Ultra-high temperature ceramic coatings have ultra-high melting points,excellent mechanical properties and high temperature ablation resistance.These unique performance combinations turn it into a promising material f...Ultra-high temperature ceramic coatings have ultra-high melting points,excellent mechanical properties and high temperature ablation resistance.These unique performance combinations turn it into a promising material for use in extreme environment structures in rockets and hypersonic vehicles,particularly nozzles,leading edges and engine components.In this paper,various preparation methods of ultra-high temperature ceramic coatings were reviewed,including plasma spraying,chemical vapor deposition,pack cementation,slurry sintering,hot pressing and their research progress.Meanwhile,some new preparation methods of high temperature coatings,such as ion beam deposition,ultrasonic spraying,metal organic frame work coating,and magnetron sputtering,were introduced.The development trend of ultra-high temperature coatings was prospected as well.展开更多
The directionally solidified samples of an ultra-high temperature Nb-Si-Ti-Hf-Cr-Al alloy have been prepared with the use of an electron beam floating zone melting (EBFZM) furnace, and their microstructural characteri...The directionally solidified samples of an ultra-high temperature Nb-Si-Ti-Hf-Cr-Al alloy have been prepared with the use of an electron beam floating zone melting (EBFZM) furnace, and their microstructural characteristics have been analyzed. All the primary dendrites of Nb solid solution (Nbss), eutectic colonies of Nba, plus (Nb, Ti)3 Si/(Nb, Ti)5 Si3 and chains of (Nb, Ti)3 Si/(Nb, Ti)5 Si3 plates align along the growth direction of the samples. With increasing of the withdrawing rate, the microstructure is refined, and the amounts of Nbss+ (Nb, Ti)3 Si/(Nb, Ti)5 Si3 eutectic colonies and (Nb, Ti)3 Si/(Nb, Ti)5 Si3 plates increase. There appear nodes in the (Nb, Ti)3 Si/(Nb, Ti)5 Si3 plates.展开更多
An experimental and numerical study on the temperature field induced in the ultra-high frequency induction heating is carried out.With an aim of predicting the thermal history of the workpiece,the influence factors of...An experimental and numerical study on the temperature field induced in the ultra-high frequency induction heating is carried out.With an aim of predicting the thermal history of the workpiece,the influence factors of temperature field,such as the induction frequency,the dimension of coil and the gap between coil and workpiece,are investigated considering temperature-dependent material properties by using FLUX 2Dsoftware.The temperature field characteristic in ultra-high induction heating is obtained and discussed.The numerical values are compared with the experimental results.A good agreement between them is observed with 7.9% errors.展开更多
Breaking down the entire structure of a material implies severing all the bonds between its atoms either by applying work or by heat transfer. Because bond-breaking is indifferent to either means, there is a kind of e...Breaking down the entire structure of a material implies severing all the bonds between its atoms either by applying work or by heat transfer. Because bond-breaking is indifferent to either means, there is a kind of equivalence between heat energy and strain energy. Based on this equivalence, we assume the existence of a constant maximum storage of energy that includes both the strain energy and the corresponding equivalent heat energy. A temperaturedependent fracture strength model is then developed for ultrahigh temperature ceramics (UHTCs). Model predictions for UHTCs, HfB2, TiC and ZrB2, are presented and compared with the experimental results. These predictions are found to be largely consistent with experimental results.展开更多
ZrB_2-SiC based ultra-high temperature ceramic(UHTC) struts were firstly proposed and fabricated with the potential application in the combustor of scramjets for fuel injection and flame-holding for their machinabil...ZrB_2-SiC based ultra-high temperature ceramic(UHTC) struts were firstly proposed and fabricated with the potential application in the combustor of scramjets for fuel injection and flame-holding for their machinability and excellent oxidation/ablation resistance in the extreme harsh environment. The struts were machined with electrospark wire-electrode cutting techniques to form UHTC into the desired shape, and with laser drilling to drill tiny holes providing the channels for fuel injection. The integrated thermal-structural characteristic of the struts was evaluated in high-temperature combustion environment by the propane-oxygen free jet facility, subject to the heat flux of 1.5 MW/m^2 lasting for 300 seconds, and the struts maintained integrity during and after the first experiment. The experiments were repeated for verifying the reusability of the struts. Fracture occurred during the second repeated experiment with the crack propagating through the hole. Finite element analysis(FEA) was carried out to study the thermal stress distribution in the UHTC strut. The simulation results show a high thermal stress concentration occurs at the hole which is the crack initiation position. The phenomenon is in good agreement with the experimental results. The study shows that the thermal stress concentration is a practical key issue in the applications of the reusable UHTC strut for fuel injection structure in scramjets.展开更多
The growth of the InAs film directly on the Si substrate deflected from the plane(100) at 4° towards(110) has been performed using a two-step procedure. The effect of the growth and annealing temperature on the e...The growth of the InAs film directly on the Si substrate deflected from the plane(100) at 4° towards(110) has been performed using a two-step procedure. The effect of the growth and annealing temperature on the electron mobility and surface topography has been investigated for a set of samples. The results show that the highest electron mobility is4640 cm^2/V·s in the sample, in which the 10-nm InAs nucleation layer is grown at a low temperature of 320 ℃ followed by ramping up to 560 ℃, and the nucleation layer was annealed for 15 min and the second layer of InAs is grown at 520 ℃.The influence of different buffer layers on the electron mobility of the samples has also been investigated, which shows that the highest electron mobility of 9222 cm^2/V·s at 300 K is obtained in the sample grown on a thick and linearly graded InGaAlAs metamorphic buffer layer deposited at 420 ℃.展开更多
