期刊文献+
共找到126,042篇文章
< 1 2 250 >
每页显示 20 50 100
Project New Orion: Pulsed Nuclear Space Propulsion Using Photofission Activated by Ultra-Intense Laser 被引量:2
1
作者 Robert LeMoyne Timothy Mastroianni 《Journal of Applied Mathematics and Physics》 2016年第4期630-636,共7页
Project New Orion entails a pulsed nuclear space propulsion system that utilizes photofission through the implementation of an ultra-intense laser. The historical origins derive from the endeavors of Project Orion, wh... Project New Orion entails a pulsed nuclear space propulsion system that utilizes photofission through the implementation of an ultra-intense laser. The historical origins derive from the endeavors of Project Orion, which utilized thermonuclear devices to impart a considerable velocity increment on the respective spacecraft. The shear magnitude of Project Orion significantly detracts from the likelihood of progressive research development testing and evaluation. Project New Orion incorporates a more feasible pathway for the progressive research development testing and evaluation of the pulsed nuclear space propulsion system. Photofission through the application of an ultra-intense laser enables a much more controllable and scalable nuclear yield. The energy source for the ultra-intense laser is derived from a first stage liquid hydrogen and liquid oxygen chemical propulsion system. A portion of the thermal/kinetic energy of the rocket propulsive fluid is converted to electrical energy through a magneto-hydrodynamic generator with cryogenic propellant densification for facilitating the integral superconducting magnets. Fundamental analysis of Project New Orion demonstrates the capacity to impart a meaningful velocity increment through ultra-intense laser derived photofission on a small spacecraft. 展开更多
关键词 Project Orion Pulsed Nuclear Space Propulsion PHOTOFISSION Nuclear Fission ultra-intense laser Magneto-Hydrodynamic Generator Cryogenic Propellant Densification
下载PDF
Numerical studies on pair production in ultra-intense laser interaction with a thin solid-foil
2
作者 田云先 金晓林 +3 位作者 谷晓梁 颜卫忠 李建清 李斌 《Plasma Science and Technology》 SCIE EI CAS CSCD 2018年第8期11-15,共5页
A theoretical and numerical model of photon and electron–positron pair production in strong-field quantum electrodynamics(QED) is described. Two processes are contained in our QED theoretical model, one is photon e... A theoretical and numerical model of photon and electron–positron pair production in strong-field quantum electrodynamics(QED) is described. Two processes are contained in our QED theoretical model, one is photon emission in the interaction of ultra-intense laser with relativistic electron(or positron), and the other is pair production by a gamma-ray photon interacting with the laser field.This model has been included in a PIC/MCC simulation code named BUMBLEBEE 1 D, which is used to simulate the laser plasma interaction. Using this code, the evolutions of electron–positron pair and gamma-ray photon production in ultra-intense laser interaction with aluminum foil target are simulated and analyzed. The simulation results revealed that more positrons are moved in the opposite direction to the incident direction of the laser under the charge separation field. 展开更多
关键词 QED ultra-intense laser gamma ray photon electron-positron pair
下载PDF
Fundamental Architecture and Analysis of an Antimatter Ultra-Intense Laser Derived Pulsed Space Propulsion System 被引量:3
3
作者 Robert Le Moyne Timothy Mastroianni 《Journal of Applied Mathematics and Physics》 2014年第5期10-18,共9页
Antimatter has been generated in large quantities by the Lawrence Livermore National Laboratory Titan laser. The Titan laser is an ultra-intense laser system on the order of approximately 1020W/cm2 with pulse duration... Antimatter has been generated in large quantities by the Lawrence Livermore National Laboratory Titan laser. The Titan laser is an ultra-intense laser system on the order of approximately 1020W/cm2 with pulse durations of roughly 1ps. With the Titan laser incident on a high atomic number target, such as gold, antimatter on the scale of 2 × 1010 positrons are generated. Roughly 90% of the generated positrons are ejected anisotropic and aft to the respective target. The mechanisms for the laser-derived positron antimatter generation involve electron interaction with the nuclei based on bremsstrahlung photons that yield electron-positron pairs as a consequence of the Bethe-Heitler process, which predominates the Trident process. Given the constraints of the current and near future technology space, a pulsed space propulsion configuration