期刊文献+
共找到425篇文章
< 1 2 22 >
每页显示 20 50 100
Structure Character of M-A Constituent in CGHAZ of New Ultra-Low Carbon Bainitic Steel under Laser Welding Conditions 被引量:5
1
作者 Lin ZHAO Wuzhu CHEN +1 位作者 Wudong ZHANG Jiguo SHAN 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2006年第3期382-386,共5页
800 MPa grade new ultra-low carbon bainitic (NULCB) steel is the recently developed new generation steel. The microstructure in the coarse-grained heat affected zone (CGHAZ) of NULCB steel under laser welding cond... 800 MPa grade new ultra-low carbon bainitic (NULCB) steel is the recently developed new generation steel. The microstructure in the coarse-grained heat affected zone (CGHAZ) of NULCB steel under laser welding conditions was investigated by thermal simulation. The influence of the cooling time from 800℃ to 500℃.t8/5 (0.3-30 s), on the microstructure of the CGHAZ was discussed. The experimental results indicate that the microstructnre of the CGHAZ is only the granular bainite which consists of bainitic ferrite (BF) lath and M-A constituent while t8/5 is 0.3-30 s. The M-A constituent consists of twinned martensite and residual austenite, and the change of the volume fraction of the residual austenite in the M-A constituent is very small when t8/5 is between 0.3 and 30 s. The morphology of the M-A constituent obviously changes with the variation of t8/5.As t8/5 increases, tile average width, gross and shape parameter of the M-A constituent increase, while the line density of the M-A constituent decreases. 展开更多
关键词 Laser welding New ultra-low carbon bainitic steel Coarse-grained heat-affected zone MICROSTRUCTURE M-A constituent
下载PDF
Mechanical Method Determining Precipitation in an Ultra-Low Carbon Bainitic Steel
2
作者 Zijiu Dang Yan Thang +2 位作者 Jun Ke Xinlai He Shanwu Yang(State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China)(Applied Science School, University of Science and Technology Beijing, Beijin 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 1998年第3期115-118,共4页
Stress relaxation was chosen as the best method for monitoring the precipitation process. Tests were carried out on an ultra-low carbon bainitic steel containing Mn, Nb and B over 800~950℃. Specimens were solu- tion ... Stress relaxation was chosen as the best method for monitoring the precipitation process. Tests were carried out on an ultra-low carbon bainitic steel containing Mn, Nb and B over 800~950℃. Specimens were solu- tion treated at 1250℃ for a certain holding period. A prestain of 20% was applied at a strain rate of 0.1/s. The exper- imental results are displayed by a set of stress vs. 1g(time) curves different from the typical stress relaxation curves. There are two singularities forming a stress plateau on the stress vs.1g(time) curves when precipitates could be observed. Suppose the first one is the start of precipitation (Ps), and the second represcnts the fihish (Pf). As a result Precipitation-Time-Temperature relationship is described as C-shape curves based on two points. This mechanical method is suitable and precise for measuring precipitates in microalloyed steels during hot working. 展开更多
关键词 stress relaxation PRECIPITATION ultra-low carbon bainitic steel (ULCB steel)
下载PDF
Weldability of 1000 MPa Grade Ultra-low Carbon Bainitic Steel 被引量:2
3
作者 Qing-mei JIANG Xiao-qiang ZHANG Li-qing CHEN 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2016年第7期705-710,共6页
Maximum hardness test in weld heat-affected zone(HAZ),oblique Y-groove cracking test and mechanical property test of welding joint of 1 000 MPa grade ultra-low carbon bainitic steel were carried out,so as to researc... Maximum hardness test in weld heat-affected zone(HAZ),oblique Y-groove cracking test and mechanical property test of welding joint of 1 000 MPa grade ultra-low carbon bainitic steel were carried out,so as to research the weldability of the steel.The results show that the steel has lower cold cracking sensitivity,and preheating temperature of 100 ℃ can help completely eliminate cold cracks,generating good process weldability.The increase of preheating temperature can reduce the hardening degree of heat-affected zone.The strength of welding joint decreases and hardness reduces when heat inputs increase,and excellent mechanical properties can be obtained when low welding heat inputs are used.Fine lath bainites of different orientations combined with a few granular bainites that effectively split the original coarse austenite grains are the foundation of good properties. 展开更多
