Basement structures and basement interfaces are obtained by finite-difference and time-term methods using Pg-wave data from two deep seismic sounding (DSS) profiles in the Artush-Jiashi strong earthquake area. The geo...Basement structures and basement interfaces are obtained by finite-difference and time-term methods using Pg-wave data from two deep seismic sounding (DSS) profiles in the Artush-Jiashi strong earthquake area. The geological units differ considerably in basement depth. The basement structures of contact zones between two geological units also vary obviously, which marks the existence of boundary faults. Finally, we make a remark upon the relationship between characteristics of basement structures and seismicity in the Artush meizoseismal area and the Jiashi earthquake swarm area.展开更多
The research of an analysis of aeromagnetic data collected in the middle Benue Trough in north-central Nigeria is presented.A detailed analysis of basement structures is conducted in order to identify regions with hig...The research of an analysis of aeromagnetic data collected in the middle Benue Trough in north-central Nigeria is presented.A detailed analysis of basement structures is conducted in order to identify regions with high hydrocarbon potential that is different from those discovered by earlier researchers.Aeromagnetic data were filtered by using the Butterworth and Gaussian filters,transformed by engaging the reduction to the equator technique,and subsequently enhanced.To estimate magnetic basement depths at various places throughout the basin,the Euler deconvolution depth weighting approach was used.Eleven(11)sub-basins with depths ranging from-2000 m to-8000 m were also identified by Euler’s findings.The sub-basins trend in the NE-SW direction while the average sediment thickness is found to be more than 3 km.The extracted structural features indicate areas like Kadi Blam and Kado areas in the southeastern part and Ogoja and Obudu in the southern part of the study area as regions with high structural densities.These areas coincide with the areas delineated as the sub-basins.The cross-sections generated reveal depressions caused by the action of some tectonic activities in the area.This study identified undulating basement topography believed to be due to tectonic activities as well as five areas that are possible targets for hydrocarbon exploration.展开更多
We review the latest aeromagnetic geological data of continental China. We discuss the latest achievements in geological mapping and the newly detected features based on aeromagnetic data. Using aeromagnetic data coll...We review the latest aeromagnetic geological data of continental China. We discuss the latest achievements in geological mapping and the newly detected features based on aeromagnetic data. Using aeromagnetic data collected for more than 50 years, a series of 1:5000000 and 1:1000000 aeromagnetic maps of continental China were compiled using state-of-the-art digital technology, and data processing and transformation. Guided by plate tectonics and continental dynamics, rock physical properties, and magnetic anomalies, we compiled maps of the depth of the magnetic basement of continental China and the major geotectonic units, and presented newly detected geological structures based on the aeromagnefic data.展开更多
Thick-skinned contractional salt structures are widely developed in the western Kuqa depression, northern Tarim basin. To understand the mechanisms that govern the development of these structures, physical experiments...Thick-skinned contractional salt structures are widely developed in the western Kuqa depression, northern Tarim basin. To understand the mechanisms that govern the development of these structures, physical experiments are conducted and the results show that they are largely governed by the activities of basement faults and the forming of paleo-uplifts and basement slopes. The model materials in this study are dry sand, vaseline and plasticene (or hard foam), simulating the suprasalt, salt, and subsalt layers respectively. The experiments show that, due to the activities of basement faults and the forming of the paleo-uplifts, salt bodies usually accumulate and thicken significantly on the middle top of the paleo-uplifts which are constrained by the pre-exiting boundary faults. The development of large-scale thrust faults and salt nappes is favored by the basement slops with larger dips. The experiments also conclude that differential structural deformation could occur between the subsalt and suprasalt layers because of the presence of salt layers. Their geometries and the locations of structural highs are different, despite of the great similarities in the uplifted areas. The pierced salt diapir is not observed in the experiments, which indicates that the contractional shortening does not effectively accelerate the development of the salt diapir.展开更多
The basin-mountain system in the Sichuan Basin (SCB) reflects the main tectonic activity and the orogenic denudation in this region. The seismic probing work reveals the deep structure of the basin-mountain system. ...The basin-mountain system in the Sichuan Basin (SCB) reflects the main tectonic activity and the orogenic denudation in this region. The seismic probing work reveals the deep structure of the basin-mountain system. The seismic work was re-sampled to the Moho depth and the sedimentary thickness as well as the P-wave velocity=depth function to analyze the deep structure of the SCB and adjacent orogens. The results show two deposit centers in the SCB: the Deyang area in the west and the Nanchuan area in the east and depression uplift exists in the southwestern part of the SCB; the Moho shallowers gradually from the west to east (ca. 62-36 km deep),the South-North seismic belt (SNSB) is very distinctive: the Moho depth is much shallower (〈 50 km)to the east of the SNSB, whereas it is much deeper(〉50 kin)to the west of the SNSB, suggesting that the SNSB rather than the Longmen Shan tectonic belt is a main Moho transition belt; the topography and the top interface of the basement have the same undulation trend when the sedimentary thickness and the Moho depth have a mirror relationship; the low velocity zone developed in the Kangdian thrust and fold belt and Songpan-Garze belt implied a soft, weak and thick crust there showing tectonic activity in these areas.展开更多
