National Basic Research Program of China(Grant No.2015CB655200)
文摘Ultra-high temperature ceramic(UHTC) composites are widely used in high-temperature environments in aerospace applications. They experience extremely complex environmental conditions during service, including thermal, mechanical and chemical loading. Therefore, it is critical to evaluate the mechanical properties of UHTCs subject to an environment with elevated temperature, mechanical stress and oxygen. In this paper, an experimental investigation of the uniaxial tensile properties of a ZrB_2-SiC-graphite subject to an environment with a simultaneously elevated temperature, mechanical stress and oxygen is conducted based on a high-temperature mechanical testing system. To improve efficiency, an orthogonal experimental design is used. It is suggested that the temperature has the most important effect on the properties, and the oxidation time and stress have an almost equal effect. Finally, the fracture morphology is characterized using scanning electron microscopy(SEM), and the mechanism is investigated. It was concluded that the main fracture mode involved graphite flakes pulling out of the matrix and crystalline fracture, which indicates the presence of a weak interface in the composites.
基金Project (50572090) supported by the National Natural Science Foundation of ChinaProject (KP200901) supported by the Fund of the State Key Laboratory of Solidification Processing, China
文摘β-SiC ceramic powders were obtained by pyrolyzing polycarbosilane in vacuum at 800-1200 °C. The β-SiC ceramic powders were characterized by TGA/DSC, XRD and Raman spectroscopy. The dielectric properties of β-SiC ceramic powders were investigated by measuring their complex permittivity by rectangle wave guide method in the frequency range of 8.2-18 GHz. The results show that both real part ε′ and imaginary part ε″ of complex permittivity increase with increasing pyrolysis temperature. The mechanism was proposed that order carbon formed at high temperature resulted in electron relaxation polarization and conductance loss, which contributes to the increase in complex permittivity.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.52272116 and 12002400)the Natural Science Foundation of Shandong Province (Grant No.ZR2021ME096)the Youth Innovation Team Project of Shandong Provincial Education Department (Grant No.2019KJJ012)。
文摘Pb(Mg_(1/3)Nb_(2/3))O_(3)–PbTiO_(3)(PMN-PT)piezoelectric ceramics have excellent piezoelectric properties and are used in a wide range of applications.Adjusting the solid solution ratios of PMN/PT and different concentrations of elemental doping are the main methods to modulate their piezoelectric coefficients.The combination of these controllable conditions leads to an exponential increase of possible compositions in ceramics,which makes it not easy to extend the sample data by additional experimental or theoretical calculations.In this paper,a physics-embedded machine learning method is proposed to overcome the difficulties in obtaining piezoelectric coefficients and Curie temperatures of Sm-doped PMN-PT ceramics with different components.In contrast to all-data-driven model,physics-embedded machine learning is able to learn nonlinear variation rules based on small datasets through potential correlation between ferroelectric properties.Based on the model outputs,the positions of morphotropic phase boundary(MPB)with different Sm doping amounts are explored.We also find the components with the best piezoelectric property and comprehensive performance.Moreover,we set up a database according to the obtained results,through which we can quickly find the optimal components of Sm-doped PMN-PT ceramics according to our specific needs.
文摘The influence of the composition (Yb2O3, MgO, CeO2, Li2CO3) on the dielectric properties of medium temperature sintering (Ba, Sr)TiO3 (BST) series capacitor ceramics was investigated by means of conventional technology process and orthogonal design experiments. The major secondary influencing factors and the influencing tendency of various factor's levels for the dielectric properties of BST ceramics were obtained. The optimum formula for maximum dielectric constant (ε) and for minimum dielectric loss (tanδ) was obtained under the experimental conditions. The BST ceramics with optimum comprehensive properties was obtained by means of orthogonal design experiments, with the sintering temperature at 1200 ℃, the dielectric constant 5239, the dielectric loss 0.0097, withstand electric voltage over 6 MV·m^-1, capacitance temperature changing ence of various components on the providing the basis for preparation rate (△C/C) - 75.67%, and suited for Y5V character. The mechanism of the infludielectric properties of medium temperature sintering BST ceramics was studied, thus of multilayer capacitor ceramics and single-chip capacitor ceramics.
文摘The ceramics with Pb1.04Zr0.52Ti0.48O3 + z wt.% Cr2O3 were prepared using the traditional technique. The effects of Cr2O3 doping on the phase structure, the microstructure, and the electrical properties of ceramics were investigated. Meanwhile, the temperature stabilities of the resonant frequency (fx) were studied. The results showed that the △fr/fr,25℃ decreased with the addition of 0.2 wt.% - 0.8 wt.% Cr2O3 as compared with the undoped samples. The minimum value (-0.182%) of △fr/fr,25℃ was obtained for z = 0.6 wt.% Cr2O3 samples that sintered at 1260℃. The values of ε^τ33/ε0 = 1650, tanδ = 0.006, d33 = 328 pC/N, Kp = 0.63, Qm = 2300 were obtained when Cr2O3 was 0.6 wt.%, which exhibited more excellent piezoelectric properties than other compositions such as those with z = 0.2 wt.%, 0.4 wt.%, and 0.8 wt.%, but had a similar value as compared with the tmdoped samples. When the Cr2O3 additive increased, the Curie temperature moved toward low temperature and the changes of resonant frequency changed from positive to negative with increasing temperature.
基金The research is supported by the Foundation for Excellent Youth of Wuhan Science and Technology Commission and Opening Foundation of Stae Key Laboratory of Advanced Technology for Materials Synthesis and Process of Wuhan University of Technology.
文摘The fabrication of Fe2O3-MnO2-Co2O3-CuO system ceramics, and the composite system ceramics of transitional metal oxides-cordierite and transitional metal oxides-kaolinit are presented in this work. The research was carried out with the main attention to the infrared emissivity in the band of 8 similar to 14 mu m at room temperature, the microstructure of the ceramics and the relation between them. High infrared emissivities exceeding 0.9 in the band of 8 similar to 14 mu m at room temperature were gained in the transitional metal oxide ceramics and the composite system ceramics. It is suggested that the formation of inverse spinels and partially inverse spinels, such as Fe3O4, CoFe2O4, CuFe2O4 and CuMn2O4, is beneficial to the enhancement of the infrared emissivity of the transitional metal oxide ceramics. The transitional metal oxides play an important role in determining the infrared emissivity of the composite system ceramics.