关键词 ultra-low carbon bainitic steel weldability cold cracking microstructure mechanical property
原文传递
Continuous Cooling Transformation Behavior and Kinetic Models of Transformations for an Ultra-Low Carbon Bainitic Steel 被引量:10
4
作者 ZHANG Zhi-min CAI Qing-wu YU Wei LIXiao-lin WANG Li-dong 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2012年第12期73-78,共6页
The aim was to investigate transformation behavior and transformation kinetics of an ultra-low carbon bai- nitic steel during continuous cooling. Continuous cooling transformation (CCT) curves of tested steel were m... The aim was to investigate transformation behavior and transformation kinetics of an ultra-low carbon bai- nitic steel during continuous cooling. Continuous cooling transformation (CCT) curves of tested steel were measured by thermal dilatometer and metallographic structures at room temperature were observed by optical microscope. Then transformation kinetic equation of austenite to ferrite as well as austenite to bainite was established by analyzing the relationship of lnln]-l/(1--f)] and lnt in the kinetic equation on the basis of processed experimental data. Finally, the measured and calculated kinetic behaviors of the steel during continuous cooling were compared and growth pat- terns of transformed ferrite and bainite were analyzed. Results showed that calculated result was in reasonable agree- ment with the experimental data. It could be concluded that the growth modes of transformed ferrite and bainite were mainly one dimension as the Avrami exponents were between 1 and 2. 展开更多
关键词 ultra low carbon bainitic steel continuous cooling transformation KINETICS Avrami equation
原文传递
INFLUENCE OF HOT DEFORMATION ON CONTINUOUSCOOLING BAINITIC TRANSFORMATION IN A LOWCARBON STEEL 被引量:4
5
作者 Z.D.Wang J.B.Qu +1 位作者 X.H.Liu G.D.Wang 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1998年第2期121-127,共7页
The influence of hot deformation conditions on continuous cooling bainitic transformation has been investigated for a low carbon microalloyed steel. The CCT diagrams show that deformation in unrecrpstallized austcnite... The influence of hot deformation conditions on continuous cooling bainitic transformation has been investigated for a low carbon microalloyed steel. The CCT diagrams show that deformation in unrecrpstallized austcnite ation can accelerate transformation process. Bainitic transformation in intermediate transformation temperature region is prominent, and the proeutectoid polygonal ferrite transformation at evelated high temperature is suppressed. According to optical and TEM analyses, low carbon bainitic ferrite is characterized by granular and lathlike ferrite, based on the cooling rate and deformation conditions. For nondeformation, groaps of coarse parallel ferrite lath form from the prior austenite grain boundaries with the same crystallographic orientation. For heavy deformaton, cell structure within the austenite grains due to the high dislocation density formed, which provides more nucleation sites for bainite ferrite. So deformation can discontinue the growth of ferrite laths and decrease the length of ferrite laths. 展开更多
关键词 bainitE continuous cooling TRANSFORMATION low carbon steel DEFORMATION
下载PDF
Effect of tempering temperature on the mechanical properties and microstructure of an copper-bearing low carbon bainitic steel 被引量:6
6
作者 Aimin Guo Xinli Song +1 位作者 Jinquan Tang Zexi Yuan 《Journal of University of Science and Technology Beijing》 CSCD 2008年第1期38-42,共5页