The InAs/AlSb heterostructures with step-graded GaAsxSb1-x metamorphic buffer layers grown on Si substrates by molecular beam epitaxy are studied. The step-graded GaAsxSb1-x metamorphic buffer layers are used to relax...The InAs/AlSb heterostructures with step-graded GaAsxSb1-x metamorphic buffer layers grown on Si substrates by molecular beam epitaxy are studied. The step-graded GaAsxSb1-x metamorphic buffer layers are used to relax the strain and block defects at each interface of the layers. Meanwhile, adding Sb to GaAs is also beneficial to suppressing the formation of dislocations in the subsequent materials. The influences of the growth temperature of the step-graded GaAsxSb1-x metamorphic buffer layer on the electron mobility and surface topography are investigated for a series of samples. Based on the atomic force microscopy(AFM), high resolution x-ray diffraction(HRXRD), reciprocal space map(RSM), and Hall measurements, the crystal quality and composition of GaAsxSb1-x layer are seen to strongly depend on growth temperature while keeping the Ga growth rate and V/III ratio constant. The results show that the highest electron mobility is 10270 cm2/V·s and the roughness is 4.3 nm for the step-graded GaAsxSb1-x metamorphic buffer layer grown at a temperature of 410℃.展开更多
The detailed laser surface remelting experiments of Cu-31.4 wt pct Mn and Cu-26.6 wt pct Mn alloys on a 5 kW CO2 laser were carried out to study the effects of processing parameters (scanning velocity, output power of...The detailed laser surface remelting experiments of Cu-31.4 wt pct Mn and Cu-26.6 wt pct Mn alloys on a 5 kW CO2 laser were carried out to study the effects of processing parameters (scanning velocity, output power of laser) on the growth direction of microstructure in the molten pool and cellular spacing selection under the condition of ultra-high temperature gradient and rapid directional solidification. The experimental results show that the growth direction of microstructure is strongly affected by laser processing parameters. The ultra-high temperature gradient directional solidification can be realized on the surface of samples during laser surface remelting by controlling laser processing parameters, the temperature gradient and growth velocity can reach 106 K/m and 24.1 mm/s, respectively, and the solidification microstructure in the center of the molten pool grows along the laser beam scanning direction. There exists a distribution range of cellular spacings under the laser rapid solidification conditions, and the average spacing decreases with increasing of growth rate. The maximum, λmax, minimum, λmin, and average primary spacing, A, as functions of growth rate, Vb, can be given by,λmax=12.54Vb-0.61, λmin=4.47 Vb-0.52, λ=9.09Vb-0.62, respectively. The experimental results are compared with the current Hunt-Lu model for rapid cellular/dendritic growth, and a good agreement is found.展开更多
Due to the multiformity and complexity of chain conformation under external flow and the challenge of systematically investigating the transient conformation and dynamic evolution process of polymer chains at the mole...Due to the multiformity and complexity of chain conformation under external flow and the challenge of systematically investigating the transient conformation and dynamic evolution process of polymer chains at the molecular level by means of present experimental techniques,a universal description of both chain conformation and dynamics with respect to continuous volume extensional flow(CVEF)is still absent.Taking into account the temperature effect,we performed dissipative particle dynamics(DPD)simulations with the particles corresponding to the repeat units of polymers over a wide temperature range and analyzed the correlation with the conformational properties of ultra-high molecular weight polyethylene/polypropylene(UHMWPE/PP)blend in response to the CVEF.With time evolution,the polymer chains become highly oriented parallel to the flow direction instead of the initial random coiling and self-aggregation.It is found that a high temperature is necessary for more substantial compactness to take place than low temperature.The low-k plateau and low-k peak in structure factor S(k)curves suggest a low degree of conformational diversity and a high degree of chain stretching.It is also concluded that the intra-molecular C-C bond interaction is the main driving force for the dynamics process of the chain conformations undergoing CVEF,where the motion of the alkyl chains is seriously restricted owing to the increase in bond interaction potential,resulting in a reduction of the difference in diffusion rates among alkyl chains.展开更多
The effects of mechanical boundary conditions, often encountered in thermalstructural engineering, on the thermal shock resistance(TSR) of ultra-high temperature ceramics(UHTCs) are studied by investigating the TS...The effects of mechanical boundary conditions, often encountered in thermalstructural engineering, on the thermal shock resistance(TSR) of ultra-high temperature ceramics(UHTCs) are studied by investigating the TSR of a UHTC plate with various types of constraints under the first, second, and third type of thermal boundary conditions. The TSR of UHTCs is strongly dependent on the heat transfer modes and severity of the thermal environments. Constraining the displacement of the lower surface in the thickness direction can significantly decrease the TSR of the UHTC plate, which is subject to the thermal shock at the upper surface. In contrast, the TSR of the UHTC plate with simply supported edges or clamped edges around the lower surface is much better.展开更多
Ultra-high temperature ceramics(UHTCs)are a family of borides,carbides and nitrides of transition elements such as hafnium,zirconium,tantalum and niobium.They exhibit the highest known melting points,good mechanical s...Ultra-high temperature ceramics(UHTCs)are a family of borides,carbides and nitrides of transition elements such as hafnium,zirconium,tantalum and niobium.They exhibit the highest known melting points,good mechanical strength,good chemical and thermal stability under certain conditions.In last decade,researchers dedicated to characterize porous UHTCs aiming to develop novel thermal insulating materials that could withstand temperatures over 2000℃.In this article,the preparation and characteristics of porous UHTCs were reviewed.Dry processing,colloidal processing and solution processing routes have been used to prepare porous UHTCs with porosities ranging from 5%to 97%and pore sizes ranging from hundreds of nanometers to hundreds of micrometers.The obtained porous UHTCs are chemically and dimensionally stable at temperatures up to 2000℃ during static state high-temperature thermal aging.展开更多
Recently, " Low Creep Ultra-high Temperature Corundum Mullite Kiln Fumature" developed by Sinosteel L1RR was listed in The National New Product Program in 2012 of The Ministry of Science and Technology of China.