Based on the results obtained from Pg wavefront imaging in active source deep seismic sounding, we propose a new ray hit analysis method for high-resolution seismic refraction profile data processing. This method can ...Based on the results obtained from Pg wavefront imaging in active source deep seismic sounding, we propose a new ray hit analysis method for high-resolution seismic refraction profile data processing. This method can be used to further determine possible refraction interface, especially spatial location of basement and its pattern characteristics in complex upper crustal structure region, making data processing for high-resolution refraction profiles more fine. We use this method to study the crystalline basement structure of east part of A'nyemaqên suite zone at northeast side of Qinghai-Xizang Plateau and the basement patterns as well as its spreading features at the east part of Anemaqen suite zone and its adjacent region were determined.展开更多
Subsurface geological cross sections of 0 - 200 m depth were constructed using a dense drilling database of the Osaka Plain in the intra-arc Osaka Basin of the Japan island arc, an active plate margin. The cross secti...Subsurface geological cross sections of 0 - 200 m depth were constructed using a dense drilling database of the Osaka Plain in the intra-arc Osaka Basin of the Japan island arc, an active plate margin. The cross sections revealed the subsurface geological structures and the geometry of folding and faulting in the basin. The comparison between the constructed subsurface cross sections and the seismic sections of the basement and basin fills at a depth of 1500 - 2000 m showed that the basement and shallow subsurface structures are similar;however, the shallow cross sections were of higher resolution than the deep seismic profiles.展开更多
The studies on configuration, character/property of the basement of Qiangtang basin is helpful for evaluating petroleum and nature gas resources as well as understanding the basin evolvement. Recently a moderate to hi...The studies on configuration, character/property of the basement of Qiangtang basin is helpful for evaluating petroleum and nature gas resources as well as understanding the basin evolvement. Recently a moderate to high-grade metamorphic gneiss rock was found underlying beneath very low metamorphic Ordovician strata in Mayer Kangri to the north of the central uplift. That fact actually proved existence of the crystalline basement just the distribution and structures of pre-Paleozoic crystalline basement still remain puzzle. In recent years a number of active sources deep seismic profiling, to aim at lithospheric structure of northern Tibet and petroleum resources of the Qiangtang basin, had been conducted that make it possible to image the structure of the basement of the Qiangtang. Near vertical reflection profiles, included those acquired previously and those during 2004 to 2008, have been utilized in this study. By through the interaction process and interpretation between the reflection profiles and the wide-angle profile, a model with the detailed structure and velocity distribution from surface to the depth of 20 km of Qiangtang basin has been imaged.Based on the results and discussions of this study, the preliminary conclusions are as follows: (1) The velocity structure section (~20 kin) that is interactively constrained by the refraction and reflection seismic data reveals that the sedimentary stratum gently lie until 10 km in the south Qiangtang basin. (2) The basement consists of fold basement (the upper) and crystalline basement (the lower).The fold basement buried at the average depth of 6 km with a velocity of 5.2-5.8 km/s. The shallowest appear at range of the central uplift. The crystalline basement is underlying beneath the fold basement at the average depth of 10 km with a velocity of 5.9-6.0 km/s except near Bangong-Nujiang suture. (3) The high-velocity body at the depth range of 3-6 km of the central uplift is considered as a fragment of the crystalline basement that perhaps was raised by Thermal or deformation. (4) The lower-consolidated fold basement show more affinity of Yangtze block but the crystalline basement seems more approximate to Lhasa terrene in geophysical nature. We have attempted to improve the resolution and reliability by interaction of the active seismic data and prove it effective to image complex basement structure. It will be a potential to process the piggy-back acquisition data and has wide prospects.展开更多
The Tacheng basin has been identified as a Carboniferous basement with a central uplift, sur- rounded by orogenic belts. This identification was based on the comprehensive analysis of field outcrops, regional magnetic...The Tacheng basin has been identified as a Carboniferous basement with a central uplift, sur- rounded by orogenic belts. This identification was based on the comprehensive analysis of field outcrops, regional magnetic and gravimetric data, skeleton seismic profiles, magnetotelluric profiles and drilling data. Here, we present gravimetric and magnetic data analyses of the basement structures of the Tacheng basin and its base formation. We also provide a magnetotelluric profile analysis of the structural features and tectonic framework of basin-mountain patterns. We use local geology, drilling data, and other comprehensive information to document the tectonic framework of the basement of the basin. Small-scale nappe structures are found in the northern basin, whereas stronger and more pronounced thrusting structures are found to the south and east of the basin. The basin is divided into four first-order tectonic units: a central uplift, a northern depression, a southeastern depression and a western depression. In addition, the Emin sag is suggested as a possible reservoir for oil and gas.展开更多
