Three kinds of ultra-high-strength steels are subjected to uniaxial tensile,forming limit,and hole expansion tests to characterize their material forming properties.Results show that the elongation of S1500 reaches 12...Three kinds of ultra-high-strength steels are subjected to uniaxial tensile,forming limit,and hole expansion tests to characterize their material forming properties.Results show that the elongation of S1500 reaches 12.9%and is higher than that of MS1500 with the same strength grade but is lower than that of QP980.The forming limit of S1500 steel is higher than that of MS1500 but lower than that of QP980.The instantaneous n-value of the material changes with the volume fraction of retained austenite.The hole expansion ratios of S1500,MS1500,and QP980 steels are 31.3%,32.2%,and 28.3%,respectively.The hole expansion ratio of QP steel increases slightly with the increase in strength grade.This behavior is contrary to the change trend of elongation and forming limit.Among the three kinds of materials,QP980 steel has the best global formability,and S1500 steel has better global formability than martensitic steel with a similar strength grade.The local formability of the materials improves slightly with the decrease in the amount of retained austenite.MS1500 may have the best local formability in accordance with engineering practice.展开更多
Two experimental steels with tensile strength above 980 MPa were prepared to investigate the effect of prestrain and baking on their mechanical and fracture behaviors. The experimental results reveal that,for both exp...Two experimental steels with tensile strength above 980 MPa were prepared to investigate the effect of prestrain and baking on their mechanical and fracture behaviors. The experimental results reveal that,for both experimental steels,with increases in the prestrain level,the bake hardening value increases before reaching a maximum point,and then decreases with further increases in the prestrain level. The results of a "bending-baking-secondary bending"test indicate that the secondary bendability deteriorates at a high level of prestrain. The yield strength of the experimental steels was found to increase and the elongation to decrease after high levels of prestrain and bake hardening. Fracture morphology images indicate that a high prestrain level is associated with shallow dimples and more and larger local cleavage areas.展开更多
Nowadays,the development of novel metallic materials for rock support have attracted research interests since they can significantly improve the deformation and energy absorption capacities of rock bolts.Although prev...Nowadays,the development of novel metallic materials for rock support have attracted research interests since they can significantly improve the deformation and energy absorption capacities of rock bolts.Although previous studies proved the importance and mechanical advantages of utilizing high-strength and high-toughness(HSHT)steels in rock support,there is no systematic analysis to reveal the essential energy absorption parameter and the guidelines for further development of metallic rock support materials.This paper analyzes the energy absorption characteristics of novel HSHT steels(negative Poisson’s ratio(NPR)and twinning-induced plasticity(TWIP)steels)in comparison with conventional rock support materials.A physically based crystal plasticity(CP)model was set up and calibrated to study the effect of strain hardening rate(SHR).Meanwhile,the roles of underlying physical mechanisms,i.e.the dislocation density and twin volume fraction,were studied.The results show that the improvement of energy absorption density(EAD)is essential for further development of rock support materials,besides the increase of energy absorption rate(EAR)for previous development of conventional rock support materials.The increase of EAD requires increases of both strength and deformation capacity of materials.For HSHT steels,the decrease of SHR has a positive effect on the improvement of EAD.In addition,the increase of EAD is followed by the increase of twin volume fraction and the decrease of plastic Poisson’s ratio which can promote deformation plasticity of materials.Meanwhile,the increase of EAR is correlated with the accumulation of dislocation density,which can increase the strength of materials.This paper provides the theoretical basis and guidelines for developing rock support materials in deep underground engineering and other related fields.展开更多