The petrological research on the ultra high pressure metamorphism (UHP) of collisional orogen indicates that the upper crustal rocks is subducted to depths exceeding 100 km, and returned to the surface rapidly. In thi...The petrological research on the ultra high pressure metamorphism (UHP) of collisional orogen indicates that the upper crustal rocks is subducted to depths exceeding 100 km, and returned to the surface rapidly. In this study, we investigate the thermal structure of collisional orogen as a slab of continental lithosphere being subducted beneath an overriding wedge of continental lithosphere by the 2 D finite element method. The advection heat transfer due to the accretion of orogenic wedge is considered. The wedge is composed of the upper crust materials through the accretion from the down going plate to the upper plate. For identifying the significance of the geometric and/or kinetic factors on the thermal structure of continental subduction, the different combinations of parameters, including dip angle of subduction zone, accretion or erosion rates, and the convergence velocity etc., are used in modelling. The time span of continental subduction in our calculation is less than 30 Ma, according to the short duration of ultra deep subduction of continental slab suggested by the preservation of metastable pre peak low pressure mineralogy assemblage in the garnet of UHP rocks. Therefore, the steep dip angle of down going plate and/or low rate of accretion favour the ultra deep subduction of upper crust materials, especially for the slower down going slab. Meanwhile, taking the erosion rate as the level of exhumation rate of UHP rocks in some orogens (i.e., 1-2 km/Ma or more) does not result in the anatexis melting of crust of the overriding plate, due to the cooling effect of the rapid down going slab. However, the temperature structures of all models are generally cooler than those recovered by thermobarometric studies of the UHP rocks. This implies the significant increase of temperature after the rapid subduction of continental slab. Following the method of Davies and von Blackenburg (1998), we show that the slab breakoff can occur at the depth exceeding 100 km. Thermal modelling on the post subduction stage shows the heating related to the plate breakoff can cause the higher temperature recorded by the exhumed UHP rocks. The higher geotherm during post subduction stage leads to the weak strength of the orogenic wedge, and favours the faster upward movement of the UHP rock slices as ductile agents. The lower temperature gradient of the subduction slab predicted by modelling suggests the cold subducting slab could have transported significant fluids to mantle depth, not released during subduction. Accordingly, the absence of coeval calc alkalic magmatism in UHP orogens might resulted from the lower temperature as well as the fluid free circumstance, both are related to the rapid subduction of cold plate. Therefore, shear heating is not needed for explanation the thermal evolution of UHP orogen. On the other hand, the post collisional or late stage granitic plutonism is closely related to the deep seated heat producing materials of the accretion wedge.展开更多
Regenerated gratings seeded by type-I gratings are shown to withstand temperatures beyond 1000 ℃. The method of regeneration offers a new approach to increasing temperature resistance of stable fibre Bragg and other ...Regenerated gratings seeded by type-I gratings are shown to withstand temperatures beyond 1000 ℃. The method of regeneration offers a new approach to increasing temperature resistance of stable fibre Bragg and other gratings. These ultra-high temperature (UHT) gratings extend the applicability of silicate based components to high temperature applications such as monitoring of smelters and vehicle and aircraft engines to high power fibre lasers.展开更多
Searching for novel ferromagnetic oxides with high Curie temperature(TC)has been one of the main goals for oxide spintronics.The well-known perovskite cobaltate LaCoO_(3) is a classical ferromagnet in its thin-film fo...Searching for novel ferromagnetic oxides with high Curie temperature(TC)has been one of the main goals for oxide spintronics.The well-known perovskite cobaltate LaCoO_(3) is a classical ferromagnet in its thin-film form;however,it suffers from a low TC(~85 K).Here we report a new type of ferromagnetic La-Co-O films with an ultrahigh TC of~820 K.They are fabricated by pulsed laser deposition from a LaCoO_(3) target at low oxygen partial pressures.Detailed structural analysis indicates that they crystallize in terms of the Ruddlesden–Popper phase of La_(2)CoO_(4±x).In sharp contrast to the antiferromagnetism of bulk La_(2)CoO_(4),the strong ferromagnetism in the La_(2)CoO_(4±x) thin films is firmly demonstrated by magnetometry measurements,X-ray magnetic circular dichroism characterization,and magnetotransport experiments.More importantly,density functional theory calculations indicate that the nonstoichiometric oxygen induces an antiferromagnetic-to-ferromagnetic phase transition,accompanied by the orbital reconstruction of Co 3d electrons.Thus,our study provides an attractive strategy for designing or synthesizing exotic magnetic oxides with high ordering temperatures.展开更多