is advocated for antimatter derived space propulsion, similar in concept to pulsed radioisotope propulsion. Antimatter is generated through an ultra-intense laser on the scale of a Titan laser incident on a gold target and annihilated in a closed chamber, representative of a combustion chamber. Upon reaching a temperature threshold, the closed chamber opens, producing a pulse of thrust. The implication of the pulsed space propulsion antimatter architecture is that the energy source for the antimatter propulsion system can be decoupled from the actual spacecraft. In contrast to conventional chemical propulsion systems, which require storage of its respective propulsive chemical potential energy, the proposed antimatter propulsion architecture may have the energy source at a disparate location from the spacecraft. The ultra-intense laser could convey its laser energy over a distance to the actual spacecraft equipped with the positron antimatter pulsed space propulsion system. Hydrogen is considered as the propulsive fluid, in light of its low molecular weight. Fundamental analysis is applied to preliminarily define the performance of the positron antimatter derived pulsed space propulsion system. The fundamental performance analysis of the antimatter pulsed space propulsion system successfully reveals the architecture is viable for further evaluation. 展开更多
关键词 ultra-intense laser ANTIMATTER POSITRON ANTIMATTER PROPULSION ANTIMATTER Generation Space PROPULSION
下载PDF
Advanced Concept Ramjet Propulsion System Utilizing In-Situ Positron Antimatter Derived from Ultra-Intense Laser with Fundamental Performance Analysis 被引量:3
4
作者 Robert Le Moyne Timothy Mastroianni 《Journal of Applied Mathematics and Physics》 2014年第5期19-26,共8页
The fundamental performance analysis of an advanced concept ramjet propulsion system using antimatter is presented. Antimatter is generated by ultra-intense laser pulses incident on a gold target. The scientific found... The fundamental performance analysis of an advanced concept ramjet propulsion system using antimatter is presented. Antimatter is generated by ultra-intense laser pulses incident on a gold target. The scientific foundation for the generation of antimatter by an ultra-intense laser was established in the early 1970’s and later demonstrated at Lawrence Livermore National Laboratory from 2008 to 2009. Antimatter on the scale of 2 × 1010 positrons were generated through a ~1 ps pulse from the Lawrence Livermore National Laboratory Titan laser that has an intensity of ~1020 W/cm2. The predominant mechanism is the Bethe-Heitler process, which involves high-energy bremsstrahlung photons as a result of electron-nuclei interaction. Propulsion involving lasers through chemical rather than non-chemical interaction has been previously advocated by Phipps. The major utilities of the ultra-intense laser derived antimatter ramjet are the capability to generate antimatter without a complex storage system and the ability to decouple the antimatter ramjet propulsion system from the energy source. For instance the ultra-intense laser and energy source could be terrestrial, while the ramjet could be mounted to a UAV as a propulsion system. With the extrapolation of current technologies, a sufficient number of pulses by ultra-intense lasers are eventually anticipated for the generation of antimatter to heat the propulsive flow of a ramjet. Fundamental performance analysis is provided based on an ideal ramjet derivation that is modified to address the proposed antimatter ramjet architecture. 展开更多
关键词 ultra-intense laser ANTIMATTER POSITRON ANTIMATTER PROPULSION ANTIMATTER Generation RAMJET PROPULSION
下载PDF
Fundamental Architecture and Performance Analysis of Photofission Pulsed Space Propulsion System Using Ultra-Intense Laser 被引量:2
5
作者 Robert LeMoyne Timothy Mastroianni 《Journal of Applied Mathematics and Physics》 2015年第4期436-442,共7页
Photofission enables a unique capability for the domain of non-chemical space propulsion. An ultra-intense laser enables the capacity to induce nuclear fission through the development of bre- msstrahlung photons. A fu... Photofission enables a unique capability for the domain of non-chemical space propulsion. An ultra-intense laser enables the capacity to induce nuclear fission through the development of bre- msstrahlung photons. A fundamental architecture and performance analysis of a photofission pulsed space propulsion system through the operation of an ultra-intense laser is presented. A historical perspective of previous conceptual nuclear fission propulsion systems is addressed. These applications use neutron derived nuclear fission;however, there is inherent complexity that has precluded further development. The background of photofission is detailed. The conceptual architecture of photofission pulsed space propulsion and fundamental performance parameters are established. The implications are the energy source and ultra-intense laser can be situated far remote from the propulsion system. Advances in supporting laser technologies are anticipated to increase the potential for photofission pulsed space propulsion. The fundamental performance analysis of the photofission pulsed space propulsion system indicates the architecture is feasible for further evaluation. 展开更多