Roll-stamping technology,a new process with both roll-forming and stamping characteristics,is suitable for manufacturing ultra-high-strength beam parts,especially variable cross-section beam parts.The rib groove is a ...Roll-stamping technology,a new process with both roll-forming and stamping characteristics,is suitable for manufacturing ultra-high-strength beam parts,especially variable cross-section beam parts.The rib groove is a local shape often used in automotive parts for positioning,avoidance,and stiffness strengthening on longitudinal and stiffening beams.In this study,two typical rib grooves,the flat-and round-bottom rib grooves,were selected to investigate the characteristics of the roll-stamping process of rib grooves.Using the ABAQUS software platform,a simulation analysis model of rib-groove roll stamping was established and different size rib grooves produced by the roll-stamping process were compared and analyzed.The results show that when the fillet radius of the rib groove increases,the maximum Mises stress,the maximum strain,and the maximum thinning rate decrease.For roll stamping,the minimum safe fillet radii of the two types of rib grooves are 8 and 4 mm,respectively.展开更多
A novel 2000 MPa grade ultra-high-strength steel AIR0509 with high fracture toughness and low cost has recently been developed. The effects of solid-solution temperature on the microstructure and mechanical properties...A novel 2000 MPa grade ultra-high-strength steel AIR0509 with high fracture toughness and low cost has recently been developed. The effects of solid-solution temperature on the microstructure and mechanical properties of this steel were inves-tigated. The increase in solid-solution temperature first increased and then decreased the values of ultimate strength (UTS) and Charpy U-notch (CUN) energy. The increase in the UTS and CUN values was caused by the dissolution of the primary carbides M6C and MC, while the decrease in both strength and toughness was due to the increase in the prior austenite grain size. Samples that were solid-solution treated at 1000℃ exhibited an optimal combination of strength and toughness with a UTS of 2020MPa, yield strength of 1780MPa, and CUN energy of 68J, as well as a correlative fracture toughness KIC value of about 105MPam1/2.展开更多
Isothermal compression tests of as-forged 30Si2MnCrMoVE low-alloying ultra-high-strength steel were carried out on a Gleeble 3500 thermal simulator at the deformation temperatures of 950-1150℃and strain rates of 0.01...Isothermal compression tests of as-forged 30Si2MnCrMoVE low-alloying ultra-high-strength steel were carried out on a Gleeble 3500 thermal simulator at the deformation temperatures of 950-1150℃and strain rates of 0.01-10 s^−1.Based on the classical stress-dislocation density relationship and the kinematics of the dynamic recrystallization,the constitutive equations of the work hardening dynamical recovery period and dynamical recrystallization period were developed by using the work hardening curve and Avrami equation,which shows good agreement with the experimental value.Processing maps at the strain of 0.90 were constructed based on dynamic material model and were analyzed combined with microstructure observation under different conditions.The optimum parameter based on the processing maps was obtained and verified by a supplementary experiment.The power dissipation maps and instability maps at strains of 0.05-0.90 were also constructed,and the evolution law was analyzed in detail.The established constitutive equation and hot processing maps can provide some guidance for hot working process.展开更多
The ultra-high-strength steel (UHSS) plays an important role in the mechanical industry because of their special performances. The machinability of 30CrMnSiNi2A steel was studied in dry milling with two different co...The ultra-high-strength steel (UHSS) plays an important role in the mechanical industry because of their special performances. The machinability of 30CrMnSiNi2A steel was studied in dry milling with two different coated tools in the present work. This paper introduced that 30CrMnSiNi2A steel was a kind of diffficult-to-machine materials. The results showed that the cutting force components of feed direction and cutting width direction, i.e. Fx and Fy, increased slightly with increasing the cutting speed and feed rate. The values of axial force component Fx were much larger than Fx and Fy, and increased obviously with increasing the milling speed. The workpiece surface had the minimum roughness at the cutting speed of 150 m/min. The physical vapor deposition (PVD) coated ((Ti, A1)N-TiN) insert was more suitable for machining 30CrMnSiNi2A steel than the chemical vapor deposition (CVD) coated (Ti(C, N)-Al2O3) insert. Moreover, the main failure modes of PVD-coated insert were micro-chipping and coating spalling. The wear modes of CVD-coated insert were ploughing, coating spalling, and cratering. The serious adhesive wear and the abrasion with some adhesion were the main wear mechanism of PVD- and CVD-coated inserts, respectively.展开更多
