Aiming at the problem of soot concentration measurement under ultra-low emission conditions,a forward small angle soot concentration measurement method is proposed.Taking a typical boiler emission of 0.1μm-3.0μm bim...Aiming at the problem of soot concentration measurement under ultra-low emission conditions,a forward small angle soot concentration measurement method is proposed.Taking a typical boiler emission of 0.1μm-3.0μm bimodal distribution soot as an object,the particle scatter simulation calculation under different parameters is carried out,and the influence of detection angle and particle size on the angular scatteringmeasurement of ultra-low emission soot is analyzed.The influence of detection angle and particle size on the angular scatteringmeasurement of ultra-lowemission soot is analyzed.Preferably,thewavelength of incident light is 650 nm,and the forward detection angle parameter is 15◦for the design of forward small angle soot concentration measurement system.An experimental system for measuring soot with standard concentration is built.Experiments of particle concentration measurement of 1.0μm and 3.0μm under ultra-low emission conditions are carried out.The results show that the average deviation of soot concentration measurement is less than 0.10 mg/m3 under the condition of ultra-low emission by using 15◦of forward detection,which provides an effective way for monitoring ultra-low emission soot concentration in coal-fired power plants.展开更多
Based on the practical experiences of Guangdong carbon emissions trading pilot, the key issues such as cap setting, allowance alloca- tion, system defects, regulatory integration and MRV mechanisms were analyzed in th...Based on the practical experiences of Guangdong carbon emissions trading pilot, the key issues such as cap setting, allowance alloca- tion, system defects, regulatory integration and MRV mechanisms were analyzed in this paper from the localization perspective. A number of solu- tions and policy recommendations were also proposed in this study in order to solve these barriers.展开更多
From the perspective of development background,concepts and related policies of ultra-low emission,according to work practice,some issues and difficulties that need to be paid attention to in the environmental impact ...From the perspective of development background,concepts and related policies of ultra-low emission,according to work practice,some issues and difficulties that need to be paid attention to in the environmental impact assessment of ultra-low-emission thermal power projects were discussed from the aspects of evaluation criteria,evaluation grade and scope,pollution control technical lines,environmental benefit accounting,and total emission control,and corresponding recommendations were put forward.展开更多
The development history and major technological innovations of the ultra-low pressure naphtha reforming technology with continuous catalyst regeneration in China were introduced.This technology had been adopted by the...The development history and major technological innovations of the ultra-low pressure naphtha reforming technology with continuous catalyst regeneration in China were introduced.This technology had been adopted by the 1.0 Mt/a CCR unit at the Guangzhou Company.The appropriate catalyst was selected to meet the demand of the unit capacity,the feedstock,and the product slate.The design parameters,including the reaction pressure,the octane number of C5+liquid product,the reaction temperature,the space velocity,the hydrogen/oil molar ratio,and the catalyst circulating rate,were chosen based on the study of process conditions and parameters.The commercial test results showed that the research octane number of C5+product reached 104 when the capacity of the CCR unit was 100%and 115%of the design value.The other technical targets attained or exceeded the expected value.展开更多
This paper presents a comparatively experimental study of nitrogen oxide (NOx) emissions from an internal combustion engine fed by gasoline available in the Saudi Arabian market rating octane number (RON 91 and RON 95...This paper presents a comparatively experimental study of nitrogen oxide (NOx) emissions from an internal combustion engine fed by gasoline available in the Saudi Arabian market rating octane number (RON 91 and RON 95) with admixtures of syngas with 0% E0, 5% E5 and 10% E10—by volume of pure ethanol—and HE5 and HE10 with water concentrations of 5%, 10%, 30% and 40%—by volume of hydrous ethanol—at stoichio-metric mixtures. An on-board plasma system used to produce syngas through the partial oxidation of gasoline with air in a plasma-assisted fuel reformer. The syngas injected in a gasoline engine with a fuel injection system modified for operation with addition of some amount of syngas. The experimental results demonstrated a significant total reduction in NOx emissions and slightly increased in fuel consumption when mixing gasoline (RON 91 and RON 95), ethanol (E5 and E10) and hydrous ethanol (HE5 and HE10) with syngas. For the use of hydrous ethanol (HE5 and HE10) along with the addition of syngas, for both RON 91 and RON 95, the lowest NOx emissions are found 72% with a water concentration of 40%.展开更多