The seismic data obtained from high resolution seismic refraction profile in Jiashi strong earthquake swarm area in Xinjiang, China were further processed with ray hit analysis method and more complete basement interf...The seismic data obtained from high resolution seismic refraction profile in Jiashi strong earthquake swarm area in Xinjiang, China were further processed with ray hit analysis method and more complete basement interface structural characteristics beneath Jiashi strong earthquake swarm area were determined. The results show that there are two clear basement interfaces at the upper crust in Jiashi strong earthquake swarm area. The first one with buried depth ranging from 2.6 km to 3.3 km presents integral and continuous structure, and it appears an inclined plane interface and smoothly rises up toward Tianshan Mountain. The second basement interface with buried depth from 8.5 km to 11.8 km, is the antiquated crystalline basement of Tarim basin. Near the post number of 37 km, the buried depth of the crystalline basement changed abruptly by 2.5 km, which maybe result from an ultra crystalline basement fault. If taking this fault as a boundary, the crystalline basement could be divided into two parts, i.e. the southwestern segment with buried depth about 11.5 km, and the northeastern segment with buried depth approxi-mately from 8.5 km to 9.0 km. That is to say, in each segment, the buried depth changes not too much. The northeast segment rises up as a whole and upheaves slightly from southwest to northeast, which reflects the upper crustal deformation characteristics under the special tectonic background at the northwestern edge of Tarim basin.展开更多
In this paper, the study on the fine velocity structure of sedimental and basement layers along 4 deep seismic sounding profiles in the Three Gorges Region of the Changjiang River (Yangtze River) are presented...In this paper, the study on the fine velocity structure of sedimental and basement layers along 4 deep seismic sounding profiles in the Three Gorges Region of the Changjiang River (Yangtze River) are presented. The velocity of sedimental cover is larger in hills of western Hubei in the western profiles, the total thickness is about 0~0.3 km. However, it becomes thick in southern part of Zigui basin and Zushui river valley, about 5.0 km and 4.0 km thick respectively. The sedimental cover is very thick in Jianghan plains in the eastern profiles, about 5~8 km, and the velocity is lower. The velocity of basemental plane is greater than 6.0 km/s over the whole region. An interface can be divided within the sedimental layer, it is about 3~4 km deep in Jianghan plains, while it approximates to surface in other regions. The profiles are cut by faults in many positions. Where the faults pass, the velocity isopleth varies sharply, and the velocity is obviously low. The basement layer is characterized by high velocity and low gradient, there exist 3 high velocity anomalous zones within the layer, which are located at the west, south and east of Huangling Anticlinorium respectively. They are the upwelling materials of basalt magma with high velocity from deep crust. Perhaps, this process took place before formation of Huangling Anticlinorium. Its action produces the significant variation of basement plane depth and the correspondent development and action of faults.展开更多
Structural analyses are often ignored in mineral prospecting endeavor of any geological terrain despite the importance of geological structures in the formation of ore deposits. This paper correlates the results of mi...Structural analyses are often ignored in mineral prospecting endeavor of any geological terrain despite the importance of geological structures in the formation of ore deposits. This paper correlates the results of mineral prospecting campaign to those of the structural analysis in the southeastern margin of the western Nigeria basement. The mineral prospecting was executed by essentially geochemical-exploration methods, while the structural analysis was achieved by lineament analysis using Landsat-8 imagery. The mineral prospecting campaign eventually led to the discovery of gold bearing marble deposit in the Dagbala area;silver and copper bearing silicified sheared rock in the Dagbala, Ojirami, Erurhu and Atte areas;lead and zinc bearing metaconglomerate around Egbigele;uranium and thorium bearing pegmatite in the Dagbala area. The Landsat-8 lineament analysis showed the presence of a shear zone in the central, folds in the SW, and fractures in the NE parts of the study area. The relation between the two is such that the gold and silver-copper mineralization is associated with the shear zone, the lead-zinc mineralization to the folds, and the uranium-thorium mineralization to the fractures. Indeed, geological structures guide mineralization and their analysis can be employed for mineral prospecting.展开更多
基金State Key Basic Research Development and Programming Project Mechanism and Prediction of Strong Continental Earthquake (G1998040702) and Joint Seismological Science Foundation of China (198062). Contribution No. GPB200109 Research Center of Exploration
文摘Basement structures and basement interfaces are obtained by finite-difference and time-term methods using Pg-wave data from two deep seismic sounding (DSS) profiles in the Artush-Jiashi strong earthquake area. The geological units differ considerably in basement depth. The basement structures of contact zones between two geological units also vary obviously, which marks the existence of boundary faults. Finally, we make a remark upon the relationship between characteristics of basement structures and seismicity in the Artush meizoseismal area and the Jiashi earthquake swarm area.