Ultra-high temperature ceramic(UHTC)coatings are used to protect the hot-end components of hypervelocity aerocrafts from thermal ablation.This study provides a new approach to fabricate UHTC coatings with high speed l...Ultra-high temperature ceramic(UHTC)coatings are used to protect the hot-end components of hypervelocity aerocrafts from thermal ablation.This study provides a new approach to fabricate UHTC coatings with high speed laser cladding(HSLC)technology,and places more emphasis on investigating the formation mechanism,phase compositions,and mechanical properties of HSLC-UHTC coatings.Results show that a well-bonded interface between the coating and the tantalum alloy substrate can be formed.The coating is mainly composed of(Zr,Ta)C ceramic solid solution phase with a content of higher than 90% by volume and Ta(W)metal solid solution phase.At a relatively high powder feeding rate,the ZrC ceramic phase appears in the coating while a dense ZrC UHTC top layer with a thickness of up to~50μm is successfully fabricated.As for the mechanical properties of the HSLC coatings,the fracture toughness of the coating decreases with the increase of powder feeding rate.The increase of carbide solid solution phase can significantly improve the high temperature microhardness(552.7±1.8 HV0.5@1000℃).The innovative design of HSLC ZrC-based coatings on refractory alloys accomplishes continuous transitions on microstructure and properties from the substrate to the UHTC top layer,which is a very promising candidate scheme for thermal protection coating.展开更多
Based upon fluid effects, retrograde metamorphism of eclogites in the Dabieregion can be divided into the fluid-poor, fluid-bearing and fluid-rich stages. The fluid-poor stageis marked by polymorphic inversion, recrys...Based upon fluid effects, retrograde metamorphism of eclogites in the Dabieregion can be divided into the fluid-poor, fluid-bearing and fluid-rich stages. The fluid-poor stageis marked by polymorphic inversion, recrystallization and exsolution of solid solutions, and isthought to represent eclogite-facies retrograde environments. The fluid-bearing stage is likely tohave occurred at the late stage of ecologite-facies diaphthorosis and is represented by kyaniteporphyroblasts, rutile, and sodic pyroxene in association with high-pressure hydrous minerals suchas phengite and zoisite (clinozoisite) without significant amount of hydrous minerals such asamphibole, epidote and biotite. The fluid-rich stage might have commenced concomitantly with loweramphibolite-facies diaphthoresis and persisted all the way towards the near-surface environment. Theproduct of this stage is characterized by plentiful hydrous and volatile-bearing phases.The dissemination-type rutile mineralizations in eclogites might have formed by preferentialshearing-induced pressure solution of gangue minerals at the fluid-bearing stage. The accompanyingvein rutile was precipitated from fluids of this stage after local transport and concentration, andmay hence represent proximal mobilization of titanium from the eclogite. Therefore, rutile veins canbe used as an exploration indicator for dissemination-type rutile deposits.展开更多
The circum-Gondwana subduction initiated by the early Cambrian has been suggested to reflect the establishment of the modern plate tectonics.The metamorphic rocks with low thermobaric(T/P)ratios indicative of cold sub...The circum-Gondwana subduction initiated by the early Cambrian has been suggested to reflect the establishment of the modern plate tectonics.The metamorphic rocks with low thermobaric(T/P)ratios indicative of cold subduction in the present tectonic regime have not been well investigated.To better understand the circum-Gondwana subduction and to test its possible link with the emergence of the modern plate tectonics,this study focused on blueschist-facies metamorphic rocks in the Altyn Tagh of the southeastern Tarim craton.Mineral assemblage and chemistry,phase equilibrium modelling,and quartz-in-garnet Raman elastic geobarometry reveal that the zoisite blueschist and glaucophane(Gln)-bearing quartz schist in northern Altyn Tagh were metamorphosed to lawsonite to epidote blueschistfacies at 520–545℃ and 16–19 kbar.It reflects high-pressure(HP)/low temperature(LT)metamorphism with low T/P ratios of<300℃/GPa and thermal gradients of<10℃/km.These blueschist-facies metamorphic rocks underwent rapid decompression starting at P-T conditions of<495℃ and<9.6 kbar during exhumation.Ar-Ar geochronology records paragonite Ar-Ar plateau ages of 520–506 Ma for the zoisite blueschist samples and phengite Ar-Ar plateau ages of 522–516 Ma for the Gln-bearing quartz schist samples,suggesting that the peak HP/LT metamorphism occurred prior to ca.522 Ma.Based on new results and available data from the major Gondwana blocks,cold subduction was suggested to profoundly operate along circum-Gondwana in the early Cambrian after the amalgamation of Gondwana.The extensive circum-Gondwana subduction represents the earliest global cold subduction in Earth’s history associated with the establishment of the modern plate tectonics,as directly recorded by the studied early Cambrian blueschist-facies metamorphic rocks and a dramatic drop in the mean T/P of metamorphism since the early Paleozoic.展开更多
基金supported by the Henan College Students Innovation and Entrepreneurship Training Program(202211070009 and 202211070016).