Ultra-low emission(ULE)technology retrofits significantly impact the particulate-bound mercury(Hg)emissions from coal-fired power plants(CFPPs);however,the distribution and bioavailability of Hg in size-fractioned par...Ultra-low emission(ULE)technology retrofits significantly impact the particulate-bound mercury(Hg)emissions from coal-fired power plants(CFPPs);however,the distribution and bioavailability of Hg in size-fractioned particulate matter(PM)around the ULE-retrofitted CF-PPs are less understood.Here,total Hg and its chemical speciation in TSP(total suspended particles),PM_(10)(aerodynamic particle diameter≤10μm)and PM_(2.5)(aerodynamic particle diameter≤2.5μm)around a ULE-retrofitted CFPP in Guizhou Province were quantified.Atmospheric PM_(2.5)concentration was higher around this ULE-retrofitted CFPP than that in the intra-regional urban cities,and it had higher mass Hg concentration than other sizefractioned PM.Total Hg concentrations in PM had multifarious sources including CFPP,vehicle exhaust and biomass combustion,while they were significantly higher in autumn and winter than those in other seasons(P<0.05).Regardless of particulate size,atmospheric PM-bound Hg had lower residual fractions(<21%)while higher HCl-soluble fractions(>40%).Mass concentrations of exchangeable,HCl-soluble,elemental,and residual Hg in PM_(2.5)were higher than those in other size-fractioned PM,and were markedly elevated in autumn and winter(P<0.05).In PM_(2.5),HCl-soluble Hg presented a significantly positive relationship with elemental Hg(P<0.05),while residual Hg showed the significantly positive relationships with HCl-soluble Hg and elemental Hg(P<0.01).Overall,these results suggested that atmospheric PM-bound Hg around the ULE-retrofitted CFPP tends to accumulate in finer PM,and has higher bioavailable fractions,while has potential transformation between chemical speciation.展开更多
As an active trader in international crude oil and petroleum product markets, Australia's human welfare is affected by oil crisis and contagion from the perspectives of economic growth, income inequality, and environ...As an active trader in international crude oil and petroleum product markets, Australia's human welfare is affected by oil crisis and contagion from the perspectives of economic growth, income inequality, and environmental sustainability. This paper investigates the impacts of oil price shocks upon Australia's gross domestic product (GDP) growth, Gini coefficients, and carbon dioxide emissions per capita from 1970 to 2012 with yearly frequency. Hypotheses concerning whether Australia's economic immunity against oil crisis is affected after the deregulation of oil market and whether endogenous oil price shocks account for more variations in human welfare than exogenous oil price shocks are tested. The methodologies include a theoretic model and a series of econometric tests. For the short-run dynamics, oil price is integrated into the model both linearly and non-linearly. Oil price shocks are categorized into exogenous and endogenous shocks. The conclusions are that inflated oil prices exert mainly non-linear negative impacts upon human welfare indicators and exogenous shocks induce endogenous shocks through labor price, Consumer Price Index (CPI), interest rate, and exchange rate. For the long-run equilibrium, non-linear shocks' effects decay more slowly than linear shocks and the impacts of endogenous shocks last longer than that of exogenous shocks. Finally, oil market policies are evaluated and proposed.展开更多
A new photovoltaic-thermochemical(PVTC) conceptual system integrating photon-enhanced thermionic emission(PETE) and methane steam reforming is proposed. Major novelty of the system lies in its potential adaptivity to ...A new photovoltaic-thermochemical(PVTC) conceptual system integrating photon-enhanced thermionic emission(PETE) and methane steam reforming is proposed. Major novelty of the system lies in its potential adaptivity to primary fuels(e.g. methane) and high efficiencies of photovoltaic and thermochemical power generation, both of which result from its operation at much elevated temperatures(700–1000 °C)compared with conventional photovoltaic-thermal(PVT) systems. Analysis shows that an overall power generation efficiency of 45.3% and a net solar-to-electric efficiency of 39.1% could be reached at an operating temperature of 750 °C, after considering major losses during solar energy capture and conversion processes. The system is also featured by high solar share(37%) in the total power output, as well as high energy storage capability and very low CO_2 emissions, both enabled by the integration of methane reforming with photovoltaic generation at high temperatures.展开更多
