Low-Earth-Orbit satellite constellation networks(LEO-SCN)can provide low-cost,largescale,flexible coverage wireless communication services.High dynamics and large topological sizes characterize LEO-SCN.Protocol develo...Low-Earth-Orbit satellite constellation networks(LEO-SCN)can provide low-cost,largescale,flexible coverage wireless communication services.High dynamics and large topological sizes characterize LEO-SCN.Protocol development and application testing of LEO-SCN are challenging to carry out in a natural environment.Simulation platforms are a more effective means of technology demonstration.Currently available simulators have a single function and limited simulation scale.There needs to be a simulator for full-featured simulation.In this paper,we apply the parallel discrete-event simulation technique to the simulation of LEO-SCN to support large-scale complex system simulation at the packet level.To solve the problem that single-process programs cannot cope with complex simulations containing numerous entities,we propose a parallel mechanism and algorithms LP-NM and LP-YAWNS for synchronization.In the experiment,we use ns-3 to verify the acceleration ratio and efficiency of the above algorithms.The results show that our proposed mechanism can provide parallel simulation engine support for the LEO-SCN.展开更多
In this study, we provide the first detailed analysis of variations in the spacecraft potential (Vs) of the three Swarm satellites, which are flying at about 400-500 km. Unlike previous studies that have investigated ...In this study, we provide the first detailed analysis of variations in the spacecraft potential (Vs) of the three Swarm satellites, which are flying at about 400-500 km. Unlike previous studies that have investigated extreme charging events, usually with spacecraft potentials as negative as −100 V, this study is focused on variations of Swarm Vs readings, which fall within a few negative volts. The Swarm observations show that spacecraft at low Earth orbital (LEO) altitudes are charged only slightly negatively, varying between −7 V and 0 V, with the majority of recorded potentials at these altitudes clustering close to −2 V. However, a second peak of Vs data is found at −5.5 V, though the event numbers for these more-negative observations are less, by an order of magnitude, than for incidents near the −2 V peak. These two distinct Vs peaks suggest two different causes. We have thus divided the Swarm spacecraft Vs data into two categories: less-negatively charged (−5 < Vs < 0 V) and more-negatively-charged (−6.5 < Vs < −5 V). These two Vs categories exhibit different spatial and temporal distributions. The Vs observations in the first category remain relatively closer to 0 V above the magnetic equator, but become much more negative at low and middle latitudes on the day side;at high latitudes, these first-category Vs readings are relatively more-negative during local summer. Second-category Vs events cluster into two bands at the middle latitudes (between ±20°-50° magnetic latitude), but with slightly more negative readings at the South Atlantic Anomaly (SAA) region;at high latitudes, these rarer but more-negative second-category Vs events exhibit relatively more-negative values during local winter, which is opposite to the seasonal pattern seen in the first category. By comparing Vs data to the distributions of background plasma density at Swarm altitudes, we find for the first category that more-negative Vs readings are recorded at regions with higher background plasma density, while for the second category the more-negative Vs data are observed at regions with lower background plasma density. This can be explained as follows: the electron and ion fluxes incident on Swarm surface, whose differences determine the potential of Swarm, are dominated by the background “cold” plasma (due to ionization) and “hot” plasma (due to precipitated particles from magnetosphere) for the two Vs categories, respectively.展开更多