文摘Ultra-high temperature ceramic coatings have ultra-high melting points,excellent mechanical properties and high temperature ablation resistance.These unique performance combinations turn it into a promising material for use in extreme environment structures in rockets and hypersonic vehicles,particularly nozzles,leading edges and engine components.In this paper,various preparation methods of ultra-high temperature ceramic coatings were reviewed,including plasma spraying,chemical vapor deposition,pack cementation,slurry sintering,hot pressing and their research progress.Meanwhile,some new preparation methods of high temperature coatings,such as ion beam deposition,ultrasonic spraying,metal organic frame work coating,and magnetron sputtering,were introduced.The development trend of ultra-high temperature coatings was prospected as well.
基金supported by the National Natural Science Foundation of China(No.50271056)National High Technical Research and Development Programme of China(No.2003AA305810)the Special Research Fund for Doctoral Disciplines in Colleges and Universities of M.0.E,China(No.20020699025).
文摘The directionally solidified samples of an ultra-high temperature Nb-Si-Ti-Hf-Cr-Al alloy have been prepared with the use of an electron beam floating zone melting (EBFZM) furnace, and their microstructural characteristics have been analyzed. All the primary dendrites of Nb solid solution (Nbss), eutectic colonies of Nba, plus (Nb, Ti)3 Si/(Nb, Ti)5 Si3 and chains of (Nb, Ti)3 Si/(Nb, Ti)5 Si3 plates align along the growth direction of the samples. With increasing of the withdrawing rate, the microstructure is refined, and the amounts of Nbss+ (Nb, Ti)3 Si/(Nb, Ti)5 Si3 eutectic colonies and (Nb, Ti)3 Si/(Nb, Ti)5 Si3 plates increase. There appear nodes in the (Nb, Ti)3 Si/(Nb, Ti)5 Si3 plates.
基金Supported by the National Science and Technology Major Project of China(2012ZX04003081)
文摘An experimental and numerical study on the temperature field induced in the ultra-high frequency induction heating is carried out.With an aim of predicting the thermal history of the workpiece,the influence factors of temperature field,such as the induction frequency,the dimension of coil and the gap between coil and workpiece,are investigated considering temperature-dependent material properties by using FLUX 2Dsoftware.The temperature field characteristic in ultra-high induction heating is obtained and discussed.The numerical values are compared with the experimental results.A good agreement between them is observed with 7.9% errors.
基金The project was supported by the National Natural Science Foundation of China (90505015 and 10702035).
文摘Breaking down the entire structure of a material implies severing all the bonds between its atoms either by applying work or by heat transfer. Because bond-breaking is indifferent to either means, there is a kind of equivalence between heat energy and strain energy. Based on this equivalence, we assume the existence of a constant maximum storage of energy that includes both the strain energy and the corresponding equivalent heat energy. A temperaturedependent fracture strength model is then developed for ultrahigh temperature ceramics (UHTCs). Model predictions for UHTCs, HfB2, TiC and ZrB2, are presented and compared with the experimental results. These predictions are found to be largely consistent with experimental results.
基金Funded by the Major Research Plan of the National Natural Science Foundation of China(No.91216302)the Major State Basic Research Development Program of China(973 Program)(No.2015CB655200)the National Natural Science Foundation of China(Nos.11672088,11472092,and 11502058)
文摘ZrB_2-SiC based ultra-high temperature ceramic(UHTC) struts were firstly proposed and fabricated with the potential application in the combustor of scramjets for fuel injection and flame-holding for their machinability and excellent oxidation/ablation resistance in the extreme harsh environment. The struts were machined with electrospark wire-electrode cutting techniques to form UHTC into the desired shape, and with laser drilling to drill tiny holes providing the channels for fuel injection. The integrated thermal-structural characteristic of the struts was evaluated in high-temperature combustion environment by the propane-oxygen free jet facility, subject to the heat flux of 1.5 MW/m^2 lasting for 300 seconds, and the struts maintained integrity during and after the first experiment. The experiments were repeated for verifying the reusability of the struts. Fracture occurred during the second repeated experiment with the crack propagating through the hole. Finite element analysis(FEA) was carried out to study the thermal stress distribution in the UHTC strut. The simulation results show a high thermal stress concentration occurs at the hole which is the crack initiation position. The phenomenon is in good agreement with the experimental results. The study shows that the thermal stress concentration is a practical key issue in the applications of the reusable UHTC strut for fuel injection structure in scramjets.
基金Project supported by the National Defense Advanced Research Project,China(Grant No.315 xxxxx301)National Defense Innovation Program,China(Grant No.48xx4)+2 种基金the National Key Technologies Research and Development Program of China(Grant No.2018YFA03xxx01)the Scientific Instrument Developing Project of the Chinese Academy of Sciences(Grant No.YJKYYQ2017xxx2)the National Natural Science Foundation of China(Grant No.6150xxx6)
文摘The growth of the InAs film directly on the Si substrate deflected from the plane(100) at 4° towards(110) has been performed using a two-step procedure. The effect of the growth and annealing temperature on the electron mobility and surface topography has been investigated for a set of samples. The results show that the highest electron mobility is4640 cm^2/V·s in the sample, in which the 10-nm InAs nucleation layer is grown at a low temperature of 320 ℃ followed by ramping up to 560 ℃, and the nucleation layer was annealed for 15 min and the second layer of InAs is grown at 520 ℃.The influence of different buffer layers on the electron mobility of the samples has also been investigated, which shows that the highest electron mobility of 9222 cm^2/V·s at 300 K is obtained in the sample grown on a thick and linearly graded InGaAlAs metamorphic buffer layer deposited at 420 ℃.