The iron and steel industry is not only an important foundation of the national economy,but also the largest source of industrial air pollution.Due to the current status of emissions in the iron and steel industry,ult...The iron and steel industry is not only an important foundation of the national economy,but also the largest source of industrial air pollution.Due to the current status of emissions in the iron and steel industry,ultra-low pollutant emission control technology has been researched and developed.Liquid-phase proportion control technology has been developed for magnesian fluxed pellets,and a blast furnace smelting demonstration project has been established to use a high proportion of fluxed pellets(80%)for the first time in China to realize source emission reduction of SO_(2)and NO_(x).Based on the characteristics of high NO_(x)concentrations and the coexistence of multiple pollutants in coke oven flue gas,low-NO_(x)combustion coupled with multi-pollutant cooperative control technology with activated carbon was developed to achieve efficient removal of multiple pollutants and resource utilization of sulfur.Based on the characteristics of co-existing multiple pollutants in pellet flue gas,selective non-catalytic reduction(SNCR)coupled with ozone oxidation and spray drying adsorption(SDA)was developed,which significantly reduces the operating cost of the system.In the light of the high humidity and high alkalinity in flue gas,filter materials with high humidity resistance and corrosion resistance were manufactured,and an integrated pre-charged bag dust collector device was developed,which realized ultralow emission of fine particles and reduced filtration resistance and energy consumption in the system.Through source emission reduction,process control and end-treatment technologies,five demonstration projects were built,providing a full set of technical solutions for ultra-low emissions of dust,SO_(2),NO_(x),SO_(3),mercury and other pollutants,and offering technical support for the green development of the iron and steel industry.展开更多
Since China's reform and opening-up in 1978,rapid urbanization has coincided with a surge in carbon emissions.Statistical,geospatial,and time-series analysis methods were utilized to examine the dynamic relationsh...Since China's reform and opening-up in 1978,rapid urbanization has coincided with a surge in carbon emissions.Statistical,geospatial,and time-series analysis methods were utilized to examine the dynamic relationship between urbanization and carbon emissions over the past 43 years;elucidate the mechanisms through which dimensions of urbanization,such as population,land,economy,and green development,impact carbon emissions at various stages;and further explore the heterogeneity among cities of different scales.The analysis reveals that 2001 and 2011 represent significant turning points in China's carbon emission growth“S”curve.The phase of rapid carbon emissions growth is associated with an increase in the urbanization rate from 40% to 50%,a shift in industrial structure from being dominated by secondary industry to tertiary industry,and a decrease in urban population density from 19,600 to 16,000 people per square kilometer of built-up area.Regions northeast of the“Bayannur-Ningde Line”have experienced rapid increases in carbon emissions,with large and medium-sized cities being the primary contributors nationwide.The TVP-VAR results indicate that higher urbanization rates have short-term carbon and mid-to long-term carbon-reducing effects.Population concentration in large cities facilitates short-to mid-term carbon reduction,whereas intensive urban development,industrial upgrading,and the promotion of clean energy use have sustained carbon-reducing effects.Carbon emissions exhibit path dependence.Increased urbanization rates in mega-cities and super-cities result in carbon-increasing effects,whereas the optimization of industrial structures exerts an inhibitory effect on carbon emissions in medium-sized and large cities.The changes in impulse response values of various variables are influenced by the developmental trajectory of Chinese cities from“small to large and then to agglomerations.”These recommendations indicate the necessity for differentiated emission reduction strategies contingent on the specific regions and types of cities in question.展开更多