Based on measured astronomical position data of heavenly objects in the Solar System and other planetary systems, all bodies in space seem to move in some kind of elliptical motion with respect to each other. Accordin...Based on measured astronomical position data of heavenly objects in the Solar System and other planetary systems, all bodies in space seem to move in some kind of elliptical motion with respect to each other. According to Kepler’s 1st Law, “orbit of a planet with respect to the Sun is an ellipse, with the Sun at one of the two foci.” Orbit of the Moon with respect to Earth is also distinctly elliptical, but this ellipse has a varying eccentricity as the Moon comes closer to and goes farther away from the Earth in a harmonic style along a full cycle of this ellipse. In this paper, our research results are summarized, where it is first mathematically shown that the “distance between points around any two different circles in three-dimensional space” is equivalent to the “distance of points around a vector ellipse to another fixed or moving point, as in two-dimensional space”. What is done is equivalent to showing that bodies moving on two different circular orbits in space vector-wise behave as if moving on an elliptical path with respect to each other, and virtually seeing each other as positioned at an instantaneously stationary point in space on their relative ecliptic plane, whether they are moving with the same angular velocity, or different but fixed angular velocities, or even with different and changing angular velocities with respect to their own centers of revolution. This mathematical revelation has the potential to lead to far reaching discoveries in physics, enabling more insight into forces of nature, with a formulation of a new fundamental model regarding the motions of bodies in the Universe, including the Sun, Planets, and Satellites in the Solar System and elsewhere, as well as at particle and subatomic level. Based on the demonstrated mathematical analysis, as they exhibit almost fixed elliptic orbits relative to one another over time, the assertion is made that the Sun, the Earth, and the Moon must each be revolving in their individual circular orbits of revolution in space. With this expectation, individual orbital parameters of the Sun, the Earth, and the Moon are calculated based on observed Earth to Sun and Earth to Moon distance data, also using analytical methods developed as part of this research to an approximation. This calculation and analysis process have revealed additional results aligned with observation, and this also supports our assertion that the Sun, the Earth, and the Moon must actually be revolving in individual circular orbits.展开更多
The earth gravity field model CDS01S of degree and order 36 has been recovered from the post processed Science Orbits and on-board accelerometer data of GFZ’s CHAMP satellite. The model resolves the geoid with an acc...The earth gravity field model CDS01S of degree and order 36 has been recovered from the post processed Science Orbits and on-board accelerometer data of GFZ’s CHAMP satellite. The model resolves the geoid with an accuracy of better than 4 cm at a resolution of 700 km half-wavelength. By using the degree difference variances of geopotential coefficients to compare the model CDS01S with EIGEN3P, EIGEN1S and EGM96, the result indicates that the coefficients of CDS01S are most close to those of EIGEN3P. The result of the comparison between the accuracies of geopotential coefficients in the above models, indicates that the accuracy of coefficients in CDS01S is higher than that in EGM96.The geoid undulations of CDS01S and GGM01C up to 30 degrees are calculated and the standard deviation is 4.7 cm between them.展开更多
This paper addresses the problem of sensor search scheduling in the complicated space environment faced by the low-earth orbit constellation.Several search scheduling methods based on the commonly used information gai...This paper addresses the problem of sensor search scheduling in the complicated space environment faced by the low-earth orbit constellation.Several search scheduling methods based on the commonly used information gain are compared via simulations first.Then a novel search scheduling method in the scenarios of uncertainty observation is proposed based on the global Shannon information gain and beta density based uncertainty model.Simulation results indicate that the beta density model serves a good option for solving the problem of target acquisition in the complicated space environments.展开更多
Study of atmospheric remnants in the low Earth orbit region (~200 km altitude) using Global Models, with application to electric thrusters of in situ resources utilization type.
In this work we study the perturbation and the change in the orbital elements due to the earth’s magnetic field and the gravitational waves. The acceleration components are derived in the radial, transverse to it and...In this work we study the perturbation and the change in the orbital elements due to the earth’s magnetic field and the gravitational waves. The acceleration components are derived in the radial, transverse to it and normal to the orbital plane. The equation for the rates of variation of the elements is formed and solved to find the secular variation in the element for polar and equatorial satellites.展开更多