关键词 ultra-intense laser PHOTOFISSION PHOTOFISSION PROPULSION Nuclear FISSION SPACE PROPULSION PULSED SPACE PROPULSION
下载PDF
Probing and possible application of the QED vacuum with micro-bubble implosions induced by ultra-intense laser pulses 被引量:1
6
作者 James K.Koga Masakatsu Murakami +1 位作者 Alexey V.Arefiev Yoshihide Nakamiya 《Matter and Radiation at Extremes》 SCIE CAS 2019年第3期18-24,共7页
The interaction of micro-bubbles with ultra-intense laser pulses has been shown to generate ultra-high proton densities and correspondingly high electric fields.Weinvestigate the possibility of using such a combinatio... The interaction of micro-bubbles with ultra-intense laser pulses has been shown to generate ultra-high proton densities and correspondingly high electric fields.Weinvestigate the possibility of using such a combination to study the fundamental physical phenomenon of vacuum polarization.With current or near-future laser systems,measurement of vacuum polarization via the bending of gamma rays that pass near imploded microbubbles may be possible.Since it is independent of photon energy to within the leading-order solution of the Heisenberg–Euler Lagrangian and the geometric optics approximation,the corresponding index of refraction can dominate the indices of refraction due to other effects at sufficiently high photon energies.We consider the possibility of its application to a transient gamma-ray lens. 展开更多
关键词 laser POLARIZATION VACUUM
下载PDF
Self-Thomson Backscattering of Ultra-Intense Laser from Thin Foil Target
7
作者 Ashutosh Sharma 《Journal of Electromagnetic Analysis and Applications》 2013年第1期43-48,共6页
An electromagnetic solitary structure in attosecond regime is identified, costreaming with electron bunch. It is observed via nonlinear process of Self-Thomson backscattering of an ultra-intense laser from thin foil t... An electromagnetic solitary structure in attosecond regime is identified, costreaming with electron bunch. It is observed via nonlinear process of Self-Thomson backscattering of an ultra-intense laser from thin foil target. The process is termed as Self-Thomson Backscattering since the counter propagating electron sheets are generated by the drive laser itself. The radiation pressure acceleration model is considered for the interaction of a super-intense linearly polarized laser pulse with a thin foil in one-dimensional (1D) particle-in-cell (PIC) simulations. 展开更多
关键词 ultra-intense laser Plasma Interaction THOMSON BACKSCATTERING SOLITARY Electromagnetic Field
下载PDF
Positron Induced Fusion Pulsed Space Propulsion through an Ultra-Intense Laser
8
作者 Robert LeMoyne 《Journal of Applied Mathematics and Physics》 2017年第4期813-821,共9页
A pulsed space propulsion system using position antimatter to induce Deuterium-Tritium fusion through an ultra-intense laser incident on a gold target is conceptually presented through fundamental performance analysis... A pulsed space propulsion system using position antimatter to induce Deuterium-Tritium fusion through an ultra-intense laser incident on a gold target is conceptually presented through fundamental performance analysis. As opposed to traditional strategies positron antimatter is considered rather than antiproton antimatter. Positron antimatter can be produced by an ultra- intense laser incident on a high atomic number target, such as gold. The ultra-intense laser production of positron antimatter mechanism greatly alleviates constraints, such as requirements for antimatter storage imperative for antiproton antimatter. Also the ultra-intense laser and associated energy source can be stationary or positioned remote while the pulsed space propulsion system using position antimatter to induce Deuterium-Tritium fusion is in flight. Various mechanisms for antimatter catalyzed fusion are considered, for which the preferred mechanism is the antiproton hotspot ignition strategy. Fundamental performance analysis is subsequently applied to derive positron antimatter generation requirements and associated propulsion performance. The characteristics of the pulsed space propulsion system using position antimatter to induce Deuterium-Tritium fusion through an ultra-intense laser incident on a gold target imply a promising non-chemical propulsion alternative for the transport of bulk cargo to support space missions. 展开更多
