Carbide ceramic fibers are of significant importance for application in the high-tech areas of advanced aircraft engines,aerospace vehicles,and the nuclear industry due to their excellent properties,such as high tensi...Carbide ceramic fibers are of significant importance for application in the high-tech areas of advanced aircraft engines,aerospace vehicles,and the nuclear industry due to their excellent properties,such as high tensile strength and elastic modulus,excellent high-temperature resistance,and oxidation resistance.This paper reviews the preparation and application of different carbide ceramic fibers,including SiC fibers and transition metal carbide(e.g.,ZrC,HfC,and TaC)ceramic fibers.The preparation methods of carbide ceramic fibers are discussed in terms of different fiber diameters,represented by SiC fibers with variable weaving properties and functions due to their differences in diameter.Subsequently,the application of carbide ceramic fibers as high-temperature-resistant structural materials,catalyst carriers,sensors,and supercapacitors are summarized,and strategies for the future development of carbide ceramic fibers are proposed.This review aims to help researchers enhance their understanding of the preparation and utilization of carbide ceramic micro/nanofibers,advancing the development of high-performance carbide ceramic fibers.展开更多
Carbon fiber reinforced ultra-high temperature ceramic (UHTC) composites, consisting of carbon fibers embedded in a UHTC-matrix or a C-SiC-UHTC-matrix, are deemed as the most viable class of materials that can overc...Carbon fiber reinforced ultra-high temperature ceramic (UHTC) composites, consisting of carbon fibers embedded in a UHTC-matrix or a C-SiC-UHTC-matrix, are deemed as the most viable class of materials that can overcome the poor fracture toughness and thermal shock resistance of monolithic UHTC ma- terials, and also improve the oxidation resistance and ablation resistance of C/C and C/SiC composites at ultra-high temperatures. In this review, we summarize the different processing routes of the compos- ites based on the UHTC introducing methods, including chemical vapor infiltration/deposition (CVI/D), precursor infiltration and pyrolysis (PIP), reactive melt infiltration (RMI), slurry infiltration (SI). in-sito reaction, hot pressing (HP), etc; and the advantages and drawbacks of each method are briefly dis- cussed. The carbon fiber reinforced UHTC composites can be highly tailorable materials in terms of fiber. interface, and matrix. From the perspective of service environmental applications for engine propul- sions anti hypersonic vehicles, the material designs (mainly focusing on the composition, quantity, structure of matrix, as well as the architecture of carbon fibers, UHTCs and pores), their relevant processing routes and properties (emphasizing on the mechanical and ablation properties) are discussed in this paper. In addition, we propose a material architecture to realize the multi-function through changing the distri- bution of carbon fibers, UHTCs and pores, which will be an important issue for future development of carbon fiber reinforced UHTC composites.展开更多
Ultra-high temperature ceramics(UHTCs)are generally referred to the carbides,nitrides,and borides of the transition metals,with the Group IVB compounds(Zr&Hf)and TaC as the main focus.The UHTCs are endowed with ul...Ultra-high temperature ceramics(UHTCs)are generally referred to the carbides,nitrides,and borides of the transition metals,with the Group IVB compounds(Zr&Hf)and TaC as the main focus.The UHTCs are endowed with ultra-high melting points,excellent mechanical properties,and ablation resistance at elevated temperatures.These unique combinations of properties make them promising materials for extremely environmental structural applications in rocket and hypersonic vehicles,particularly nozzles,leading edges,and engine components,etc.In addition to bulk UHTCs,UHTC coatings and fiber reinforced UHTC composites are extensively developed and applied to avoid the intrinsic brittleness and poor thermal shock resistance of bulk ceramics.Recently,high-entropy UHTCs are developed rapidly and attract a lot of attention as an emerging direction for ultra-high temperature materials.This review presents the state of the art of processing approaches,microstructure design and properties of UHTCs from bulk materials to composites and coatings,as well as the future directions.展开更多