The stress corrosion cracking(SCC)behavior of a 1900 MPa-grade ultra-high-strength stainless steel in 3.5 wt.% NaCl solution was investigated by X-ray diffractometer,scanning electron microscopy,electron back-scattere...The stress corrosion cracking(SCC)behavior of a 1900 MPa-grade ultra-high-strength stainless steel in 3.5 wt.% NaCl solution was investigated by X-ray diffractometer,scanning electron microscopy,electron back-scattered diffraction,X-ray photoelectron spectroscopy,and potentiodynamic polarization curves.The results showed that USS122G stel has good SCC resistance,and the critical stress intensiy factor(K_(iscc))of USS122G steel was about 68.906 MPa m^(1/2) and Kiscc/K_(ic)=0.76(K_(ic) is plane strain fracture toughness).The existence of film-like austenite along the lath martensite boundary and the protective effect of thecc passivation flm were the main factors for its high Kiscc.Among them,the main components of the passivation film on the surface of USS122G steel were Cr_(2)O_(3),Cr(OH)_(3),FeOOH,and Ni(OH)_(2).The fracture morphology of SCC zone was intergranular and transgranular.Through the slow and fast scanning rate polarization curve test results,it can be concluded that SCC mechanism of USS122G steel in 3.5 wt.%NaCl solution at the open-circuit potential was a mixed mechanism involving hydrogen embritlement and anodic dissolution.展开更多
Flexible roll forming is a new roll forming process that produces parts with variable cross sections. This forming process is proposed to meet the demand of weight reduction of automobile industry. In order to study t...Flexible roll forming is a new roll forming process that produces parts with variable cross sections. This forming process is proposed to meet the demand of weight reduction of automobile industry. In order to study the mechanisms and material flow rules in this new forming process,the finite element mothod( FEM) model of a nine-step flexible roll forming of an ultra-high-strength steel bumper is established based on deep understanding and reasonable simplification of the process.Given that the material model is an important factor that influences the simulation accuracy,three material models which consist of different yield criteria and hardening models are adopted in the FEM models. Sheet thickness and springback amount calculated with three material models are studied comparatively. According to sheet thickness reduction and springback amounts,it is found that the MKi( Mises yield criterion and kinematic hardening law) model's result is larger than MI( Mises yield criterion and isotropic hardening law) model and HI( Hill's yield criterion and isotropic hardening law) model. Therefore,it is concluded that material models do have influences on the flexible roll forming simulation and need to be determined carefully.展开更多
Increasing geometrical accuracy at open ends of the roll-formed part is difficult due to the release of residual stress after end cutting.In this work,a typical rail with a high requirement of geometry accuracy was se...Increasing geometrical accuracy at open ends of the roll-formed part is difficult due to the release of residual stress after end cutting.In this work,a typical rail with a high requirement of geometry accuracy was selected to realize the behaviors of residual stress release.First,residual stress distribution after roll forming is discussed in detail by finite element analysis with ABAQUS.In addition,two different approaches are proposed to check their capabilities in reducing the residual stress level.The results indicate that both additional rolling passes and multiple bending processes are beneficial to reducing uniform residual stress.展开更多
Ⅰ. THE VALENCE ELECTRON STRUCTURES OF MARTENSITE IN LOW ALLOY ULTRAHIGH-STRENGTH STEELS AND THE SEGREGATION OF C-ME IN MARTENSITEThe valence electron structures ofmartensite in 30CrMnSiNi<sub>2</sub>A and...Ⅰ. THE VALENCE ELECTRON STRUCTURES OF MARTENSITE IN LOW ALLOY ULTRAHIGH-STRENGTH STEELS AND THE SEGREGATION OF C-ME IN MARTENSITEThe valence electron structures ofmartensite in 30CrMnSiNi<sub>2</sub>A and Gc-4 steels can be established based on Refs. [1—3]. To be brief, only σ, n<sub>A</sub> and n<sub>c</sub><sup>D</sup> are listed in Table 1, which are the values of electron structures of martensite in 30CrMnSi<sub>2</sub>A and Gc-4 steels.展开更多