In this paper, the phenomena of Earth’s motion about its own axis, the ecliptic plane of the Earth’s orbit around the Sun, the definitions of equinoxes, the precession of equinoxes, Earth’s wobble and other astrono...In this paper, the phenomena of Earth’s motion about its own axis, the ecliptic plane of the Earth’s orbit around the Sun, the definitions of equinoxes, the precession of equinoxes, Earth’s wobble and other astronomical terminology are briefly described. Some of the existing theories explaining the precession of equinox and their inadequacies are brought out. New Hypothesis is that precession of equinoxes is a direct result of Orbital spin of Earth in a retrograde direction—a celestial phenomenon similar to that of Moon’s Orbital spin around the Earth. The study of Moon’s orbit round the Earth reveals the exact movement of Earth’s orbit, which causes precession of equinoxes without any ambiguity. The analogy presented herein demonstrates the plausible hypothesis.展开更多
Asteroid exploration trajectories which start from a lunar orbit are investigated in this work.It is assumed that the probe departs from lunar orbit and returns to the vicinity of Earth,then escapes from the Earth by ...Asteroid exploration trajectories which start from a lunar orbit are investigated in this work.It is assumed that the probe departs from lunar orbit and returns to the vicinity of Earth,then escapes from the Earth by performing a perigee maneuver.A low-energy transfer in Sun-EarthMoon system is adopted.First,the feasible region of lowenergy transfer from lunar orbit to perigee within 5 000 km height above the Earth surface in Sun-Earth-Moon system is calculated and analyzed.Three transfer types are found,i.e.,large maneuver and fast transfers,small maneuver and fast transfers,and disordered and slow transfers.Most of feasibility trajectories belong to the first two types.Then,the lowenergy trajectory leg from lunar orbit to perigee and a heliocentric trajectory leg from perigee to asteroid are patched by a perigee maneuver.The optimal full-transfer trajectory is obtained by exploiting the differential evolution algorithm.Finally,taking 4179 Toutatis asteroid as the target,some low-energy transfer trajectories are obtained and analyzed.展开更多
针对低轨卫星物联网场景下基于窄带物联网(narrow band Internet of Things,NB-IoT)体制的物联终端大尺度地理范围内多场景应用业务时延和终端功耗需求动态变化问题,提出一种利用马尔可夫链模型评估NB-IoT终端在扩展不连续接收(extended...针对低轨卫星物联网场景下基于窄带物联网(narrow band Internet of Things,NB-IoT)体制的物联终端大尺度地理范围内多场景应用业务时延和终端功耗需求动态变化问题,提出一种利用马尔可夫链模型评估NB-IoT终端在扩展不连续接收(extended discontinuous reception,eDRX)和节能模式(power saving mode,PSM)下的时延功耗的方法,建立了以下行业务延迟和终端功耗为优化目标的多目标优化问题。在信关站利用终端历史业务数据信息离线训练基于支持向量机(support vector machine,SVM)的时延功耗的回归预测模型,以回归预测模型作为非支配排序遗传算法(non-dominated sorting genetic algorithms-II,NSGA-II)的目标函数,得到多目标优化问题的Pareto前沿解集,进一步从Pareto前沿解集中选择满足当前应用时延功耗需求的工作状态定时器参数值,在线配置终端。仿真结果表明,相比于传统的地面物联网终端固定式定时器参数配置方法,所提出的业务驱动的定时器参数配置方法在终端动态多场景应用下能够更好地满足业务时延和终端功耗需求。展开更多
基金supported by Jiangsu Provincial Key Research and Development Program (No.BE20210132)the Zhejiang Provincial Key Research and Development Program (No.2021C01040)the team of S-SET
文摘Low-Earth-Orbit satellite constellation networks(LEO-SCN)can provide low-cost,largescale,flexible coverage wireless communication services.High dynamics and large topological sizes characterize LEO-SCN.Protocol development and application testing of LEO-SCN are challenging to carry out in a natural environment.Simulation platforms are a more effective means of technology demonstration.Currently available simulators have a single function and limited simulation scale.There needs to be a simulator for full-featured simulation.In this paper,we apply the parallel discrete-event simulation technique to the simulation of LEO-SCN to support large-scale complex system simulation at the packet level.To solve the problem that single-process programs cannot cope with complex simulations containing numerous entities,we propose a parallel mechanism and algorithms LP-NM and LP-YAWNS for synchronization.In the experiment,we use ns-3 to verify the acceleration ratio and efficiency of the above algorithms.The results show that our proposed mechanism can provide parallel simulation engine support for the LEO-SCN.