关键词 Antimatter INDUCED FUSION PULSED SPACE PROPULSION Nuclear FUSION ultra-intense laser Bethe-Heitler Process POSITRON Antiproton Hotspot Ignition
下载PDF
Controlled Fusion Strategy Using Ultra-Intense Laser Derived Positron Generation for Initiation
9
作者 Robert Le Moyne 《Journal of Applied Mathematics and Physics》 2018年第4期693-703,共11页
A controllable strategy for eliciting nuclear fusion is presented through ultra-intenselaser derived positron generation by a conceptual first physics perspective. The capability to generate positrons on demand in a c... A controllable strategy for eliciting nuclear fusion is presented through ultra-intenselaser derived positron generation by a conceptual first physics perspective. The capability to generate positrons on demand in a controlled manner through an ultra-intense laser incident on a high atomic number target, such as gold, is the intrinsic core to the foundation of controllable nuclear fusion. Positron antimatter generated from the periphery of the fusion fuel pellet provides the basis for initiating the fusion reaction, which is regulated by controlling the operation of the ultra-intense laser. A dual pulsed Fast Ignition mechanism is selected to achieve the fusion reaction. Based on first physics performance analysis the controllable strategy for eliciting nuclear fusion through ultra-intenselaser derived positron generation offers a realizable means for achieving regulated nuclear fusion. A future perspective of the controllable fusion strategy addresses the opportunities and concerns of a pathway toward regulated nuclear fusion. 展开更多
关键词 Controllable Nuclear Fusion ultra-intense laser POSITRON POSITRON Generation ANTIMATTER TRIDENT PROCESS Bethe-Heitler PROCESS Breit-Wheeler PROCESS Volumetric IGNITION HOTSPOT IGNITION Fast IGNITION
下载PDF
Ultra-broadband pulse generation via hollow-core fiber compression and frequency doubling for ultra-intense lasers
10
作者 Yanyan Li Beijie Shao +8 位作者 Yujie Peng Junyu Qian Wenkai Li Xinliang Wang Xingyan Liu Xiaoming Lu Yi Xu Yuxin Leng Ruxin Li 《High Power Laser Science and Engineering》 SCIE CAS CSCD 2023年第1期38-43,共6页
We demonstrate an ultra-broadband high temporal contrast infrared laser source based on cascaded optical parametric amplification,hollow-core fiber(HCF)and second harmonic generation processes.In this setup,the spectr... We demonstrate an ultra-broadband high temporal contrast infrared laser source based on cascaded optical parametric amplification,hollow-core fiber(HCF)and second harmonic generation processes.In this setup,the spectrum of an approximately 1.8μm laser pulse has near 1μm full bandwidth by employing an argon gas-filled HCF.Subsequently,after frequency doubling with cascaded crystals and dispersion compensation by a fused silica wedge pair,9.6 fs(~3cycles)and 150μJ pulses centered at 910 nm with full bandwidth of over 300 nm can be generated.The energy stability of the output laser pulse is excellent with 0.8%(root mean square)over 20 min,and the temporal contrast is>10^(12)at-10 ps before the main pulse.The excellent temporal and spatial characteristics and stability make this laser able to be used as a good seed source for ultra-intense and ultrafast laser systems. 展开更多
关键词 few-cycle laser high temporal contrast ULTRA-BROADBAND ultrafast laser
原文传递
Generation mechanism of 100 MG magnetic fields in the interaction of ultra-intense laser pulse with nanostructured target 被引量:1
11
作者 J.M.Tian H.B.Cai +3 位作者 W.S.Zhang E.H.Zhang B.Du S.P.Zhu 《High Power Laser Science and Engineering》 SCIE CAS CSCD 2020年第2期50-55,共6页
Experimental and simulation data[Moreau et al.,Plasma Phys.Control.Fusion 62,014013(2019);Kaymak et al.,Phys.Rev.Lett.117,035004(2016)]indicate that self-generated magnetic fields play an important role in enhancing t... Experimental and simulation data[Moreau et al.,Plasma Phys.Control.Fusion 62,014013(2019);Kaymak et al.,Phys.Rev.Lett.117,035004(2016)]indicate that self-generated magnetic fields play an important role in enhancing the flux and energy of relativistic electrons accelerated by ultra-intense laser pulse irradiation with nanostructured arrays.A fully relativistic analytical model for the generation of the magnetic field based on electron magneto-hydrodynamic description is presented here.The analytical model shows that this self-generated magnetic field originates in the nonparallel density gradient and fast electron current at the interfaces of a nanolayered target.A general formula for the self-generated magnetic field is found,which closely agrees with the simulation scaling over the relevant intensity range.The result is beneficial to the experimental designs for the interaction of the laser pulse with the nanostructured arrays to improve laser-to-electron energy coupling and the quality of forward hot electrons. 展开更多