Ceramic matrix composite(CMC),with higher thermal limit and lower density relative to the superalloy,is regarded as the most important structural material for modern gas turbine engines.However,the anisotropic thermal...Ceramic matrix composite(CMC),with higher thermal limit and lower density relative to the superalloy,is regarded as the most important structural material for modern gas turbine engines.However,the anisotropic thermal conductivities caused by the weave patterns totally change the thermal conduction performance inside the solid domain.Therefore,the present study aims to use the infrared thermographic to measure the SiC/SiC composite platform with staggered effusion holes along with the superalloy platform.CMC platform is prepared by 2-D plain weave braid structure with chemical vapor infiltration(CVI)process.The temperature of mainstream is 900 K to match the real mainstream to coolant temperature ratio(T_(g)/T_(c)=1.5,2.1).The experimental was conducted with seven mass flow ratios(MFR=1.5%-4.5%).The results indicate that the thermal conductivity along the thickness direction is of great importance for the CMC platform.The superalloy platform obtains higher level of overall cooling effectiveness than CMC at T_(g)/T_(c)=1.5.However,the CMC platform achieves greater overall cooling effectiveness relative to superalloy at T_(g)/T_(c)=2.1.In addition,CMC platform presents enhanced uniformity of overall cooling effectiveness due to the larger in-plane thermal conductivity.展开更多
Novel ZrB_(2)-matrix composites were designed and prepared by in-situ introducing SiC and Zr_(2)[Al(Si)]_(4)C_(5) simultaneously for the first time.The obtained composites were dense and showed good mechanical propert...Novel ZrB_(2)-matrix composites were designed and prepared by in-situ introducing SiC and Zr_(2)[Al(Si)]_(4)C_(5) simultaneously for the first time.The obtained composites were dense and showed good mechanical properties,especially the strength and toughness,706 MPa and 7.33 MPa·m^(1/2),respectively,coupled with high hardness of 21.3 GPa,and stiffness of 452 GPa.SiC and Zr_(2)[Al(Si)]_(4)C_(5) constituted a reinforcing system with synergistic effects including grain refinement,grain pull-out as well as crack branching,bridging,and deflection.Besides,the oxidation results of the composites showed that the oxidation kinetics followed the parabolic law at 1600℃,and the oxidation rate constants increased with the increase of Zr_(2)[Al(Si)]_(4)C_(5) content.The formation and evolution model of the oxidation structure was also investigated,and the oxide scale of the composite exhibited a three-layer structure.展开更多
High-temperature mechanical properties of medium-entropy carbide ceramics have attracted significant attention.Tailoring the microstructure is an effective way to improve these high-temperature mechanical properties,w...High-temperature mechanical properties of medium-entropy carbide ceramics have attracted significant attention.Tailoring the microstructure is an effective way to improve these high-temperature mechanical properties,which can be affected by the evolution of the enthalpy and entropy,as well as by lattice distortion and sluggish diffusion.In this study,the effects of equiatomic Zr/(Ti,Nb)substitution(Zr content of 10-40 at%)on the microstructure and high-temperature strength of(Ti,Zr,Nb)C medium-entropy ceramics were investigated.The grain size of the(Ti,Zr,Nb)C medium-entropy ceramics was refined from 9.4±3.7 to 1.1±0.4μm with an increase in the Zr content from 10.0 to 33.3 at%.A further increase in the Zr content to 40 at%resulted in a slight increase in the grain size.At 1900℃,the(Ti,Zr,Nb)C medium-entropy ceramics with the Zr contents of 33.3 and 40 at%exhibited ultra-high flexural strengths of 875±43 and 843±71 MPa,respectively,which were higher than those of the transition metal carbides previously reported under similar conditions.Furthermore,relatively smooth grain boundaries,which were detected at a test temperature of 1000℃,transformed into curved and serrated boundaries as the temperature increased to 1900℃,which may be considered the primary reason for the improved high-temperature flexural strength.The associated mechanism was analyzed and discussed in detail.展开更多
基金support from the National Natural Science Foundation of China(No.52272100)the Natural Science Foundation of Hunan Province(No.2022JJ30662)the Science and Technology on Advanced Ceramic Fibers and Composites Laboratory(No.WDZC20215250507).