基金supported by the National Key R&D Program of China (Grant No. 2022YFF0503700)the special found of Hubei Luojia Laboratory (220100011)supported by the Dragon 5 cooperation 2020-2024 (project no. 59236)
文摘In this study, we provide the first detailed analysis of variations in the spacecraft potential (Vs) of the three Swarm satellites, which are flying at about 400-500 km. Unlike previous studies that have investigated extreme charging events, usually with spacecraft potentials as negative as −100 V, this study is focused on variations of Swarm Vs readings, which fall within a few negative volts. The Swarm observations show that spacecraft at low Earth orbital (LEO) altitudes are charged only slightly negatively, varying between −7 V and 0 V, with the majority of recorded potentials at these altitudes clustering close to −2 V. However, a second peak of Vs data is found at −5.5 V, though the event numbers for these more-negative observations are less, by an order of magnitude, than for incidents near the −2 V peak. These two distinct Vs peaks suggest two different causes. We have thus divided the Swarm spacecraft Vs data into two categories: less-negatively charged (−5 < Vs < 0 V) and more-negatively-charged (−6.5 < Vs < −5 V). These two Vs categories exhibit different spatial and temporal distributions. The Vs observations in the first category remain relatively closer to 0 V above the magnetic equator, but become much more negative at low and middle latitudes on the day side;at high latitudes, these first-category Vs readings are relatively more-negative during local summer. Second-category Vs events cluster into two bands at the middle latitudes (between ±20°-50° magnetic latitude), but with slightly more negative readings at the South Atlantic Anomaly (SAA) region;at high latitudes, these rarer but more-negative second-category Vs events exhibit relatively more-negative values during local winter, which is opposite to the seasonal pattern seen in the first category. By comparing Vs data to the distributions of background plasma density at Swarm altitudes, we find for the first category that more-negative Vs readings are recorded at regions with higher background plasma density, while for the second category the more-negative Vs data are observed at regions with lower background plasma density. This can be explained as follows: the electron and ion fluxes incident on Swarm surface, whose differences determine the potential of Swarm, are dominated by the background “cold” plasma (due to ionization) and “hot” plasma (due to precipitated particles from magnetosphere) for the two Vs categories, respectively.
文摘Based on measured astronomical position data of heavenly objects in the Solar System and other planetary systems, all bodies in space seem to move in some kind of elliptical motion with respect to each other. According to Kepler’s 1st Law, “orbit of a planet with respect to the Sun is an ellipse, with the Sun at one of the two foci.” Orbit of the Moon with respect to Earth is also distinctly elliptical, but this ellipse has a varying eccentricity as the Moon comes closer to and goes farther away from the Earth in a harmonic style along a full cycle of this ellipse. In this paper, our research results are summarized, where it is first mathematically shown that the “distance between points around any two different circles in three-dimensional space” is equivalent to the “distance of points around a vector ellipse to another fixed or moving point, as in two-dimensional space”. What is done is equivalent to showing that bodies moving on two different circular orbits in space vector-wise behave as if moving on an elliptical path with respect to each other, and virtually seeing each other as positioned at an instantaneously stationary point in space on their relative ecliptic plane, whether they are moving with the same angular velocity, or different but fixed angular velocities, or even with different and changing angular velocities with respect to their own centers of revolution. This mathematical revelation has the potential to lead to far reaching discoveries in physics, enabling more insight into forces of nature, with a formulation of a new fundamental model regarding the motions of bodies in the Universe, including the Sun, Planets, and Satellites in the Solar System and elsewhere, as well as at particle and subatomic level. Based on the demonstrated mathematical analysis, as they exhibit almost fixed elliptic orbits relative to one another over time, the assertion is made that the Sun, the Earth, and the Moon must each be revolving in their individual circular orbits of revolution in space. With this expectation, individual orbital parameters of the Sun, the Earth, and the Moon are calculated based on observed Earth to Sun and Earth to Moon distance data, also using analytical methods developed as part of this research to an approximation. This calculation and analysis process have revealed additional results aligned with observation, and this also supports our assertion that the Sun, the Earth, and the Moon must actually be revolving in individual circular orbits.
文摘The earth gravity field model CDS01S of degree and order 36 has been recovered from the post processed Science Orbits and on-board accelerometer data of GFZ’s CHAMP satellite. The model resolves the geoid with an accuracy of better than 4 cm at a resolution of 700 km half-wavelength. By using the degree difference variances of geopotential coefficients to compare the model CDS01S with EIGEN3P, EIGEN1S and EGM96, the result indicates that the coefficients of CDS01S are most close to those of EIGEN3P. The result of the comparison between the accuracies of geopotential coefficients in the above models, indicates that the accuracy of coefficients in CDS01S is higher than that in EGM96.The geoid undulations of CDS01S and GGM01C up to 30 degrees are calculated and the standard deviation is 4.7 cm between them.