The dynamic tensile behavior and deformation mechanism of ultra-high-strength dual-phase(UHS-DP1000)steel were investigated over a wide range of strain rates from 10^-4 to 10^3 s^-1.As the strain rate increases,the tr...The dynamic tensile behavior and deformation mechanism of ultra-high-strength dual-phase(UHS-DP1000)steel were investigated over a wide range of strain rates from 10^-4 to 10^3 s^-1.As the strain rate increases,the transition strain decreases from 2.73 to 1.92,and the martensite plastic deformation starts earlier.At strain rate of 10^-4-0.5 s^-l,the inhomogeneous plastic deformation ability increases because the dislocation density in the ferrite matrix increases.This leads to a decrease in uni form elongation and an increase in fracture elongation.When the strain rate increases from 0.5 to 500s^-l.the amount of mobile dislocation increases,which is the main reason for the enhancing uniform elongation and fracture elongation.Mea nwhile,because the dislocation motio n resistance rapidly in creases,the yield strength and ultimate tensile strength also increase.When the strain rate is higher than 500 s^-1.the hardening behavior caused by the dislocation motion resistance has not been offset by softening due to the mobile dislocation and adiabatic heating.The voids at the early stage of deformation could not uniformly form and grow,and thus the homogeneous plastic deformation ability decreases.展开更多
文摘Three kinds of ultra-high-strength steels are subjected to uniaxial tensile,forming limit,and hole expansion tests to characterize their material forming properties.Results show that the elongation of S1500 reaches 12.9%and is higher than that of MS1500 with the same strength grade but is lower than that of QP980.The forming limit of S1500 steel is higher than that of MS1500 but lower than that of QP980.The instantaneous n-value of the material changes with the volume fraction of retained austenite.The hole expansion ratios of S1500,MS1500,and QP980 steels are 31.3%,32.2%,and 28.3%,respectively.The hole expansion ratio of QP steel increases slightly with the increase in strength grade.This behavior is contrary to the change trend of elongation and forming limit.Among the three kinds of materials,QP980 steel has the best global formability,and S1500 steel has better global formability than martensitic steel with a similar strength grade.The local formability of the materials improves slightly with the decrease in the amount of retained austenite.MS1500 may have the best local formability in accordance with engineering practice.
文摘Two experimental steels with tensile strength above 980 MPa were prepared to investigate the effect of prestrain and baking on their mechanical and fracture behaviors. The experimental results reveal that,for both experimental steels,with increases in the prestrain level,the bake hardening value increases before reaching a maximum point,and then decreases with further increases in the prestrain level. The results of a "bending-baking-secondary bending"test indicate that the secondary bendability deteriorates at a high level of prestrain. The yield strength of the experimental steels was found to increase and the elongation to decrease after high levels of prestrain and bake hardening. Fracture morphology images indicate that a high prestrain level is associated with shallow dimples and more and larger local cleavage areas.
基金supported by the National Natural Science Foundation of China(Grant Nos.52204115 and 41941018)the Foundation of Research Institute for Deep Underground Science and Engineering(Grant No.XD2021022).
文摘Nowadays,the development of novel metallic materials for rock support have attracted research interests since they can significantly improve the deformation and energy absorption capacities of rock bolts.Although previous studies proved the importance and mechanical advantages of utilizing high-strength and high-toughness(HSHT)steels in rock support,there is no systematic analysis to reveal the essential energy absorption parameter and the guidelines for further development of metallic rock support materials.This paper analyzes the energy absorption characteristics of novel HSHT steels(negative Poisson’s ratio(NPR)and twinning-induced plasticity(TWIP)steels)in comparison with conventional rock support materials.A physically based crystal plasticity(CP)model was set up and calibrated to study the effect of strain hardening rate(SHR).Meanwhile,the roles of underlying physical mechanisms,i.e.the dislocation density and twin volume fraction,were studied.The results show that the improvement of energy absorption density(EAD)is essential for further development of rock support materials,besides the increase of energy absorption rate(EAR)for previous development of conventional rock support materials.The increase of EAD requires increases of both strength and deformation capacity of materials.For HSHT steels,the decrease of SHR has a positive effect on the improvement of EAD.In addition,the increase of EAD is followed by the increase of twin volume fraction and the decrease of plastic Poisson’s ratio which can promote deformation plasticity of materials.Meanwhile,the increase of EAR is correlated with the accumulation of dislocation density,which can increase the strength of materials.This paper provides the theoretical basis and guidelines for developing rock support materials in deep underground engineering and other related fields.
基金National Key R&D Program Funding Project(No.2017YFB0304404).