关键词 nanolayered target self-generated magnetic field ultra-intense laser pulse
原文传递
Vulnerability assessment of UAV engine to laser based on improved shotline method
12
作者 Le Liu Chengyang Xu +3 位作者 Changbin Zheng Sheng Cai Chunrui Wang Jin Guo 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期588-600,共13页
Laser anti-drone technology is entering the sequence of actual combat,and it is necessary to consider the vulnerability of typical functional parts of UAVs.Since the concept of"vulnerability"was proposed,a v... Laser anti-drone technology is entering the sequence of actual combat,and it is necessary to consider the vulnerability of typical functional parts of UAVs.Since the concept of"vulnerability"was proposed,a variety of analysis programs for battlefield targets to traditional weapons have been developed,but a comprehensive assessment methodology for targets'vulnerability to laser is still missing.Based on the shotline method,this paper proposes a method that equates laser beam to shotline array,an efficient vulnerability analysis program of target to laser is established by this method,and the program includes the circuit board and the wire into the vulnerability analysis category,which improves the precision of the vulnerability analysis.Taking the UAV engine part as the target of vulnerability analysis,combine with the"life-death unit method"to calculate the laser penetration rate of various materials of the UAV,and the influence of laser weapon system parameters and striking orientation on the killing probability is quantified after introducing the penetration rate into the vulnerability analysis program.The quantitative analysis method proposed in this paper has certain general expansibility,which can provide a fresh idea for the vulnerability analysis of other targets to laser. 展开更多
关键词 laser weapon laser damage VULNERABILITY UAV ENGINE Killing probability
下载PDF
Flexible ureteroscopic treatment of kidney stones: How do the new laser systems change our concepts?
13
作者 Simin Yu Linhu Liu +4 位作者 Ya Li Liang Zhou Jixiang Chen Hong Li Kunjie Wang 《Asian Journal of Urology》 CSCD 2024年第2期156-168,共13页
Objective: Flexible ureteroscopy (fURS) has become a widely accepted and effective technique for treating kidney stones. With the development of new laser systems, the fURS approach has evolved significantly. This lit... Objective: Flexible ureteroscopy (fURS) has become a widely accepted and effective technique for treating kidney stones. With the development of new laser systems, the fURS approach has evolved significantly. This literature review aims to examine the current state of knowledge on fURS treatment of kidney stones, with a particular focus on the impact of the latest laser technologies on clinical outcomes and patient safety.Methods: We conducted a search of the PubMed/PMC, Web of Science Core Collection, Scopus, Embase (Ovid), and Cochrane Databases for all randomized controlled trial articles on laser lithotripsy in September 2023 without time restriction.Results: We found a total of 22 relevant pieces of literature. Holmium laser has been used for intracavitary laser lithotripsy for nearly 30 years and has become the golden standard for the treatment of urinary stones. However, the existing holmium laser cannot completely powder the stone, and the retropulsion of the stone after the laser emission and the thermal damage to the tissue have caused many problems for clinicians. The introduction of thulium fiber laser and Moses technology brings highly efficient dusting lithotripsy effect through laser innovation, limiting pulse energy and broadening pulse frequency.Conclusion: While the holmium:yttrium-aluminum-garnet laser remains the primary choice for endoscopic laser lithotripsy, recent technological advancements hint at a potential new gold standard. Parameter range, retropulsion effect, laser fiber adaptability, and overall system performance demand comprehensive attention. The ablation efficacy of high-pulse-frequency devices relies on precise targeting, which may pose practical challenges. 展开更多