Restructuring of China's energy mix is accelerating due to factors such as energy security,economic cost,climate change and environmental pressure.Efficient and clean utilization of coal-generated power therefore ...Restructuring of China's energy mix is accelerating due to factors such as energy security,economic cost,climate change and environmental pressure.Efficient and clean utilization of coal-generated power therefore plays an increasingly important role in solving energy and environmental problems in China.Coal-fired power plants,with Shenhua Guohua Sanhe as one of the pioneers,followed trend of this era and adopted multiple ultra-low emission and energy efficient technologies,striving to be an industry leader in environmental protection,profitability and innovation.As a result,coal-fired power plants have seen ultra-low emissions of air pollutants and record-high energy efficiency,opening up a new era of more efficient and cleaner coal generation.By the end of 2015,Shenhua Group had had 45 ultra-low emission coal units,providing strong support for implementing of the national policy on ultra-low emission and energy efficient retrofit of coal-fired power plants across China.展开更多
To make coal-fired power generation more environmentally friendly,China has initiated a series of ultra-low emission ret-rofits to the air pollution control(APC)system of the existing power plants.In this study,a life...To make coal-fired power generation more environmentally friendly,China has initiated a series of ultra-low emission ret-rofits to the air pollution control(APC)system of the existing power plants.In this study,a life cycle assessment(LCA)is conducted to analyze the environmental net benefits for the typical ultra-low emission retrofit of a 1000 MW power plant.The key processes,substances,and APC devices are verified and discussed.The results confirm that the retrofit effectively decreases the environmental stress of acidification potential(AP),eutrophication potential(EP),and photochemical ozone creation potential(POCP)by 69%-79%,which can be attributed to significantly reduced emissions at the stack.However,the retrofit has also increased other impact categories by 24%-79%,primarily due to the consumption of additional elec-tricity and adsorbents.The retrofit of selective catalytic reduction,electrostatic precipitator(ESP),and wet limestone flue gas desulfurization devices has a dominant effect on the impacts of EP,human toxicity potential(HTP),and AP.A newly installed wet ESP shows some environmental benefits(only for AP),but causes considerable burdens,in particular for the investigated impact categories global warming potential(GWP),marine aquatic ecotoxicity(MAETP),and abiotic depletion fossil(ADP fossil).The obtained results indicate that the hidden environmental consequences,which are associated with the production of energy and materials,need to be examined more comprehensively to inform the development of ultra-low emission technologies and strategies effectively.展开更多
基金This research was supported by National Key Research and Development Program of China(2016YFB0600601)National Natural Science Foundation of China(51806144).
文摘Aiming at the problem of soot concentration measurement under ultra-low emission conditions,a forward small angle soot concentration measurement method is proposed.Taking a typical boiler emission of 0.1μm-3.0μm bimodal distribution soot as an object,the particle scatter simulation calculation under different parameters is carried out,and the influence of detection angle and particle size on the angular scatteringmeasurement of ultra-low emission soot is analyzed.The influence of detection angle and particle size on the angular scatteringmeasurement of ultra-lowemission soot is analyzed.Preferably,thewavelength of incident light is 650 nm,and the forward detection angle parameter is 15◦for the design of forward small angle soot concentration measurement system.An experimental system for measuring soot with standard concentration is built.Experiments of particle concentration measurement of 1.0μm and 3.0μm under ultra-low emission conditions are carried out.The results show that the average deviation of soot concentration measurement is less than 0.10 mg/m3 under the condition of ultra-low emission by using 15◦of forward detection,which provides an effective way for monitoring ultra-low emission soot concentration in coal-fired power plants.
基金Supported by the Guangdong Province Social Science Fund(NoGD11CYJ11)the Low Carbon Special Project of Guangdong Province in 2012(No.2012-044)
文摘Based on the practical experiences of Guangdong carbon emissions trading pilot, the key issues such as cap setting, allowance alloca- tion, system defects, regulatory integration and MRV mechanisms were analyzed in this paper from the localization perspective. A number of solu- tions and policy recommendations were also proposed in this study in order to solve these barriers.