The effect of tempering temperature on the microstructure and mechanical properties of ultra-high strength, copperbearing, low-carbon bainitic steel has been investigated in the experiment. The results showed that the... The effect of tempering temperature on the microstructure and mechanical properties of ultra-high strength, copperbearing, low-carbon bainitic steel has been investigated in the experiment. The results showed that the microstructure was mainly the laths of bainite in the as-quenched steel. The bainitic laths were restored and combined after the steel tempered at various tempera- tures. There were rnartensite/austenite (M/A) islands and numerous dislocations within and between the bainitic laths, while very t-me precipitates of ε-Cu were also observed within the laths. With increasing the tempered temperature from 400 to 600℃, the yield strength (YS) increased from 877 to 957 MPa, whereas the ultimate tensile strength (UTS) decreased from 1020 to 985 MPa. The Charpy V-notch (CVN) varied from 68.5 to 42 J, and the value was minimal for the steel tempered at 500℃. 2008 University of Science and Technology Beijing. All rights reserved. 展开更多
关键词 low carbon bainite copper-bearing steel PRECIPITATION mechanical properties
下载PDF
Effects of Mn on Microstructures and Properties of Hot Rolled Low Carbon Bainitic Steels 被引量:1
7
作者 王敏 徐光 +2 位作者 WANG Li XU Yaowen XUE Zhengliang 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2017年第1期186-189,共4页
Two kinds of Mn-Si-Mo low carbon steels were designed to study the effects of Mn on the microstructures and properties of hot rolled low carbon bainitic steels.To reduce the production cost,a very low Mo content of 0.... Two kinds of Mn-Si-Mo low carbon steels were designed to study the effects of Mn on the microstructures and properties of hot rolled low carbon bainitic steels.To reduce the production cost,a very low Mo content of 0.13%was added in both steels.After hot rolling,the mechanical properties of samples were tested.Microstructure was observed and analyzed by optical microscope and transmission electron microscope.The results show that the strength of tested steels increases with the increase in Mn content,while the elongation decreases.When Mn content increases,the bainite microstructure increases.The results can provide a theoretical basis for composition design and industrial production of low cost low carbon bainitic steels. 展开更多
关键词 MANGANESE low carbon bainitic steel hot rolling STRENGTH
下载PDF
Ratcheting led surface failure of medium carbon bainitic steel under mild operation conditions 被引量:1
8
作者 PengDou YouguoLi KaimingLiang BingzheBai 《Journal of University of Science and Technology Beijing》 CSCD 2005年第1期60-66,共7页
The behavior of rolling contact fatigue (RCF) of medium carbon bainitic back-up roll steel was investigated under its actual work conditions. A kind of asperity-scale surface originated cracks, which is lying parallel... The behavior of rolling contact fatigue (RCF) of medium carbon bainitic back-up roll steel was investigated under its actual work conditions. A kind of asperity-scale surface originated cracks, which is lying parallel or at an acute angle to the surfaces, initiated after unidirectional plastic flow of the material in thin surface layer had occurred. Theoretical analysis indicates that they nucleate due to plastic ratcheting induced by asperity contact stresses, and consequently are named as ratcheting cracks. After nucleating and initially propagating, they arrest at some depth and resume propagating till about 70%-80% of the RCF failure life by initially turning parallel to contact surfaces. Their behavior of initiation and propagation is confined to a thin layer prior to the formation of surface distress. According to the critical principle of the preventive grinding strategy, removing the asperity influenced surface layer at about 70%-80% of the RCF failure life can effectively prevent the ratcheting cracks from developing into surface distress, which can lead to the formation of macro-RCF failure soon. 展开更多
关键词 rolling contact fatigue medium carbon bainitic steel RATCHETING ratcheting crack elastic shakedown limit
下载PDF
PHASE TRANSFORMATION UNIT OF BAINITIC FERRITE AND ITS SURFACE RELIEF IN LOW AND MEDIUM CARBON ALLOY STEELS
9