文摘The research of an analysis of aeromagnetic data collected in the middle Benue Trough in north-central Nigeria is presented.A detailed analysis of basement structures is conducted in order to identify regions with high hydrocarbon potential that is different from those discovered by earlier researchers.Aeromagnetic data were filtered by using the Butterworth and Gaussian filters,transformed by engaging the reduction to the equator technique,and subsequently enhanced.To estimate magnetic basement depths at various places throughout the basin,the Euler deconvolution depth weighting approach was used.Eleven(11)sub-basins with depths ranging from-2000 m to-8000 m were also identified by Euler’s findings.The sub-basins trend in the NE-SW direction while the average sediment thickness is found to be more than 3 km.The extracted structural features indicate areas like Kadi Blam and Kado areas in the southeastern part and Ogoja and Obudu in the southern part of the study area as regions with high structural densities.These areas coincide with the areas delineated as the sub-basins.The cross-sections generated reveal depressions caused by the action of some tectonic activities in the area.This study identified undulating basement topography believed to be due to tectonic activities as well as five areas that are possible targets for hydrocarbon exploration.
基金supported by the China Land Aeromagnetic Characteristics and Tectonic Structures Research(No.1212011087009)part of the national geological and mineral resources investigation projects,and the Comprehensive Exploration of Aero Geophysical&Remote Sensing Survey and Interpretation System Research(No.2013AA063905)part of the planning for national high technology research and development
文摘We review the latest aeromagnetic geological data of continental China. We discuss the latest achievements in geological mapping and the newly detected features based on aeromagnetic data. Using aeromagnetic data collected for more than 50 years, a series of 1:5000000 and 1:1000000 aeromagnetic maps of continental China were compiled using state-of-the-art digital technology, and data processing and transformation. Guided by plate tectonics and continental dynamics, rock physical properties, and magnetic anomalies, we compiled maps of the depth of the magnetic basement of continental China and the major geotectonic units, and presented newly detected geological structures based on the aeromagnefic data.
文摘Thick-skinned contractional salt structures are widely developed in the western Kuqa depression, northern Tarim basin. To understand the mechanisms that govern the development of these structures, physical experiments are conducted and the results show that they are largely governed by the activities of basement faults and the forming of paleo-uplifts and basement slopes. The model materials in this study are dry sand, vaseline and plasticene (or hard foam), simulating the suprasalt, salt, and subsalt layers respectively. The experiments show that, due to the activities of basement faults and the forming of the paleo-uplifts, salt bodies usually accumulate and thicken significantly on the middle top of the paleo-uplifts which are constrained by the pre-exiting boundary faults. The development of large-scale thrust faults and salt nappes is favored by the basement slops with larger dips. The experiments also conclude that differential structural deformation could occur between the subsalt and suprasalt layers because of the presence of salt layers. Their geometries and the locations of structural highs are different, despite of the great similarities in the uplifted areas. The pierced salt diapir is not observed in the experiments, which indicates that the contractional shortening does not effectively accelerate the development of the salt diapir.
