The heating load simulation models of the residential buildings in Lhasa are established for enhancing the space organization’s adaptability to climate and radiation and improving its energy saving performance.The sp...The heating load simulation models of the residential buildings in Lhasa are established for enhancing the space organization’s adaptability to climate and radiation and improving its energy saving performance.The space organization items a e analyzed for both the existing buildings without insulation and new buildings with good insulation.The items include orientation design,south a d north balcony design,the north and south partition wall’s position design,storey height design and window-wall ratio design.Simulation results show that orientation is the key design element for energy saving design,and adverse orientation can obviouslyincrease heating energy consumption;south and north balconies can reduce winter heating energy consumption;partition walls move to the north,which means that the south room’s big depth design leads to less heating energy consumption,but the effect is not inconspicuous;smaier storey height results in less heating load.For the existing buildings,the window-wall ratio of south side has a balance point for energy saving design in the calculation condition.For the new buildings with good insulation,enlarging the south window-wal ratio can continuously reduce heating energy consumption,but the energy saving rate between models gets smaier.The heating energy consumption comparison study between the common model and optimal space design model demonstrates that the energy saving design can significantly reduce heating energy consumption展开更多
Carbon emissions mainly result from energy consumption. Carbon emissions inevitably will increase to some extent with economic expansion and rising energy consumption. We introduce a gray theory of quantitative analys...Carbon emissions mainly result from energy consumption. Carbon emissions inevitably will increase to some extent with economic expansion and rising energy consumption. We introduce a gray theory of quantitative analysis of the energy consumption of residential buildings in Chongqing,China,on the impact of carbon emission factors. Three impacts are analyzed,namely per capita residential housing area,domestic water consumption and the rate of air conditioner ownership per 100 urban households. The gray prediction model established using the Chongqing carbon emission-residential building energy consumption forecast model is sufficiently accurate to achieve a measure of feasibility and applicability.展开更多
In the present article thermal and electrical energy consumptions for different types of buildings are analyzed. The latitude and longitude of the researched area are defined 59?00'N and 26?00'E. According to ...In the present article thermal and electrical energy consumptions for different types of buildings are analyzed. The latitude and longitude of the researched area are defined 59?00'N and 26?00'E. According to K?ppen climate classification the area is located in warm summer continental climate. The study consist 40 residential, 7 educational and 44 public buildings. Three years data for each building type among 2006-2011 was used. Several detailed energy balances are presented for apartment buildings. In addition the different ways of domestic hot water preparation are analyzed for apartment buildings. The school buildings average consumption values are represented in study. Also valuable information of measured electrical energy consumption balance for a new office building is presented. Finally there is included the energy consumption analysis of public buildings.展开更多
In the context of the new period,the living standards and comfort demands of rural residents are increasing,which promotes the continuous growth of the total energy consumption of rural residential buildings.In this s...In the context of the new period,the living standards and comfort demands of rural residents are increasing,which promotes the continuous growth of the total energy consumption of rural residential buildings.In this study,it estimated the total energy consumption of rural residential buildings in 30 provinces(or cities)in China from 2004 to 2016.Through the division of climate regions of the residential buildings,this paper analyzed the characteristics of changes in the energy structure of residential buildings and the trend of energy consumption from the perspective of the province.Then based on the people s livelihood and from the perspective of development,it came up with some pertinent strategies and recommendations for energy saving and emission reduction in rural residential buildings.展开更多
China is currently going through a phase of rapid mass urbanisation, and it is important to investigate how the growing built environment will cope with climate change, to see how the energy consumption of buildings i...China is currently going through a phase of rapid mass urbanisation, and it is important to investigate how the growing built environment will cope with climate change, to see how the energy consumption of buildings in China will be affected. This is especially important for the fast-growing cities in the north, and around the east and south coasts. This paper aims to study the effects of future climate change on the energy consumption of buildings in the three main climate regions of China, namely the “Cold” region in the north, which includes Beijing;the “Hot Summer Cold Winter” region in the east, which includes cities such as Shanghai and Ningbo;and the “Hot Summer Mild Winter” region in the south, which includes Guangzhou. Using data from the climate model, HadCM3, Test Reference Years are generated for the 2020s, 2050s and 2080s, for various IPCC future scenarios. These are then used to access the energy performance of typical existing buildings, and also the effects of retrofitting them to the standard of the current building codes. It was found that although there are reductions in energy consumption for heating and cooling with retrofitting existing residential buildings to the current standard, the actual effects are very small compared with the extra energy consumption that comes as a result of future climate change. This is especially true for Guangzhou, which currently have very little heating load, so there is little benefit of the reduction in heating demand from climate change. The effects of retrofitting in Beijing are also limited, and only in Ningbo was the effect of retrofitting able to nullify the effects of climate change up to 2020s. More improvements in building standards in all three regions are required to significantly reduce the effects of future climate change, especially to beyond 2020s.展开更多