作者 YU Degang CHEN Dajun ZHENG Jinghong HE Yirong SHEN Fufa Shanghai Jiaotong University,Shanghai,China Professor,Department of Materials Science and Engineering,Shanghai Jiaotong University,1954 Huashan Road,Shanghai 200030,China 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1989年第3期161-167,共7页
The lath-or plate-shaped bainitic ferrite of low and medium carbon alloy steels consists of packets of ferrite sublaths which are composed of many finer and regular ferrite blocks.They are uniform shear growth units o... The lath-or plate-shaped bainitic ferrite of low and medium carbon alloy steels consists of packets of ferrite sublaths which are composed of many finer and regular ferrite blocks.They are uniform shear growth units of bainitic phase transformation.No carbide is precipitated from them.The bainitic O-carbides are precipitated from γ-α interface or carbon-rich austenite.The mode of arrangement of the units in ferrite sublath packet is in uni-or bi-di- rection.Single surface relief is produced by the accumulation of uniform shear strains with all the ferrite units arranged unidirectionally in a sublath packet,while tent-shaped surface relief is formed by the integration of the uniform shear strains of two groups with ferrite units piling up in two directions and growing face to face;whereas if they grow back to back,the integra- tion will be responsible for invert-tent-shaped surface relief.The interface trace between two groups of ferrite units in a sublath packet is shown as“midrib”. 展开更多
关键词 low and medium carbon alloy steels bainitE FERRITE phase transformation unit surface relief
下载PDF
Study on laser welded heat-affected zone in new ultralow carbon bainitic steel
10
作者 Lin Zhao Wuzhu Chen +1 位作者 Xudong Zhang Jiguo Shan 《Journal of University of Science and Technology Beijing》 CSCD 2007年第2期136-140,共5页
800 MPa grade ultralow carbon bainitic (NULCB) steel is the recently developed new generation steel, which was produced by thermo mechanical controlled processing & relaxation-precipitation controlling transformati... 800 MPa grade ultralow carbon bainitic (NULCB) steel is the recently developed new generation steel, which was produced by thermo mechanical controlled processing & relaxation-precipitation controlling transformation (TMCP&RPC) tech- nique. The microstructure and the mechanical properties of the heat-affected zone (HAZ) in NULCB steel under laser welding conditions were investigated by using a Gleeble-1500 thermal simulator. The experimental results indicate that the simplex microstructure in the HAZ is granular bainite that consists of bainite-ferrite (BF) lath and M-A constituent when the cooling time from 800 to 500℃ (t8/5) is 0.3-30 s, and the M-A constituent consists of twinned martensite and residual austenite. As t8/5 increases, the hardness and tensile strength of HAZ decreases, but they are higher than that of the base metal, indicating the absence of softened zone after laser welding. The impact toughness of HAZ increases at first and then decreases when t8/5 increases. The impact energy of HAZ is much higher than that of the base metal when t8/5 is between 3 and 15 s. It indicates that excellent low temperature toughness can be obtained under appropriate laser welding conditions. 展开更多
关键词 ultralow carbon bainitic steel laser welding heat-affected zone MICROSTRUCTURE mechanical properties
下载PDF
Bainite Transformation Under Continuous Cooling of Nb-Microalloyed Low Carbon Steel 被引量:10
11
作者 YI Hai-long DU Lin-xiu WANG Guo-dong LIU Xiang-hua 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2006年第3期36-39,67,共5页
Utilizing Gleeble-1500 thermomechanical simulator, the influences of hot deformation parameters on continuous cooling bainite transformation in Nb-microalloyed low carbon steel were investigated. The results indicate ... Utilizing Gleeble-1500 thermomechanical simulator, the influences of hot deformation parameters on continuous cooling bainite transformation in Nb-microalloyed low carbon steel were investigated. The results indicate that bainite starting temperature decreases with raising cooling rate and increases with increasing deformation temperature. Deformation has an accelerative effect on the bainite transformation when the specimens are deformed at 950 ℃. When the deformation temperature increases, the effect of deformation on bainite starting temperature is weakened. The amount of bainite is influenced by strain, cooling rate, and deformation temperature. When the specimens are deformed below 900 ℃, equiaxed ferrites are promoted and the bainite transformation is suppressed. 展开更多