关键词 laser lithotripsy UROLITHIASIS Thulium laser Holmium:yttrium-aluminum-garnet Moses effect
下载PDF
An LED-Side-Pumped Intracavity Frequency-Doubled Nd,Ce:YAG Laser Producing a 2W Q-Switched Red Beam
14
作者 沈建平 徐少聪 +6 位作者 芦鹏 江容容 王巍 张四维 邢凤阳 陈阳 陈亮 《Chinese Physics Letters》 SCIE EI CAS CSCD 2024年第3期44-47,共4页
We report a high-average-power acousto-optic(AO)Q-switched intracavity frequency-doubled red laser based on a high-efficiency light-emitting-diode(LED)pumped two-rod Nd,Ce:YAG laser module.Under quasi-continuous wave ... We report a high-average-power acousto-optic(AO)Q-switched intracavity frequency-doubled red laser based on a high-efficiency light-emitting-diode(LED)pumped two-rod Nd,Ce:YAG laser module.Under quasi-continuous wave operation conditions,a maximum output power of 1319.08 nm wavelength was achieved at 11.26 W at a repetition rate of 100 Hz. 展开更多
关键词 PUMPED SWITCHED laser
下载PDF
Broadband bidirectional Brillouin–Raman random fiber laser with ultra-narrow linewidth
15
作者 杨茜 李阳 +3 位作者 邹辉 梅杰 徐恩明 张祖兴 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第2期371-376,共6页
We present a Brillouin–Raman random fiber laser(BRRFL)with full-open linear cavity structure to generate broadband Brillouin frequency comb(BFC)with double Brillouin-frequency-shift spacing.The incorporation of a reg... We present a Brillouin–Raman random fiber laser(BRRFL)with full-open linear cavity structure to generate broadband Brillouin frequency comb(BFC)with double Brillouin-frequency-shift spacing.The incorporation of a regeneration portion consisting of an erbium-doped fiber and a single-mode fiber enables the generation of broadband BFC.The dynamics of broadband BFC generation changing with the pump power(EDF and Raman)and Brillouin pump(BP)wavelength are investigated in detail,respectively.Under suitable conditions,the bidirectional BRRFL proposed can produce a flatamplitude BFC with 40.7-nm bandwidth ranging from 1531 nm to 1571.7 nm,and built-in 242-order Brillouin Stokes lines(BSLs)with double Brillouin-frequency-shift spacing.Moreover,the linewidth of single BSL is experimentally measured to be about 2.5 kHz.The broadband bidirectional narrow-linewidth BRRFL has great potential applications in optical communication,optical sensing,spectral measurement,and so on. 展开更多
关键词 random laser fiber laser stimulated Brillouin scattering(SBS) stimulated Raman scattering(SRS)
下载PDF
GaN based ultraviolet laser diodes
16
作者 Jing Yang Degang Zhao +9 位作者 Zongshun Liu Yujie Huang Baibin Wang Xiaowei Wang Yuheng Zhang Zhenzhuo Zhang Feng Liang Lihong Duan Hai Wang Yongsheng Shi 《Journal of Semiconductors》 EI CAS CSCD 2024年第1期6-15,共10页
In the past few years,many groups have focused on the research and development of GaN-based ultraviolet laser diodes(UV LDs).Great progresses have been achieved even though many challenges exist.In this article,we ana... In the past few years,many groups have focused on the research and development of GaN-based ultraviolet laser diodes(UV LDs).Great progresses have been achieved even though many challenges exist.In this article,we analyze the challenges of developing GaN-based ultraviolet laser diodes,and the approaches to improve the performance of ultraviolet laser diode are reviewed.With these techniques,room temperature(RT)pulsed oscillation of AlGaN UVA(ultraviolet A)LD has been realized,with a lasing wavelength of 357.9 nm.Combining with the suppression of thermal effect,the high output power of 3.8 W UV LD with a lasing wavelength of 386.5 nm was also fabricated. 展开更多
关键词 DIODES laser GAN
下载PDF
975 nm multimode semiconductor lasers with high-order Bragg diffraction gratings
17
作者 Zhenwu Liu Li Zhong +1 位作者 Suping Liu Xiaoyu Ma 《Journal of Semiconductors》 EI CAS CSCD 2024年第3期38-44,共7页
The 975 nm multimode diode lasers with high-order surface Bragg diffraction gratings have been simulated and calcu-lated using the 2D finite difference time domain(FDTD)algorithm and the scattering matrix method(SMM).... The 975 nm multimode diode lasers with high-order surface Bragg diffraction gratings have been simulated and calcu-lated using the 2D finite difference time domain(FDTD)algorithm and the scattering matrix method(SMM).The periods and etch depth of the grating parameters have been optimized.A board area laser diode(BA-LD)with high-order diffraction grat-ings has been designed and fabricated.At output powers up to 10.5 W,the measured spectral width of full width at half maxi-mum(FWHM)is less than 0.5 nm.The results demonstrate that the designed high-order surface gratings can effectively nar-row the spectral width of multimode semiconductor lasers at high output power. 展开更多