Riyadh city is the fastest growing city in Saudi Arabia. The rapid urban growth that happened recently in Riyadh was not based on the traditional urban planning principles, which have been established and applied for ...Riyadh city is the fastest growing city in Saudi Arabia. The rapid urban growth that happened recently in Riyadh was not based on the traditional urban planning principles, which have been established and applied for the city development process. The imported building regulations have created a new urban structures and street patterns. The contemporary urban form in Riyadh city is based mainly on traffic and economic consideration with the neglect of environmental dimensions. This research aims to examine the impacts of building regulations on the thermal performance of residential buildings in Riyadh city, with the ultimate goal of establishing planning guidelines that consider the environmental conditions of the city. The methodology adopted for achieving the aim of this study consists of two phases. First, the literature related to building regulations development in Riyadh, as of 2018, was reviewed. Second, buildings energy simulation was conducted to examine the thermal performance of the typical current status of residential building blocks in Riyadh city, and then several changes to building regulations were made to investigate their impacts on the thermal performance of buildings. The results showed that the impacts of Riyadh building regulations on the thermal performance of residential buildings differ across the evaluated cases. The ratio of building height to street width, urban block street orientation, and building orientation are the main factors affecting thermal performance of buildings within urban block. The study also concludes that adjusting the ratio of building height to the distance between buildings could have a significant impact in reducing cooling loads. This study will help policy makers, planners and designers to investigate the shortcoming in the current building regulations.展开更多
With the continuous development of science and technology and the gradual improvement of modem building technology, people pay more and more attention to the introduction of advanced technology in architectural design...With the continuous development of science and technology and the gradual improvement of modem building technology, people pay more and more attention to the introduction of advanced technology in architectural design, such as the application of intelligent technology. With the increasingly severe environmental situation, people are increasingly demanding the environmental performance and green performance of buildings. The establishment of ultra-low energy consumption passive buildings has become one of the key construction contents of construction projects. This paper mainly analyzes the design points and architectural forms of related buildings from the perspective of intelligent control.展开更多
San Antonio, Texas is the seventh largest city in the United States with a population of 1.4 million people, and ranked among the fastest growing cities. To assess the implications of past and present building practic...San Antonio, Texas is the seventh largest city in the United States with a population of 1.4 million people, and ranked among the fastest growing cities. To assess the implications of past and present building practices within the residential sector on future energy consumption, the energy utilization of single-family attached homes (SFAH) in Bexar County, Texas is studied. The available dataset includes 3932 SFAH records representing about 33% of the total number of SFAHs within the county. The study is based on pairing and analyzing data at the individual building level from a variety of sources including the buildings’ physical characteristics, access to fuels, and monthly energy consumption. The results indicate that the area of conditioned space, presence of swimming pools, number of stories, presence of fireplaces, fuel-type, and number of shared walls are a significant factor on the energy consumption of single-family attached homes. In terms of energy consumption, all-electric two-story homes sharing two walls are the most energy efficient among SFAHs. This study can aid comprehensive master planning efforts for developing sustainable communities by highlighting key features of SFAHs and making the case for higher density housing as a viable and more energy efficient alternative to single-family detached homes (SFDH).展开更多
Studies on urban energy have been growing in interest,and past research has mostly been focused on studies of urban solar potential or urban building energy consumption independently.However,holistic research on the c...Studies on urban energy have been growing in interest,and past research has mostly been focused on studies of urban solar potential or urban building energy consumption independently.However,holistic research on the combination of urban building energy consumption and solar potential at the urban block-scale is required in order to minimize energy use and maximize solar power generation simultaneously.The aim of this study is to comprehensively evaluate the impact of urban morphological factors on photovoltaic(PV)potential and building energy consumption.Firstly,58 residential blocks were classified into 6 categories by k-means clustering.Secondly,3 energy performance factors,which include the energy use intensity(EUI),the energy use intensity combined with PV potential(EUI-PV),and photovoltaic substitution rate(PSR)were calculated for these blocks.The study found that the EUI of the Small Length&High Height blocks was the lowest at around 30 kWh/(m^(2)·y),while the EUI-PV of the Small Length&Low Height blocks was the lowest at around 4.45 kWh/(m^(2)·y),and their PSR was the highest at 87%.Regression modelling was carried out,and the study concluded that the EUI of residential blocks was mainly affected by shape factor,building density and floor area ratio,while EUI-PV and PSR were mainly affected by height and sky view factor.In this study,the results and developed methodology are helpful to provide recommendations and strategies for sustainable planning of residential blocks in central China.展开更多