关键词 Nb-microalloyed low carbon steel bainite starting temperature bainitE equiaxed ferrite retained austenite
下载PDF
Kinetics of bainite-to-austenite transformation during continuous reheating in low carbon microalloyed steel 被引量:5
12
作者 Ming Chang Hao Yu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2013年第5期427-432,共6页
A dilatometer was used to study the kinetics of bainite-to-austenite transformation in low carbon microalloyed steel with the initial microstructure of bainite during the continuous reheating process. The bainite-to-a... A dilatometer was used to study the kinetics of bainite-to-austenite transformation in low carbon microalloyed steel with the initial microstructure of bainite during the continuous reheating process. The bainite-to-austenite trans- formation was observed to take place in two steps at low heating rate. The first step is the dissolution of bainite, and the second one is the remaining bainite-to-austenite transformation controlled by a dissolution process. The calculation result of the kinetics of austenite formation shows that the two steps occur by diffusion at low heating rate. However, at high heating rate the bainite-to-austenite transformation occurs in a single step, and the process is mainly dominated by shear. The growth rate of austenite reaches the maximum at about 835℃ at different heating rates and the growth rate of austenite as a function of temperature increases with the increase in heating rate. 展开更多
关键词 low carbon steel MICROALLOYING bainitE AUSTENITE phase transformations REHEATING KINETICS
下载PDF
Effects of Deformation on Bainite Transformation During Continuous Cooling of Low Carbon Steels 被引量:6
13
作者 DU Lin-xiu YI Hai-long DING Hua LIU Xiang-hua WANG Guo-dong 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2006年第2期37-39,共3页
Hot deformation experiments were carried out on Gleeble 1500 thermo-mechanical simulator. The bainite transformation after deformation was investigated by optical microstructure analysis. The results indicated that th... Hot deformation experiments were carried out on Gleeble 1500 thermo-mechanical simulator. The bainite transformation after deformation was investigated by optical microstructure analysis. The results indicated that the deformation accelerated the bainite transformation when the deformation was carried out at high temperature and no or little ferrite was precipitated before bainite transformation; when the deformation was carried out at low temperature, the deformation hindered the bainite transformation because a lot of ferrite precipitated before bainite transformation. 展开更多
关键词 DEFORMATION bainitE continuous cooling low carbon steel
下载PDF
Novel mechanism for the modification of Al_2O_3-based inclusions in ultra-low carbon Al-killed steel considering the effects of magnesium and calcium 被引量:7
14
作者 Jing Guo Shu-sen Cheng +1 位作者 Han-jie Guo Ya-guang Mei 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2018年第3期280-287,共8页
Many researchers have explored the inclusion modification mechanism to improve non-metallic inclusion modifications in steelmaking. In this study, two types of industrial trials on inclusion modifications in liquid st... Many researchers have explored the inclusion modification mechanism to improve non-metallic inclusion modifications in steelmaking. In this study, two types of industrial trials on inclusion modifications in liquid steel were conducted using ultra-low-carbon Al-killed steel with different Mg and Ca contents to verify the effects of Ca and Mg contents on the modification mechanism of Al_2O_3-based inclusions during secondary refining. The results showed that Al_2O_3-based inclusions can be modified into liquid calcium aluminate or a multi-component inclusion with the addition of a suitable amount of Ca. In addition, [Mg] in liquid steel can further reduce CaO in liquid calcium aluminate to drive its evolution into CaO–MgO–Al_2O_3 multi-component inclusions. Thermodynamic analysis confirmed that the reaction between [Mg] and CaO in liquid calcium aluminate occurs when the MgO content of liquid calcium aluminate is less than 3 wt% and the temperature is higher than 1843 K. 展开更多