基金supported by the National Defense Pre-research Foundation (9140A21041110KG0148)
文摘This paper addresses the problem of sensor search scheduling in the complicated space environment faced by the low-earth orbit constellation.Several search scheduling methods based on the commonly used information gain are compared via simulations first.Then a novel search scheduling method in the scenarios of uncertainty observation is proposed based on the global Shannon information gain and beta density based uncertainty model.Simulation results indicate that the beta density model serves a good option for solving the problem of target acquisition in the complicated space environments.
文摘Study of atmospheric remnants in the low Earth orbit region (~200 km altitude) using Global Models, with application to electric thrusters of in situ resources utilization type.
文摘In this work we study the perturbation and the change in the orbital elements due to the earth’s magnetic field and the gravitational waves. The acceleration components are derived in the radial, transverse to it and normal to the orbital plane. The equation for the rates of variation of the elements is formed and solved to find the secular variation in the element for polar and equatorial satellites.
文摘In this paper, the phenomena of Earth’s motion about its own axis, the ecliptic plane of the Earth’s orbit around the Sun, the definitions of equinoxes, the precession of equinoxes, Earth’s wobble and other astronomical terminology are briefly described. Some of the existing theories explaining the precession of equinox and their inadequacies are brought out. New Hypothesis is that precession of equinoxes is a direct result of Orbital spin of Earth in a retrograde direction—a celestial phenomenon similar to that of Moon’s Orbital spin around the Earth. The study of Moon’s orbit round the Earth reveals the exact movement of Earth’s orbit, which causes precession of equinoxes without any ambiguity. The analogy presented herein demonstrates the plausible hypothesis.
基金supported by the National Basic Research Programof China(973 Program)(2012CB720000)the National Natural Science Foundation of China(11102020)+1 种基金Program for New Century Excellent Talents in UniversityBeijing Higher Education Young Elite Teacher Project and China Scholarship Council
文摘Asteroid exploration trajectories which start from a lunar orbit are investigated in this work.It is assumed that the probe departs from lunar orbit and returns to the vicinity of Earth,then escapes from the Earth by performing a perigee maneuver.A low-energy transfer in Sun-EarthMoon system is adopted.First,the feasible region of lowenergy transfer from lunar orbit to perigee within 5 000 km height above the Earth surface in Sun-Earth-Moon system is calculated and analyzed.Three transfer types are found,i.e.,large maneuver and fast transfers,small maneuver and fast transfers,and disordered and slow transfers.Most of feasibility trajectories belong to the first two types.Then,the lowenergy trajectory leg from lunar orbit to perigee and a heliocentric trajectory leg from perigee to asteroid are patched by a perigee maneuver.The optimal full-transfer trajectory is obtained by exploiting the differential evolution algorithm.Finally,taking 4179 Toutatis asteroid as the target,some low-energy transfer trajectories are obtained and analyzed.
文摘针对低轨卫星物联网场景下基于窄带物联网(narrow band Internet of Things,NB-IoT)体制的物联终端大尺度地理范围内多场景应用业务时延和终端功耗需求动态变化问题,提出一种利用马尔可夫链模型评估NB-IoT终端在扩展不连续接收(extended discontinuous reception,eDRX)和节能模式(power saving mode,PSM)下的时延功耗的方法,建立了以下行业务延迟和终端功耗为优化目标的多目标优化问题。在信关站利用终端历史业务数据信息离线训练基于支持向量机(support vector machine,SVM)的时延功耗的回归预测模型,以回归预测模型作为非支配排序遗传算法(non-dominated sorting genetic algorithms-II,NSGA-II)的目标函数,得到多目标优化问题的Pareto前沿解集,进一步从Pareto前沿解集中选择满足当前应用时延功耗需求的工作状态定时器参数值,在线配置终端。仿真结果表明,相比于传统的地面物联网终端固定式定时器参数配置方法,所提出的业务驱动的定时器参数配置方法在终端动态多场景应用下能够更好地满足业务时延和终端功耗需求。