基金Supported by Special Project for Research on Prevention and Control of Air Pollution from Fire Coal in 2018 of Ministry of Ecology and Environment of the People’s Republic of China(2018A030)
文摘From the perspective of development background,concepts and related policies of ultra-low emission,according to work practice,some issues and difficulties that need to be paid attention to in the environmental impact assessment of ultra-low-emission thermal power projects were discussed from the aspects of evaluation criteria,evaluation grade and scope,pollution control technical lines,environmental benefit accounting,and total emission control,and corresponding recommendations were put forward.
基金Financial support form the SINOPEC Research Program(No.107025)
文摘The development history and major technological innovations of the ultra-low pressure naphtha reforming technology with continuous catalyst regeneration in China were introduced.This technology had been adopted by the 1.0 Mt/a CCR unit at the Guangzhou Company.The appropriate catalyst was selected to meet the demand of the unit capacity,the feedstock,and the product slate.The design parameters,including the reaction pressure,the octane number of C5+liquid product,the reaction temperature,the space velocity,the hydrogen/oil molar ratio,and the catalyst circulating rate,were chosen based on the study of process conditions and parameters.The commercial test results showed that the research octane number of C5+product reached 104 when the capacity of the CCR unit was 100%and 115%of the design value.The other technical targets attained or exceeded the expected value.
文摘This paper presents a comparatively experimental study of nitrogen oxide (NOx) emissions from an internal combustion engine fed by gasoline available in the Saudi Arabian market rating octane number (RON 91 and RON 95) with admixtures of syngas with 0% E0, 5% E5 and 10% E10—by volume of pure ethanol—and HE5 and HE10 with water concentrations of 5%, 10%, 30% and 40%—by volume of hydrous ethanol—at stoichio-metric mixtures. An on-board plasma system used to produce syngas through the partial oxidation of gasoline with air in a plasma-assisted fuel reformer. The syngas injected in a gasoline engine with a fuel injection system modified for operation with addition of some amount of syngas. The experimental results demonstrated a significant total reduction in NOx emissions and slightly increased in fuel consumption when mixing gasoline (RON 91 and RON 95), ethanol (E5 and E10) and hydrous ethanol (HE5 and HE10) with syngas. For the use of hydrous ethanol (HE5 and HE10) along with the addition of syngas, for both RON 91 and RON 95, the lowest NOx emissions are found 72% with a water concentration of 40%.
基金supported by the Science and Technology Project of Guizhou Province(No.QKHJC[2020]1Y187)the National Natural Science Foundation of China(Nos.41265008,42007305,and 22166009)。
文摘Ultra-low emission(ULE)technology retrofits significantly impact the particulate-bound mercury(Hg)emissions from coal-fired power plants(CFPPs);however,the distribution and bioavailability of Hg in size-fractioned particulate matter(PM)around the ULE-retrofitted CF-PPs are less understood.Here,total Hg and its chemical speciation in TSP(total suspended particles),PM_(10)(aerodynamic particle diameter≤10μm)and PM_(2.5)(aerodynamic particle diameter≤2.5μm)around a ULE-retrofitted CFPP in Guizhou Province were quantified.Atmospheric PM_(2.5)concentration was higher around this ULE-retrofitted CFPP than that in the intra-regional urban cities,and it had higher mass Hg concentration than other sizefractioned PM.Total Hg concentrations in PM had multifarious sources including CFPP,vehicle exhaust and biomass combustion,while they were significantly higher in autumn and winter than those in other seasons(P<0.05).Regardless of particulate size,atmospheric PM-bound Hg had lower residual fractions(<21%)while higher HCl-soluble fractions(>40%).Mass concentrations of exchangeable,HCl-soluble,elemental,and residual Hg in PM_(2.5)were higher than those in other size-fractioned PM,and were markedly elevated in autumn and winter(P<0.05).In PM_(2.5),HCl-soluble Hg presented a significantly positive relationship with elemental Hg(P<0.05),while residual Hg showed the significantly positive relationships with HCl-soluble Hg and elemental Hg(P<0.01).Overall,these results suggested that atmospheric PM-bound Hg around the ULE-retrofitted CFPP tends to accumulate in finer PM,and has higher bioavailable fractions,while has potential transformation between chemical speciation.