关键词 INCLUSIONS MECHANISM MODIFICATION ultra-low carbon Al-killed steel CALCIUM treatment MAGNESIUM content
下载PDF
Effect of zirconium addition on the austenite grain coarsening behavior and mechanical properties of 900 MPa low carbon bainite steel 被引量:3
15
作者 Jia Guo Aimin Guo +3 位作者 Hui Guo Ying Wang Jing Li Xinlai He 《Journal of University of Science and Technology Beijing》 CSCD 2008年第6期688-695,共8页
The ultra-fine bainitic microstructure of a 900 MPa low carbon bainitic Cu-Ni-Mo-B steel was obtained by a newly developed relaxation precipitation control (RPC) phase transformation processing. In a pan-cake like p... The ultra-fine bainitic microstructure of a 900 MPa low carbon bainitic Cu-Ni-Mo-B steel was obtained by a newly developed relaxation precipitation control (RPC) phase transformation processing. In a pan-cake like prior-austenite grain, the micro- structure consisted of lath bainite, a little of abnormal granular bainite, and acicular ferrite. The effect of zirconium carbonitrides on the austenite grain coarsening behavior was studied by transmission electron microscopy (TEM). The results show that, the lath is narrower with increasing cooling rate. The ratio of all kinds of bainitic microstructure is proper with the intermediate cooling rate; and Zr-containing precipitates distribute uniformly, which restrains austenite grain growing in heat-affected welding zone. 展开更多
关键词 low carbon bainitic steel ZIRCONIUM PRECIPITATES relaxation precipitation control (RPC) technique
下载PDF
EFFECT OF MICROSTRUCTURE ON CORROSION FATIGUE BEHAVIOUR OF A LOW CARBON BAINITE STEEL 被引量:1
16
作者 ZHANG Rong ZHOU Lubin, Northwestern Polytechnical University, Xi’an, ChinaZHENG Wenlong HUA Huizhong, Shanghai Research Institute of Materials, Shanghai, China ZHANG Rong, Lecturer, Department of Applied Physics, Northwestern Polytechnical University, Xi’an 710072, China 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1992年第7期43-47,共5页
The behaviour towards corrosion fatigue of low carbon bainite steel with various microstructures after tempered at different temperatures has been examined. The susceptibility of the steel to corrosion fatigue may be ... The behaviour towards corrosion fatigue of low carbon bainite steel with various microstructures after tempered at different temperatures has been examined. The susceptibility of the steel to corrosion fatigue may be improved by tempering at 300℃. 展开更多
关键词 corrosion fatigue bainitE retained austenite low carbon steel
下载PDF
A creep technique for monitoring the aging precipitation in Cu-Nb bainitic steels
17
作者 Xuemin Wang Bing Cao +2 位作者 Guifeng Zhou Chuang Li Xinlai He 《Journal of University of Science and Technology Beijing》 CSCD 2006年第1期50-53,共4页
A creep technique was applied on a Gleeble-1500 thermal simulator for monitoring the aging precipitation in ultra-low carbon steels containing various coppers. The aging hardening curve was obtained by the hardness te... A creep technique was applied on a Gleeble-1500 thermal simulator for monitoring the aging precipitation in ultra-low carbon steels containing various coppers. The aging hardening curve was obtained by the hardness testing. With the aid of an optical microscope and TEM, the microstructure and the aging precipitates were detected. The results indicate that when the precipitation occurs during the creep a plateau will appear on the creep curve; the left-hand and right-hand endings of the plateau correspond to the precipitation start (Ps) and finish (Pf) times, respectively. The Pf obtained from the creep curve coincides with the peak hardness time (tp) at the aging hardening curve. A precipitation-time-temperature (PTT) diagram of the steel can be obtained. 展开更多