文摘Carbide ceramic fibers are of significant importance for application in the high-tech areas of advanced aircraft engines,aerospace vehicles,and the nuclear industry due to their excellent properties,such as high tensile strength and elastic modulus,excellent high-temperature resistance,and oxidation resistance.This paper reviews the preparation and application of different carbide ceramic fibers,including SiC fibers and transition metal carbide(e.g.,ZrC,HfC,and TaC)ceramic fibers.The preparation methods of carbide ceramic fibers are discussed in terms of different fiber diameters,represented by SiC fibers with variable weaving properties and functions due to their differences in diameter.Subsequently,the application of carbide ceramic fibers as high-temperature-resistant structural materials,catalyst carriers,sensors,and supercapacitors are summarized,and strategies for the future development of carbide ceramic fibers are proposed.This review aims to help researchers enhance their understanding of the preparation and utilization of carbide ceramic micro/nanofibers,advancing the development of high-performance carbide ceramic fibers.
基金supported by the Major Program of Aerospace Advanced Manufacturing Technology Research Foundation NSFC and CASC, China (Grant No. U1537204)the Research Fund of Youth Innovation Promotion Association CAS, China (Grant No. 2014171)
文摘Carbon fiber reinforced ultra-high temperature ceramic (UHTC) composites, consisting of carbon fibers embedded in a UHTC-matrix or a C-SiC-UHTC-matrix, are deemed as the most viable class of materials that can overcome the poor fracture toughness and thermal shock resistance of monolithic UHTC ma- terials, and also improve the oxidation resistance and ablation resistance of C/C and C/SiC composites at ultra-high temperatures. In this review, we summarize the different processing routes of the compos- ites based on the UHTC introducing methods, including chemical vapor infiltration/deposition (CVI/D), precursor infiltration and pyrolysis (PIP), reactive melt infiltration (RMI), slurry infiltration (SI). in-sito reaction, hot pressing (HP), etc; and the advantages and drawbacks of each method are briefly dis- cussed. The carbon fiber reinforced UHTC composites can be highly tailorable materials in terms of fiber. interface, and matrix. From the perspective of service environmental applications for engine propul- sions anti hypersonic vehicles, the material designs (mainly focusing on the composition, quantity, structure of matrix, as well as the architecture of carbon fibers, UHTCs and pores), their relevant processing routes and properties (emphasizing on the mechanical and ablation properties) are discussed in this paper. In addition, we propose a material architecture to realize the multi-function through changing the distri- bution of carbon fibers, UHTCs and pores, which will be an important issue for future development of carbon fiber reinforced UHTC composites.
基金support from the National Natural Science Foundation of China(52032001,52022072,52032003,51972243,92060202,51872239,51872059,51772061,52061135102,52002321,50632070,51272266,and 52102093)bilateral project of NSFC-JSPS(51111140017 and 51611140121)+4 种基金China Postdoctoral Science Foundation(2021M690817)Fundamental Research Funds for the Central Universities(G2020KY05125)Key Research Program of Frontier Sciences,CAS(QYZDY-SSW-JSC031)the projects supported by fee State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,Wuhan University of Technology(2021-KF-5)fee State Key Laboratory for Modification of Chemical Fibers and Polymer Materials,Donghua University(KF2116)are greatly acknowledged.
文摘Ultra-high temperature ceramics(UHTCs)are generally referred to the carbides,nitrides,and borides of the transition metals,with the Group IVB compounds(Zr&Hf)and TaC as the main focus.The UHTCs are endowed with ultra-high melting points,excellent mechanical properties,and ablation resistance at elevated temperatures.These unique combinations of properties make them promising materials for extremely environmental structural applications in rocket and hypersonic vehicles,particularly nozzles,leading edges,and engine components,etc.In addition to bulk UHTCs,UHTC coatings and fiber reinforced UHTC composites are extensively developed and applied to avoid the intrinsic brittleness and poor thermal shock resistance of bulk ceramics.Recently,high-entropy UHTCs are developed rapidly and attract a lot of attention as an emerging direction for ultra-high temperature materials.This review presents the state of the art of processing approaches,microstructure design and properties of UHTCs from bulk materials to composites and coatings,as well as the future directions.