文摘As an active trader in international crude oil and petroleum product markets, Australia's human welfare is affected by oil crisis and contagion from the perspectives of economic growth, income inequality, and environmental sustainability. This paper investigates the impacts of oil price shocks upon Australia's gross domestic product (GDP) growth, Gini coefficients, and carbon dioxide emissions per capita from 1970 to 2012 with yearly frequency. Hypotheses concerning whether Australia's economic immunity against oil crisis is affected after the deregulation of oil market and whether endogenous oil price shocks account for more variations in human welfare than exogenous oil price shocks are tested. The methodologies include a theoretic model and a series of econometric tests. For the short-run dynamics, oil price is integrated into the model both linearly and non-linearly. Oil price shocks are categorized into exogenous and endogenous shocks. The conclusions are that inflated oil prices exert mainly non-linear negative impacts upon human welfare indicators and exogenous shocks induce endogenous shocks through labor price, Consumer Price Index (CPI), interest rate, and exchange rate. For the long-run equilibrium, non-linear shocks' effects decay more slowly than linear shocks and the impacts of endogenous shocks last longer than that of exogenous shocks. Finally, oil market policies are evaluated and proposed.
基金supported by the National Key Research and Development Program of China (2016YFB0901401)the National Natural Science Foundation of China (51676189)the Chinese Academy of Sciences Frontier Science Key Research Project (QYZDY-SSW-JSC036)
文摘A new photovoltaic-thermochemical(PVTC) conceptual system integrating photon-enhanced thermionic emission(PETE) and methane steam reforming is proposed. Major novelty of the system lies in its potential adaptivity to primary fuels(e.g. methane) and high efficiencies of photovoltaic and thermochemical power generation, both of which result from its operation at much elevated temperatures(700–1000 °C)compared with conventional photovoltaic-thermal(PVT) systems. Analysis shows that an overall power generation efficiency of 45.3% and a net solar-to-electric efficiency of 39.1% could be reached at an operating temperature of 750 °C, after considering major losses during solar energy capture and conversion processes. The system is also featured by high solar share(37%) in the total power output, as well as high energy storage capability and very low CO_2 emissions, both enabled by the integration of methane reforming with photovoltaic generation at high temperatures.
基金supported by the National Key R&D Program of China(Nos.2017YFC0210600 and 2019YFC0214803)。
文摘The iron and steel industry is not only an important foundation of the national economy,but also the largest source of industrial air pollution.Due to the current status of emissions in the iron and steel industry,ultra-low pollutant emission control technology has been researched and developed.Liquid-phase proportion control technology has been developed for magnesian fluxed pellets,and a blast furnace smelting demonstration project has been established to use a high proportion of fluxed pellets(80%)for the first time in China to realize source emission reduction of SO_(2)and NO_(x).Based on the characteristics of high NO_(x)concentrations and the coexistence of multiple pollutants in coke oven flue gas,low-NO_(x)combustion coupled with multi-pollutant cooperative control technology with activated carbon was developed to achieve efficient removal of multiple pollutants and resource utilization of sulfur.Based on the characteristics of co-existing multiple pollutants in pellet flue gas,selective non-catalytic reduction(SNCR)coupled with ozone oxidation and spray drying adsorption(SDA)was developed,which significantly reduces the operating cost of the system.In the light of the high humidity and high alkalinity in flue gas,filter materials with high humidity resistance and corrosion resistance were manufactured,and an integrated pre-charged bag dust collector device was developed,which realized ultralow emission of fine particles and reduced filtration resistance and energy consumption in the system.Through source emission reduction,process control and end-treatment technologies,five demonstration projects were built,providing a full set of technical solutions for ultra-low emissions of dust,SO_(2),NO_(x),SO_(3),mercury and other pollutants,and offering technical support for the green development of the iron and steel industry.