关键词 CREEP ULCB ultra-low carbon bainitic steels AGING PRECIPITATION
下载PDF
Effect of Nb on the Microstructure and Properties of Cold Rolled and Annealed Mo Microalloyed Bainitic Steel
18
作者 Yi Zhang Guang Xu +2 位作者 Li Wang Yaowen Xu Zhengliang Xue 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2016年第4期52-58,共7页
Two kinds of low carbon bainitic steels,Nb-free Mo bearing and Nb + Mo addition steels,were cold rolled and annealed to investigate the effect of micro-alloying element Nb on the microstructure and properties of Mo mi... Two kinds of low carbon bainitic steels,Nb-free Mo bearing and Nb + Mo addition steels,were cold rolled and annealed to investigate the effect of micro-alloying element Nb on the microstructure and properties of Mo microalloyed low carbon high strength bainitic steel. No precipitates were observed in Nb-free Mo bearing steel,whereas,two types of precipitates,i.e.,Nb( C,N) and composite( Nb,Mo)( C,N),were observed in the Nb + Mo microalloyed steel,resulting in precipitation strengthening. The strength of Mo bearing steel was improved by addition of Nb under the same annealing conditions. The grain size of Nb addition steel was almost the same as Nb-free steel. Unlike the obvious grain refinement and precipitation strengthening in hot rolling,the increase in yield strength of Nb addition steels in cold rolling and annealing mainly results from the precipitation strengthening,while the effect of grain refinement strengthening can be almost ignored. 展开更多
关键词 RECRYSTALLIZATION ANNEALING low carbon bainitic steel NB MO cold ROLLING
下载PDF
Effect of an upward magnetic field on nanosized sulfide precipitation in ultra-low carbon steel
19
作者 Kang-jia Duan Ling Zhang +3 位作者 Xi-zhi Yuan Shan-shan Han Yu Liu Qing-song Huang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2015年第7期714-720,共7页
An induction levitation melting (ILM) refining process is performed to remove most microsized inclusions in ultra-low carbon steel (UCS). Nanosized, spheroid shaped sulfide precipitates remain dispersed in the UCS... An induction levitation melting (ILM) refining process is performed to remove most microsized inclusions in ultra-low carbon steel (UCS). Nanosized, spheroid shaped sulfide precipitates remain dispersed in the UCS. During the ILM process, the UCS is molten and is rotated under an upward magnetic field. With the addition of Ti additives, the spinning molten steel under the upward magnetic field ejects particles because of resultant centrifugal, floating, and magnetic forces. Magnetic force plays a key role in removing sub-micrometer-sized particles, composed of porous aluminum titanate enwrapping alumina nuclei. Consequently, sulfide precipitates with sizes less than 50 nan remain dispersed in the steel matrix. These findings open a path to the fabrication of clean steel or steel bearing only a nanosized strengthen- ing phase. 展开更多
关键词 ultra-low carbon steel magnetic field sulfide precipitation induction levitation TITANIUM
下载PDF
Deformation Behavior of Ultra-low Carbon Steel in Ferrite Region during Warm Processing
20
作者 徐光 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2008年第1期29-32,共4页
The hot deformation experiments of ultra-low carbon steel in ferrite range were carried out in a hot simulator in order to research hot deformation behaviors of ultra-low carbon steel in ferrite range at low temperatu... The hot deformation experiments of ultra-low carbon steel in ferrite range were carried out in a hot simulator in order to research hot deformation behaviors of ultra-low carbon steel in ferrite range at low temperature. The results show that the influences of deformation parameters on flow stress are different to those in austenitic deformation. The deformation characteristic parameters were calculated for ultra-low carbon steel in ferrite region. The flow stress equation for ultra-low carbon steel in ferritic deformation at low temperature was obtained. 展开更多
关键词 ultra-low carbon steel warm processing DEFORMATION flow stress equation
下载PDF
上一页 1 2 22 下一页 到第
使用帮助 返回顶部