关键词 laser diodes distributed Bragg reflector high order gratings high power laser diodes narrow spectrum width
下载PDF
Backward scattering of laser plasma interactions from hundreds-of-joules broadband laser on thick target
18
作者 Peipei Wang Honghai An +14 位作者 Zhiheng Fang Jun Xiong Zhiyong Xie Chen Wang Zhiyu He Guo Jia Ruirong Wang Shu Zheng Lan Xia Wei Feng Haitao Shi Wei Wang Jinren Sun Yanqi Gao Sizu Fu 《Matter and Radiation at Extremes》 SCIE EI CSCD 2024年第1期5-14,共10页
The use of broadband laser technology is a novel approach for inhibiting processes related to laser plasma interactions(LPIs).In this study,several preliminary experiments into broadband-laser-driven LPIs are carried ... The use of broadband laser technology is a novel approach for inhibiting processes related to laser plasma interactions(LPIs).In this study,several preliminary experiments into broadband-laser-driven LPIs are carried out using a newly established hundreds-of-joules broadband second-harmonic-generation laser facility.Through direct comparison with LPI results for a traditional narrowband laser,the actual LPI-suppression effect of the broadband laser is shown.The broadband laser had a clear suppressive effect on both back-stimulated Raman scattering and back-stimulated Brillouin scattering at laser intensities below 1×10^(15) W cm^(−2).An abnormal hot-electron phenomenon is also investigated,using targets of different thicknesses. 展开更多
关键词 SCATTERING laser hundreds
下载PDF
Characterization of bright betatron radiation generated by direct laser acceleration of electrons in plasma of near critical density
19
作者 J.Cikhardt M.Gyrdymov +9 位作者 S.Zähter P.Tavana M.M.Günther N.Bukharskii N.Borisenko J.Jacoby X.F.Shen A.Pukhov N.E.Andreev O.N.Rosmej 《Matter and Radiation at Extremes》 SCIE EI CSCD 2024年第2期26-35,共10页
Directed x-rays produced in the interaction of sub-picosecond laser pulses of moderate relativistic intensity with plasma of near-critical density are investigated. Synchrotron-like (betatron) radiation occurs in the ... Directed x-rays produced in the interaction of sub-picosecond laser pulses of moderate relativistic intensity with plasma of near-critical density are investigated. Synchrotron-like (betatron) radiation occurs in the process of direct laser acceleration (DLA) of electrons in a relativisticlaser channel when the electrons undergo transverse betatron oscillations in self-generated quasi-static electric and magnetic fields. In anexperiment at the PHELIX laser system, high-current directed beams of DLA electrons with a mean energy ten times higher than the ponderomotive potential and maximum energy up to 100 MeV were measured at 10^(19) W/cm^(2)laser intensity. The spectrum of directed x-raysin the range of 5–60 keV was evaluated using two sets of Ross filters placed at 0°and 10°to the laser pulse propagation axis. The differential x-ray absorption method allowed for absolute measurements of the angular-dependent photon fluence. We report 10^(13) photons/sr withenergies >5 keV measured at 0°to the laser axis and a brilliance of 10^(21) photons s^(−1) mm^(−2) mrad−2(0.1%BW)−1. The angular distributionof the emission has an FWHM of 14°–16°. Thanks to the ultra-high photon fluence, point-like radiation source, and ultra-short emissiontime, DLA-based keV backlighters are promising for various applications in high-energy-density research with kilojoule petawatt-class laserfacilities. 展开更多
关键词 laser ACCELERATION CRITICAL
下载PDF
Collective coherent emission of electrons in strong laser fields and perspective for hard x-ray lasers
20
作者 E.G.Gelfer A.M.Fedotov +1 位作者 O.Klimo S.Weber 《Matter and Radiation at Extremes》 SCIE EI CSCD 2024年第2期1-3,共3页
Coherent motion of particles in a plasma can imprint itself on radiation.The recent advent of high-power lasers—allowing the nonlinear inverse Compton-scattering regime to be reached—has opened the possibility of lo... Coherent motion of particles in a plasma can imprint itself on radiation.The recent advent of high-power lasers—allowing the nonlinear inverse Compton-scattering regime to be reached—has opened the possibility of looking at collective effects in laser–plasma interactions.Under certain conditions,the collective interaction of many electrons with a laser pulse can generate coherent radiation in the hard x-ray regime.This perspective paper explains the limitations under which such a regime might be attained. 展开更多
关键词 laser SCATTERING COHERENT
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部