基金granted by the National natural Science Foundation of China (Grant Nos.41104056,41374093,and 41274097)the basic research fund of Institute of Geology,CAGS (Grant No.J1119)SinoProbe-02
文摘The basin-mountain system in the Sichuan Basin (SCB) reflects the main tectonic activity and the orogenic denudation in this region. The seismic probing work reveals the deep structure of the basin-mountain system. The seismic work was re-sampled to the Moho depth and the sedimentary thickness as well as the P-wave velocity=depth function to analyze the deep structure of the SCB and adjacent orogens. The results show two deposit centers in the SCB: the Deyang area in the west and the Nanchuan area in the east and depression uplift exists in the southwestern part of the SCB; the Moho shallowers gradually from the west to east (ca. 62-36 km deep),the South-North seismic belt (SNSB) is very distinctive: the Moho depth is much shallower (〈 50 km)to the east of the SNSB, whereas it is much deeper(〉50 kin)to the west of the SNSB, suggesting that the SNSB rather than the Longmen Shan tectonic belt is a main Moho transition belt; the topography and the top interface of the basement have the same undulation trend when the sedimentary thickness and the Moho depth have a mirror relationship; the low velocity zone developed in the Kangdian thrust and fold belt and Songpan-Garze belt implied a soft, weak and thick crust there showing tectonic activity in these areas.
基金National Natural Science Foundation of China (40334040) and Joint Seismological Science Foundation of China (106076)
文摘Based on the results obtained from Pg wavefront imaging in active source deep seismic sounding, we propose a new ray hit analysis method for high-resolution seismic refraction profile data processing. This method can be used to further determine possible refraction interface, especially spatial location of basement and its pattern characteristics in complex upper crustal structure region, making data processing for high-resolution refraction profiles more fine. We use this method to study the crystalline basement structure of east part of A'nyemaqên suite zone at northeast side of Qinghai-Xizang Plateau and the basement patterns as well as its spreading features at the east part of Anemaqen suite zone and its adjacent region were determined.
文摘Subsurface geological cross sections of 0 - 200 m depth were constructed using a dense drilling database of the Osaka Plain in the intra-arc Osaka Basin of the Japan island arc, an active plate margin. The cross sections revealed the subsurface geological structures and the geometry of folding and faulting in the basin. The comparison between the constructed subsurface cross sections and the seismic sections of the basement and basin fills at a depth of 1500 - 2000 m showed that the basement and shallow subsurface structures are similar;however, the shallow cross sections were of higher resolution than the deep seismic profiles.
基金supported by the National Natural Science Foundation of China (Grant Nos. 40874045 and 41174081)the Special Funds for Sciences and Technology Research of Public Welfare Trades (Grant No.201011042)
文摘The studies on configuration, character/property of the basement of Qiangtang basin is helpful for evaluating petroleum and nature gas resources as well as understanding the basin evolvement. Recently a moderate to high-grade metamorphic gneiss rock was found underlying beneath very low metamorphic Ordovician strata in Mayer Kangri to the north of the central uplift. That fact actually proved existence of the crystalline basement just the distribution and structures of pre-Paleozoic crystalline basement still remain puzzle. In recent years a number of active sources deep seismic profiling, to aim at lithospheric structure of northern Tibet and petroleum resources of the Qiangtang basin, had been conducted that make it possible to image the structure of the basement of the Qiangtang. Near vertical reflection profiles, included those acquired previously and those during 2004 to 2008, have been utilized in this study. By through the interaction process and interpretation between the reflection profiles and the wide-angle profile, a model with the detailed structure and velocity distribution from surface to the depth of 20 km of Qiangtang basin has been imaged.Based on the results and discussions of this study, the preliminary conclusions are as follows: (1) The velocity structure section (~20 kin) that is interactively constrained by the refraction and reflection seismic data reveals that the sedimentary stratum gently lie until 10 km in the south Qiangtang basin. (2) The basement consists of fold basement (the upper) and crystalline basement (the lower).The fold basement buried at the average depth of 6 km with a velocity of 5.2-5.8 km/s. The shallowest appear at range of the central uplift. The crystalline basement is underlying beneath the fold basement at the average depth of 10 km with a velocity of 5.9-6.0 km/s except near Bangong-Nujiang suture. (3) The high-velocity body at the depth range of 3-6 km of the central uplift is considered as a fragment of the crystalline basement that perhaps was raised by Thermal or deformation. (4) The lower-consolidated fold basement show more affinity of Yangtze block but the crystalline basement seems more approximate to Lhasa terrene in geophysical nature. We have attempted to improve the resolution and reliability by interaction of the active seismic data and prove it effective to image complex basement structure. It will be a potential to process the piggy-back acquisition data and has wide prospects.