基金Project supported by the National Defense Advanced Research Project,China(Grant No.315 xxxxx301)the National Defense Innovation Program,China(Grant No.48xx4)+2 种基金the National Key Technologies Research and Development Program,China(Grant No.2018YFA0306101)the Scientific Instrument Developing Project of the Chinese Academy of Sciences(Grant No.YJKYYQ20170032)the National Natural Science Foundation of China(Grant No.61505196)
文摘The InAs/AlSb heterostructures with step-graded GaAsxSb1-x metamorphic buffer layers grown on Si substrates by molecular beam epitaxy are studied. The step-graded GaAsxSb1-x metamorphic buffer layers are used to relax the strain and block defects at each interface of the layers. Meanwhile, adding Sb to GaAs is also beneficial to suppressing the formation of dislocations in the subsequent materials. The influences of the growth temperature of the step-graded GaAsxSb1-x metamorphic buffer layer on the electron mobility and surface topography are investigated for a series of samples. Based on the atomic force microscopy(AFM), high resolution x-ray diffraction(HRXRD), reciprocal space map(RSM), and Hall measurements, the crystal quality and composition of GaAsxSb1-x layer are seen to strongly depend on growth temperature while keeping the Ga growth rate and V/III ratio constant. The results show that the highest electron mobility is 10270 cm2/V·s and the roughness is 4.3 nm for the step-graded GaAsxSb1-x metamorphic buffer layer grown at a temperature of 410℃.
基金The financial aid of the National Natural Science Foundation of China under grant No.59771054Postdoctoral Science Foundation of China+1 种基金Postdoctoral Science Foundation of Tsinghua-Zhongda985 Science Foundation of Tsinghua University are gratefully acknowledged.
文摘The detailed laser surface remelting experiments of Cu-31.4 wt pct Mn and Cu-26.6 wt pct Mn alloys on a 5 kW CO2 laser were carried out to study the effects of processing parameters (scanning velocity, output power of laser) on the growth direction of microstructure in the molten pool and cellular spacing selection under the condition of ultra-high temperature gradient and rapid directional solidification. The experimental results show that the growth direction of microstructure is strongly affected by laser processing parameters. The ultra-high temperature gradient directional solidification can be realized on the surface of samples during laser surface remelting by controlling laser processing parameters, the temperature gradient and growth velocity can reach 106 K/m and 24.1 mm/s, respectively, and the solidification microstructure in the center of the molten pool grows along the laser beam scanning direction. There exists a distribution range of cellular spacings under the laser rapid solidification conditions, and the average spacing decreases with increasing of growth rate. The maximum, λmax, minimum, λmin, and average primary spacing, A, as functions of growth rate, Vb, can be given by,λmax=12.54Vb-0.61, λmin=4.47 Vb-0.52, λ=9.09Vb-0.62, respectively. The experimental results are compared with the current Hunt-Lu model for rapid cellular/dendritic growth, and a good agreement is found.
基金the National Key R&D Program of China(No.2016YFB0302301)the Guangdong YangFan Innovative&Ente preneurial Research TeamProgram(No.2016YT03C077)+1 种基金the Science and Technology Planning Project of Guangzhou(No.201704020008)the Open Foundation of Hubei Key Laboratory of Theory and Application of Advanced Materials Mechanics(Wuhan University of Technology)(No.TAM202001)。
文摘Due to the multiformity and complexity of chain conformation under external flow and the challenge of systematically investigating the transient conformation and dynamic evolution process of polymer chains at the molecular level by means of present experimental techniques,a universal description of both chain conformation and dynamics with respect to continuous volume extensional flow(CVEF)is still absent.Taking into account the temperature effect,we performed dissipative particle dynamics(DPD)simulations with the particles corresponding to the repeat units of polymers over a wide temperature range and analyzed the correlation with the conformational properties of ultra-high molecular weight polyethylene/polypropylene(UHMWPE/PP)blend in response to the CVEF.With time evolution,the polymer chains become highly oriented parallel to the flow direction instead of the initial random coiling and self-aggregation.It is found that a high temperature is necessary for more substantial compactness to take place than low temperature.The low-k plateau and low-k peak in structure factor S(k)curves suggest a low degree of conformational diversity and a high degree of chain stretching.It is also concluded that the intra-molecular C-C bond interaction is the main driving force for the dynamics process of the chain conformations undergoing CVEF,where the motion of the alkyl chains is seriously restricted owing to the increase in bond interaction potential,resulting in a reduction of the difference in diffusion rates among alkyl chains.