文摘Roll-stamping technology,a new process with both roll-forming and stamping characteristics,is suitable for manufacturing ultra-high-strength beam parts,especially variable cross-section beam parts.The rib groove is a local shape often used in automotive parts for positioning,avoidance,and stiffness strengthening on longitudinal and stiffening beams.In this study,two typical rib grooves,the flat-and round-bottom rib grooves,were selected to investigate the characteristics of the roll-stamping process of rib grooves.Using the ABAQUS software platform,a simulation analysis model of rib-groove roll stamping was established and different size rib grooves produced by the roll-stamping process were compared and analyzed.The results show that when the fillet radius of the rib groove increases,the maximum Mises stress,the maximum strain,and the maximum thinning rate decrease.For roll stamping,the minimum safe fillet radii of the two types of rib grooves are 8 and 4 mm,respectively.
文摘A novel 2000 MPa grade ultra-high-strength steel AIR0509 with high fracture toughness and low cost has recently been developed. The effects of solid-solution temperature on the microstructure and mechanical properties of this steel were inves-tigated. The increase in solid-solution temperature first increased and then decreased the values of ultimate strength (UTS) and Charpy U-notch (CUN) energy. The increase in the UTS and CUN values was caused by the dissolution of the primary carbides M6C and MC, while the decrease in both strength and toughness was due to the increase in the prior austenite grain size. Samples that were solid-solution treated at 1000℃ exhibited an optimal combination of strength and toughness with a UTS of 2020MPa, yield strength of 1780MPa, and CUN energy of 68J, as well as a correlative fracture toughness KIC value of about 105MPam1/2.
基金This work was supported by the Shaanxi Key Research and Development Program(No.S2017-ZDYF-ZDXM-GY-0115)Natural Science Basic Research Plan in Shaanxi Province of China(No.2017JM5010)Fundamental Research Funds for the Central Universities of China(No.3102019ZX004).
文摘Isothermal compression tests of as-forged 30Si2MnCrMoVE low-alloying ultra-high-strength steel were carried out on a Gleeble 3500 thermal simulator at the deformation temperatures of 950-1150℃and strain rates of 0.01-10 s^−1.Based on the classical stress-dislocation density relationship and the kinematics of the dynamic recrystallization,the constitutive equations of the work hardening dynamical recovery period and dynamical recrystallization period were developed by using the work hardening curve and Avrami equation,which shows good agreement with the experimental value.Processing maps at the strain of 0.90 were constructed based on dynamic material model and were analyzed combined with microstructure observation under different conditions.The optimum parameter based on the processing maps was obtained and verified by a supplementary experiment.The power dissipation maps and instability maps at strains of 0.05-0.90 were also constructed,and the evolution law was analyzed in detail.The established constitutive equation and hot processing maps can provide some guidance for hot working process.
基金the Important National Science&Technology Specific Project(No.2013ZX04009-031)
文摘The ultra-high-strength steel (UHSS) plays an important role in the mechanical industry because of their special performances. The machinability of 30CrMnSiNi2A steel was studied in dry milling with two different coated tools in the present work. This paper introduced that 30CrMnSiNi2A steel was a kind of diffficult-to-machine materials. The results showed that the cutting force components of feed direction and cutting width direction, i.e. Fx and Fy, increased slightly with increasing the cutting speed and feed rate. The values of axial force component Fx were much larger than Fx and Fy, and increased obviously with increasing the milling speed. The workpiece surface had the minimum roughness at the cutting speed of 150 m/min. The physical vapor deposition (PVD) coated ((Ti, A1)N-TiN) insert was more suitable for machining 30CrMnSiNi2A steel than the chemical vapor deposition (CVD) coated (Ti(C, N)-Al2O3) insert. Moreover, the main failure modes of PVD-coated insert were micro-chipping and coating spalling. The wear modes of CVD-coated insert were ploughing, coating spalling, and cratering. The serious adhesive wear and the abrasion with some adhesion were the main wear mechanism of PVD- and CVD-coated inserts, respectively.
基金support from the National Key Research and Development Program of China(2016YFB0300104).