文摘The Tacheng basin has been identified as a Carboniferous basement with a central uplift, sur- rounded by orogenic belts. This identification was based on the comprehensive analysis of field outcrops, regional magnetic and gravimetric data, skeleton seismic profiles, magnetotelluric profiles and drilling data. Here, we present gravimetric and magnetic data analyses of the basement structures of the Tacheng basin and its base formation. We also provide a magnetotelluric profile analysis of the structural features and tectonic framework of basin-mountain patterns. We use local geology, drilling data, and other comprehensive information to document the tectonic framework of the basement of the basin. Small-scale nappe structures are found in the northern basin, whereas stronger and more pronounced thrusting structures are found to the south and east of the basin. The basin is divided into four first-order tectonic units: a central uplift, a northern depression, a southeastern depression and a western depression. In addition, the Emin sag is suggested as a possible reservoir for oil and gas.
基金Foundation item: Joint Seismological Foundation of China (106076)National Natural Science Foundation of China (40474049, 40334040).
文摘The seismic data obtained from high resolution seismic refraction profile in Jiashi strong earthquake swarm area in Xinjiang, China were further processed with ray hit analysis method and more complete basement interface structural characteristics beneath Jiashi strong earthquake swarm area were determined. The results show that there are two clear basement interfaces at the upper crust in Jiashi strong earthquake swarm area. The first one with buried depth ranging from 2.6 km to 3.3 km presents integral and continuous structure, and it appears an inclined plane interface and smoothly rises up toward Tianshan Mountain. The second basement interface with buried depth from 8.5 km to 11.8 km, is the antiquated crystalline basement of Tarim basin. Near the post number of 37 km, the buried depth of the crystalline basement changed abruptly by 2.5 km, which maybe result from an ultra crystalline basement fault. If taking this fault as a boundary, the crystalline basement could be divided into two parts, i.e. the southwestern segment with buried depth about 11.5 km, and the northeastern segment with buried depth approxi-mately from 8.5 km to 9.0 km. That is to say, in each segment, the buried depth changes not too much. The northeast segment rises up as a whole and upheaves slightly from southwest to northeast, which reflects the upper crustal deformation characteristics under the special tectonic background at the northwestern edge of Tarim basin.
文摘In this paper, the study on the fine velocity structure of sedimental and basement layers along 4 deep seismic sounding profiles in the Three Gorges Region of the Changjiang River (Yangtze River) are presented. The velocity of sedimental cover is larger in hills of western Hubei in the western profiles, the total thickness is about 0~0.3 km. However, it becomes thick in southern part of Zigui basin and Zushui river valley, about 5.0 km and 4.0 km thick respectively. The sedimental cover is very thick in Jianghan plains in the eastern profiles, about 5~8 km, and the velocity is lower. The velocity of basemental plane is greater than 6.0 km/s over the whole region. An interface can be divided within the sedimental layer, it is about 3~4 km deep in Jianghan plains, while it approximates to surface in other regions. The profiles are cut by faults in many positions. Where the faults pass, the velocity isopleth varies sharply, and the velocity is obviously low. The basement layer is characterized by high velocity and low gradient, there exist 3 high velocity anomalous zones within the layer, which are located at the west, south and east of Huangling Anticlinorium respectively. They are the upwelling materials of basalt magma with high velocity from deep crust. Perhaps, this process took place before formation of Huangling Anticlinorium. Its action produces the significant variation of basement plane depth and the correspondent development and action of faults.
文摘Structural analyses are often ignored in mineral prospecting endeavor of any geological terrain despite the importance of geological structures in the formation of ore deposits. This paper correlates the results of mineral prospecting campaign to those of the structural analysis in the southeastern margin of the western Nigeria basement. The mineral prospecting was executed by essentially geochemical-exploration methods, while the structural analysis was achieved by lineament analysis using Landsat-8 imagery. The mineral prospecting campaign eventually led to the discovery of gold bearing marble deposit in the Dagbala area;silver and copper bearing silicified sheared rock in the Dagbala, Ojirami, Erurhu and Atte areas;lead and zinc bearing metaconglomerate around Egbigele;uranium and thorium bearing pegmatite in the Dagbala area. The Landsat-8 lineament analysis showed the presence of a shear zone in the central, folds in the SW, and fractures in the NE parts of the study area. The relation between the two is such that the gold and silver-copper mineralization is associated with the shear zone, the lead-zinc mineralization to the folds, and the uranium-thorium mineralization to the fractures. Indeed, geological structures guide mineralization and their analysis can be employed for mineral prospecting.