基金Project supported by the National Natural Science Foundation of China(Nos.11472066 and11172336)the Chongqing Natural Science Foundation(No.cstc2013jcyj A50018)+1 种基金the Program for New Century Excellent Talents in University(No.ncet-13-0634)the Fundamental Research Funds for the Central Universities(Nos.CDJZR13240021 and CDJZR14328801)
文摘The effects of mechanical boundary conditions, often encountered in thermalstructural engineering, on the thermal shock resistance(TSR) of ultra-high temperature ceramics(UHTCs) are studied by investigating the TSR of a UHTC plate with various types of constraints under the first, second, and third type of thermal boundary conditions. The TSR of UHTCs is strongly dependent on the heat transfer modes and severity of the thermal environments. Constraining the displacement of the lower surface in the thickness direction can significantly decrease the TSR of the UHTC plate, which is subject to the thermal shock at the upper surface. In contrast, the TSR of the UHTC plate with simply supported edges or clamped edges around the lower surface is much better.
文摘Ultra-high temperature ceramics(UHTCs)are a family of borides,carbides and nitrides of transition elements such as hafnium,zirconium,tantalum and niobium.They exhibit the highest known melting points,good mechanical strength,good chemical and thermal stability under certain conditions.In last decade,researchers dedicated to characterize porous UHTCs aiming to develop novel thermal insulating materials that could withstand temperatures over 2000℃.In this article,the preparation and characteristics of porous UHTCs were reviewed.Dry processing,colloidal processing and solution processing routes have been used to prepare porous UHTCs with porosities ranging from 5%to 97%and pore sizes ranging from hundreds of nanometers to hundreds of micrometers.The obtained porous UHTCs are chemically and dimensionally stable at temperatures up to 2000℃ during static state high-temperature thermal aging.
文摘Recently, " Low Creep Ultra-high Temperature Corundum Mullite Kiln Fumature" developed by Sinosteel L1RR was listed in The National New Product Program in 2012 of The Ministry of Science and Technology of China.
文摘The petrological research on the ultra high pressure metamorphism (UHP) of collisional orogen indicates that the upper crustal rocks is subducted to depths exceeding 100 km, and returned to the surface rapidly. In this study, we investigate the thermal structure of collisional orogen as a slab of continental lithosphere being subducted beneath an overriding wedge of continental lithosphere by the 2 D finite element method. The advection heat transfer due to the accretion of orogenic wedge is considered. The wedge is composed of the upper crust materials through the accretion from the down going plate to the upper plate. For identifying the significance of the geometric and/or kinetic factors on the thermal structure of continental subduction, the different combinations of parameters, including dip angle of subduction zone, accretion or erosion rates, and the convergence velocity etc., are used in modelling. The time span of continental subduction in our calculation is less than 30 Ma, according to the short duration of ultra deep subduction of continental slab suggested by the preservation of metastable pre peak low pressure mineralogy assemblage in the garnet of UHP rocks. Therefore, the steep dip angle of down going plate and/or low rate of accretion favour the ultra deep subduction of upper crust materials, especially for the slower down going slab. Meanwhile, taking the erosion rate as the level of exhumation rate of UHP rocks in some orogens (i.e., 1-2 km/Ma or more) does not result in the anatexis melting of crust of the overriding plate, due to the cooling effect of the rapid down going slab. However, the temperature structures of all models are generally cooler than those recovered by thermobarometric studies of the UHP rocks. This implies the significant increase of temperature after the rapid subduction of continental slab. Following the method of Davies and von Blackenburg (1998), we show that the slab breakoff can occur at the depth exceeding 100 km. Thermal modelling on the post subduction stage shows the heating related to the plate breakoff can cause the higher temperature recorded by the exhumed UHP rocks. The higher geotherm during post subduction stage leads to the weak strength of the orogenic wedge, and favours the faster upward movement of the UHP rock slices as ductile agents. The lower temperature gradient of the subduction slab predicted by modelling suggests the cold subducting slab could have transported significant fluids to mantle depth, not released during subduction. Accordingly, the absence of coeval calc alkalic magmatism in UHP orogens might resulted from the lower temperature as well as the fluid free circumstance, both are related to the rapid subduction of cold plate. Therefore, shear heating is not needed for explanation the thermal evolution of UHP orogen. On the other hand, the post collisional or late stage granitic plutonism is closely related to the deep seated heat producing materials of the accretion wedge.
基金supported by the Australian Research Council (ARC) Discovery Project.
文摘Regenerated gratings seeded by type-I gratings are shown to withstand temperatures beyond 1000 ℃. The method of regeneration offers a new approach to increasing temperature resistance of stable fibre Bragg and other gratings. These ultra-high temperature (UHT) gratings extend the applicability of silicate based components to high temperature applications such as monitoring of smelters and vehicle and aircraft engines to high power fibre lasers.
基金Z.Q.L.acknowledges the financial support of the National Key Research and Development Program of China(Nos.2022YFB3506000 and 2022YFA1602701)the National Natural Science Foundation of China(Nos.52271235 and 52121001)Beijing Natural Science Foundation(No.JQ23005).P.X.Q.acknowledges the financial support of the China National Postdoctoral Program for Innovative Talents(No.BX20230451).