基金support of National Natural Science Foundation of China(No.52006178)National Key R&D Program of China(No.Y2019-Ⅷ-0007-0168)+1 种基金the Fundamental Research Funds for the Central Universitiesthe Innovation Capacity Support Plan in Shaanxi Province of China(Grant No.2023-CX-TD-19)。
文摘Ceramic matrix composite(CMC),with higher thermal limit and lower density relative to the superalloy,is regarded as the most important structural material for modern gas turbine engines.However,the anisotropic thermal conductivities caused by the weave patterns totally change the thermal conduction performance inside the solid domain.Therefore,the present study aims to use the infrared thermographic to measure the SiC/SiC composite platform with staggered effusion holes along with the superalloy platform.CMC platform is prepared by 2-D plain weave braid structure with chemical vapor infiltration(CVI)process.The temperature of mainstream is 900 K to match the real mainstream to coolant temperature ratio(T_(g)/T_(c)=1.5,2.1).The experimental was conducted with seven mass flow ratios(MFR=1.5%-4.5%).The results indicate that the thermal conductivity along the thickness direction is of great importance for the CMC platform.The superalloy platform obtains higher level of overall cooling effectiveness than CMC at T_(g)/T_(c)=1.5.However,the CMC platform achieves greater overall cooling effectiveness relative to superalloy at T_(g)/T_(c)=2.1.In addition,CMC platform presents enhanced uniformity of overall cooling effectiveness due to the larger in-plane thermal conductivity.
基金supported by the National Natural Science Foundation of China(No.51902031)the Natural Science Foundation of the Jiangsu Higher Education Institute of China(Nos.18KJB430002 and 18KJB430001)+1 种基金the Six Talent Peaks Project of Jiangsu Province(No.2018-SWYY-001)the Scientific Research Foundation of Changshu Institute of Technology(No.XZ1639).
文摘Novel ZrB_(2)-matrix composites were designed and prepared by in-situ introducing SiC and Zr_(2)[Al(Si)]_(4)C_(5) simultaneously for the first time.The obtained composites were dense and showed good mechanical properties,especially the strength and toughness,706 MPa and 7.33 MPa·m^(1/2),respectively,coupled with high hardness of 21.3 GPa,and stiffness of 452 GPa.SiC and Zr_(2)[Al(Si)]_(4)C_(5) constituted a reinforcing system with synergistic effects including grain refinement,grain pull-out as well as crack branching,bridging,and deflection.Besides,the oxidation results of the composites showed that the oxidation kinetics followed the parabolic law at 1600℃,and the oxidation rate constants increased with the increase of Zr_(2)[Al(Si)]_(4)C_(5) content.The formation and evolution model of the oxidation structure was also investigated,and the oxide scale of the composite exhibited a three-layer structure.
基金Financial supports from the National Natural Science Foundation of China(Nos.52172076,52032001,11575275,and 52102081)the State Key Laboratory of High Performance Ceramics and Superfine Microstructure are greatly appreciated.
文摘High-temperature mechanical properties of medium-entropy carbide ceramics have attracted significant attention.Tailoring the microstructure is an effective way to improve these high-temperature mechanical properties,which can be affected by the evolution of the enthalpy and entropy,as well as by lattice distortion and sluggish diffusion.In this study,the effects of equiatomic Zr/(Ti,Nb)substitution(Zr content of 10-40 at%)on the microstructure and high-temperature strength of(Ti,Zr,Nb)C medium-entropy ceramics were investigated.The grain size of the(Ti,Zr,Nb)C medium-entropy ceramics was refined from 9.4±3.7 to 1.1±0.4μm with an increase in the Zr content from 10.0 to 33.3 at%.A further increase in the Zr content to 40 at%resulted in a slight increase in the grain size.At 1900℃,the(Ti,Zr,Nb)C medium-entropy ceramics with the Zr contents of 33.3 and 40 at%exhibited ultra-high flexural strengths of 875±43 and 843±71 MPa,respectively,which were higher than those of the transition metal carbides previously reported under similar conditions.Furthermore,relatively smooth grain boundaries,which were detected at a test temperature of 1000℃,transformed into curved and serrated boundaries as the temperature increased to 1900℃,which may be considered the primary reason for the improved high-temperature flexural strength.The associated mechanism was analyzed and discussed in detail.