基金National Fund of Philosophy and Social Science of China,No.20ZDA156。
文摘Since China's reform and opening-up in 1978,rapid urbanization has coincided with a surge in carbon emissions.Statistical,geospatial,and time-series analysis methods were utilized to examine the dynamic relationship between urbanization and carbon emissions over the past 43 years;elucidate the mechanisms through which dimensions of urbanization,such as population,land,economy,and green development,impact carbon emissions at various stages;and further explore the heterogeneity among cities of different scales.The analysis reveals that 2001 and 2011 represent significant turning points in China's carbon emission growth“S”curve.The phase of rapid carbon emissions growth is associated with an increase in the urbanization rate from 40% to 50%,a shift in industrial structure from being dominated by secondary industry to tertiary industry,and a decrease in urban population density from 19,600 to 16,000 people per square kilometer of built-up area.Regions northeast of the“Bayannur-Ningde Line”have experienced rapid increases in carbon emissions,with large and medium-sized cities being the primary contributors nationwide.The TVP-VAR results indicate that higher urbanization rates have short-term carbon and mid-to long-term carbon-reducing effects.Population concentration in large cities facilitates short-to mid-term carbon reduction,whereas intensive urban development,industrial upgrading,and the promotion of clean energy use have sustained carbon-reducing effects.Carbon emissions exhibit path dependence.Increased urbanization rates in mega-cities and super-cities result in carbon-increasing effects,whereas the optimization of industrial structures exerts an inhibitory effect on carbon emissions in medium-sized and large cities.The changes in impulse response values of various variables are influenced by the developmental trajectory of Chinese cities from“small to large and then to agglomerations.”These recommendations indicate the necessity for differentiated emission reduction strategies contingent on the specific regions and types of cities in question.
文摘Restructuring of China's energy mix is accelerating due to factors such as energy security,economic cost,climate change and environmental pressure.Efficient and clean utilization of coal-generated power therefore plays an increasingly important role in solving energy and environmental problems in China.Coal-fired power plants,with Shenhua Guohua Sanhe as one of the pioneers,followed trend of this era and adopted multiple ultra-low emission and energy efficient technologies,striving to be an industry leader in environmental protection,profitability and innovation.As a result,coal-fired power plants have seen ultra-low emissions of air pollutants and record-high energy efficiency,opening up a new era of more efficient and cleaner coal generation.By the end of 2015,Shenhua Group had had 45 ultra-low emission coal units,providing strong support for implementing of the national policy on ultra-low emission and energy efficient retrofit of coal-fired power plants across China.
基金This project is supported by the Chinese National Key R&D Program(No.2018YFB0605205)the Zhejiang Provincial Natural Science Foundation(Grant No.LQ21E060001).
文摘To make coal-fired power generation more environmentally friendly,China has initiated a series of ultra-low emission ret-rofits to the air pollution control(APC)system of the existing power plants.In this study,a life cycle assessment(LCA)is conducted to analyze the environmental net benefits for the typical ultra-low emission retrofit of a 1000 MW power plant.The key processes,substances,and APC devices are verified and discussed.The results confirm that the retrofit effectively decreases the environmental stress of acidification potential(AP),eutrophication potential(EP),and photochemical ozone creation potential(POCP)by 69%-79%,which can be attributed to significantly reduced emissions at the stack.However,the retrofit has also increased other impact categories by 24%-79%,primarily due to the consumption of additional elec-tricity and adsorbents.The retrofit of selective catalytic reduction,electrostatic precipitator(ESP),and wet limestone flue gas desulfurization devices has a dominant effect on the impacts of EP,human toxicity potential(HTP),and AP.A newly installed wet ESP shows some environmental benefits(only for AP),but causes considerable burdens,in particular for the investigated impact categories global warming potential(GWP),marine aquatic ecotoxicity(MAETP),and abiotic depletion fossil(ADP fossil).The obtained results indicate that the hidden environmental consequences,which are associated with the production of energy and materials,need to be examined more comprehensively to inform the development of ultra-low emission technologies and strategies effectively.