文摘Searching for novel ferromagnetic oxides with high Curie temperature(TC)has been one of the main goals for oxide spintronics.The well-known perovskite cobaltate LaCoO_(3) is a classical ferromagnet in its thin-film form;however,it suffers from a low TC(~85 K).Here we report a new type of ferromagnetic La-Co-O films with an ultrahigh TC of~820 K.They are fabricated by pulsed laser deposition from a LaCoO_(3) target at low oxygen partial pressures.Detailed structural analysis indicates that they crystallize in terms of the Ruddlesden–Popper phase of La_(2)CoO_(4±x).In sharp contrast to the antiferromagnetism of bulk La_(2)CoO_(4),the strong ferromagnetism in the La_(2)CoO_(4±x) thin films is firmly demonstrated by magnetometry measurements,X-ray magnetic circular dichroism characterization,and magnetotransport experiments.More importantly,density functional theory calculations indicate that the nonstoichiometric oxygen induces an antiferromagnetic-to-ferromagnetic phase transition,accompanied by the orbital reconstruction of Co 3d electrons.Thus,our study provides an attractive strategy for designing or synthesizing exotic magnetic oxides with high ordering temperatures.
基金supported by the National Natural Science Foundation of China(Nos.52105233 and 52275366)the Tianjin Science and Technology Plan Project(No.22JCYBJC01590).
文摘Ultra-high temperature ceramic(UHTC)coatings are used to protect the hot-end components of hypervelocity aerocrafts from thermal ablation.This study provides a new approach to fabricate UHTC coatings with high speed laser cladding(HSLC)technology,and places more emphasis on investigating the formation mechanism,phase compositions,and mechanical properties of HSLC-UHTC coatings.Results show that a well-bonded interface between the coating and the tantalum alloy substrate can be formed.The coating is mainly composed of(Zr,Ta)C ceramic solid solution phase with a content of higher than 90% by volume and Ta(W)metal solid solution phase.At a relatively high powder feeding rate,the ZrC ceramic phase appears in the coating while a dense ZrC UHTC top layer with a thickness of up to~50μm is successfully fabricated.As for the mechanical properties of the HSLC coatings,the fracture toughness of the coating decreases with the increase of powder feeding rate.The increase of carbide solid solution phase can significantly improve the high temperature microhardness(552.7±1.8 HV0.5@1000℃).The innovative design of HSLC ZrC-based coatings on refractory alloys accomplishes continuous transitions on microstructure and properties from the substrate to the UHTC top layer,which is a very promising candidate scheme for thermal protection coating.
文摘Based upon fluid effects, retrograde metamorphism of eclogites in the Dabieregion can be divided into the fluid-poor, fluid-bearing and fluid-rich stages. The fluid-poor stageis marked by polymorphic inversion, recrystallization and exsolution of solid solutions, and isthought to represent eclogite-facies retrograde environments. The fluid-bearing stage is likely tohave occurred at the late stage of ecologite-facies diaphthorosis and is represented by kyaniteporphyroblasts, rutile, and sodic pyroxene in association with high-pressure hydrous minerals suchas phengite and zoisite (clinozoisite) without significant amount of hydrous minerals such asamphibole, epidote and biotite. The fluid-rich stage might have commenced concomitantly with loweramphibolite-facies diaphthoresis and persisted all the way towards the near-surface environment. Theproduct of this stage is characterized by plentiful hydrous and volatile-bearing phases.The dissemination-type rutile mineralizations in eclogites might have formed by preferentialshearing-induced pressure solution of gangue minerals at the fluid-bearing stage. The accompanyingvein rutile was precipitated from fluids of this stage after local transport and concentration, andmay hence represent proximal mobilization of titanium from the eclogite. Therefore, rutile veins canbe used as an exploration indicator for dissemination-type rutile deposits.
基金This work was financially supported by a National Natural Science Foundation of China Projects(41730213)a Grant-inAid for Scientific Research from Japan Society for the Promotion of Science(JSPS)to Prof.Toshiaki Tsunogae(18H01300)。
文摘The circum-Gondwana subduction initiated by the early Cambrian has been suggested to reflect the establishment of the modern plate tectonics.The metamorphic rocks with low thermobaric(T/P)ratios indicative of cold subduction in the present tectonic regime have not been well investigated.To better understand the circum-Gondwana subduction and to test its possible link with the emergence of the modern plate tectonics,this study focused on blueschist-facies metamorphic rocks in the Altyn Tagh of the southeastern Tarim craton.Mineral assemblage and chemistry,phase equilibrium modelling,and quartz-in-garnet Raman elastic geobarometry reveal that the zoisite blueschist and glaucophane(Gln)-bearing quartz schist in northern Altyn Tagh were metamorphosed to lawsonite to epidote blueschistfacies at 520–545℃ and 16–19 kbar.It reflects high-pressure(HP)/low temperature(LT)metamorphism with low T/P ratios of<300℃/GPa and thermal gradients of<10℃/km.These blueschist-facies metamorphic rocks underwent rapid decompression starting at P-T conditions of<495℃ and<9.6 kbar during exhumation.Ar-Ar geochronology records paragonite Ar-Ar plateau ages of 520–506 Ma for the zoisite blueschist samples and phengite Ar-Ar plateau ages of 522–516 Ma for the Gln-bearing quartz schist samples,suggesting that the peak HP/LT metamorphism occurred prior to ca.522 Ma.Based on new results and available data from the major Gondwana blocks,cold subduction was suggested to profoundly operate along circum-Gondwana in the early Cambrian after the amalgamation of Gondwana.The extensive circum-Gondwana subduction represents the earliest global cold subduction in Earth’s history associated with the establishment of the modern plate tectonics,as directly recorded by the studied early Cambrian blueschist-facies metamorphic rocks and a dramatic drop in the mean T/P of metamorphism since the early Paleozoic.