文摘The stress corrosion cracking(SCC)behavior of a 1900 MPa-grade ultra-high-strength stainless steel in 3.5 wt.% NaCl solution was investigated by X-ray diffractometer,scanning electron microscopy,electron back-scattered diffraction,X-ray photoelectron spectroscopy,and potentiodynamic polarization curves.The results showed that USS122G stel has good SCC resistance,and the critical stress intensiy factor(K_(iscc))of USS122G steel was about 68.906 MPa m^(1/2) and Kiscc/K_(ic)=0.76(K_(ic) is plane strain fracture toughness).The existence of film-like austenite along the lath martensite boundary and the protective effect of thecc passivation flm were the main factors for its high Kiscc.Among them,the main components of the passivation film on the surface of USS122G steel were Cr_(2)O_(3),Cr(OH)_(3),FeOOH,and Ni(OH)_(2).The fracture morphology of SCC zone was intergranular and transgranular.Through the slow and fast scanning rate polarization curve test results,it can be concluded that SCC mechanism of USS122G steel in 3.5 wt.%NaCl solution at the open-circuit potential was a mixed mechanism involving hydrogen embritlement and anodic dissolution.
基金Supported by the National Natural Science Foundation of China(No.51205004)Beijing Natural Science Foundation(No.3164041)the National Key Technology R&D Program(No.2011BAG03B03)
文摘Flexible roll forming is a new roll forming process that produces parts with variable cross sections. This forming process is proposed to meet the demand of weight reduction of automobile industry. In order to study the mechanisms and material flow rules in this new forming process,the finite element mothod( FEM) model of a nine-step flexible roll forming of an ultra-high-strength steel bumper is established based on deep understanding and reasonable simplification of the process.Given that the material model is an important factor that influences the simulation accuracy,three material models which consist of different yield criteria and hardening models are adopted in the FEM models. Sheet thickness and springback amount calculated with three material models are studied comparatively. According to sheet thickness reduction and springback amounts,it is found that the MKi( Mises yield criterion and kinematic hardening law) model's result is larger than MI( Mises yield criterion and isotropic hardening law) model and HI( Hill's yield criterion and isotropic hardening law) model. Therefore,it is concluded that material models do have influences on the flexible roll forming simulation and need to be determined carefully.
文摘Increasing geometrical accuracy at open ends of the roll-formed part is difficult due to the release of residual stress after end cutting.In this work,a typical rail with a high requirement of geometry accuracy was selected to realize the behaviors of residual stress release.First,residual stress distribution after roll forming is discussed in detail by finite element analysis with ABAQUS.In addition,two different approaches are proposed to check their capabilities in reducing the residual stress level.The results indicate that both additional rolling passes and multiple bending processes are beneficial to reducing uniform residual stress.
文摘Ⅰ. THE VALENCE ELECTRON STRUCTURES OF MARTENSITE IN LOW ALLOY ULTRAHIGH-STRENGTH STEELS AND THE SEGREGATION OF C-ME IN MARTENSITEThe valence electron structures ofmartensite in 30CrMnSiNi<sub>2</sub>A and Gc-4 steels can be established based on Refs. [1—3]. To be brief, only σ, n<sub>A</sub> and n<sub>c</sub><sup>D</sup> are listed in Table 1, which are the values of electron structures of martensite in 30CrMnSi<sub>2</sub>A and Gc-4 steels.
基金the National Key R&D Program of China(Grant No.2017YFB0304404)Shandong Provincial Natural Science Foundation of China(Grant No.ZR2018MEM007).
文摘The dynamic tensile behavior and deformation mechanism of ultra-high-strength dual-phase(UHS-DP1000)steel were investigated over a wide range of strain rates from 10^-4 to 10^3 s^-1.As the strain rate increases,the transition strain decreases from 2.73 to 1.92,and the martensite plastic deformation starts earlier.At strain rate of 10^-4-0.5 s^-l,the inhomogeneous plastic deformation ability increases because the dislocation density in the ferrite matrix increases.This leads to a decrease in uni form elongation and an increase in fracture elongation.When the strain rate increases from 0.5 to 500s^-l.the amount of mobile dislocation increases,which is the main reason for the enhancing uniform elongation and fracture elongation.Mea nwhile,because the dislocation motio n resistance rapidly in creases,the yield strength and ultimate tensile strength also increase.When the strain rate is higher than 500 s^-1.the hardening behavior caused by the dislocation motion resistance has not been offset by softening due to the mobile dislocation and adiabatic heating.The voids at the early stage of deformation could not uniformly form and grow,and thus the homogeneous plastic deformation ability decreases.