As the national buildings in each climate zone and passive low energy consumption building demonstration projects expand,there has been a wave of innovation across the construction industry.China is also becoming a ho...As the national buildings in each climate zone and passive low energy consumption building demonstration projects expand,there has been a wave of innovation across the construction industry.China is also becoming a hot zone for energy-efficient and high-performance passive buildings.Along with the traditional passive building structure,steel structure passive construction,assembled PC structure passive construction such as the emergence of various types of passive construction,as well as a variety of new building materials,doors and Windows,and air conditioning air equipment,put forward a new challenge for building electrical engineering design personnel and requirements.展开更多
A smart city incorporates infrastructure methods that are environmentally responsible,such as smart communications,smart grids,smart energy,and smart buildings.The city administration has prioritized the use of cuttin...A smart city incorporates infrastructure methods that are environmentally responsible,such as smart communications,smart grids,smart energy,and smart buildings.The city administration has prioritized the use of cutting-edge technology and informatics as the primary strategy for enhancing service quality,with energy resources taking precedence.To achieve optimal energy management in themultidimensional system of a city tribe,it is necessary not only to identify and study the vast majority of energy elements,but also to define their implicit interdependencies.This is because optimal energy management is required to reach this objective.The lighting index is an essential consideration when evaluating the comfort indicators.In order to realize the concept of a smart city,the primary objective of this research is to create a system for managing and monitoring the lighting index.It is possible to identify two distinct phaseswithin the intelligent system.Once data collection concludes,the monitoring system will be activated.In the second step,the operation of the control system is analyzed and its effect on the performance of the numerical model is determined.This evaluation is based on the proposed methodology.The optimized resultswere deemed satisfactory because they maintained the brightness index value(79%)while consuming less energy.The intelligent implementation system generated satisfactory outcomes,which were observed 1.75 times on average.展开更多
The role that occupants have on energy consumption and performance of buildings is known,but still requires a great deal of research.In this paper,the most common techniques to detect occupancy and occupant behavior i...The role that occupants have on energy consumption and performance of buildings is known,but still requires a great deal of research.In this paper,the most common techniques to detect occupancy and occupant behavior in buildings are categorized with their advantages and disadvantages.Being the buildings characterized by different energy usage,the presentation of the studies that applied surveys and monitoring campaigns is conducted with differentiation between residential and office buildings.展开更多
The research presents an improved method of rational design of energy-efficient low-rise residential buildings according to their life cycle. The mathematical model for finding the optimal version of draft power-effic...The research presents an improved method of rational design of energy-efficient low-rise residential buildings according to their life cycle. The mathematical model for finding the optimal version of draft power-efficient residential building has been developed. For conditions of Ukraine the optimization problem has been set and solved (finding the optimal version of the draft energy-efficient buildings). The calculations prove the fact that the construction of passive houses in Ukraine today is economically feasible. Scientific and practical regulations, outlined in the research, can be used by all participants of the investment programs, and energy-efficiency projects, renovation projects and developing normative-technical documents.展开更多
基金The National Natural Science Foundation of China(No.51608426,51590913)the Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry(No.(2014)1685)
文摘The heating load simulation models of the residential buildings in Lhasa are established for enhancing the space organization’s adaptability to climate and radiation and improving its energy saving performance.The space organization items a e analyzed for both the existing buildings without insulation and new buildings with good insulation.The items include orientation design,south a d north balcony design,the north and south partition wall’s position design,storey height design and window-wall ratio design.Simulation results show that orientation is the key design element for energy saving design,and adverse orientation can obviouslyincrease heating energy consumption;south and north balconies can reduce winter heating energy consumption;partition walls move to the north,which means that the south room’s big depth design leads to less heating energy consumption,but the effect is not inconspicuous;smaier storey height results in less heating load.For the existing buildings,the window-wall ratio of south side has a balance point for energy saving design in the calculation condition.For the new buildings with good insulation,enlarging the south window-wal ratio can continuously reduce heating energy consumption,but the energy saving rate between models gets smaier.The heating energy consumption comparison study between the common model and optimal space design model demonstrates that the energy saving design can significantly reduce heating energy consumption
基金Project(50838009) supported by the National Natural Science Foundation of ChinaProjects(2006BAJ02A09,2006BAJ01A13-2) supported by the National Key Technologies R & D Program of China
文摘Carbon emissions mainly result from energy consumption. Carbon emissions inevitably will increase to some extent with economic expansion and rising energy consumption. We introduce a gray theory of quantitative analysis of the energy consumption of residential buildings in Chongqing,China,on the impact of carbon emission factors. Three impacts are analyzed,namely per capita residential housing area,domestic water consumption and the rate of air conditioner ownership per 100 urban households. The gray prediction model established using the Chongqing carbon emission-residential building energy consumption forecast model is sufficiently accurate to achieve a measure of feasibility and applicability.
文摘In the present article thermal and electrical energy consumptions for different types of buildings are analyzed. The latitude and longitude of the researched area are defined 59?00'N and 26?00'E. According to K?ppen climate classification the area is located in warm summer continental climate. The study consist 40 residential, 7 educational and 44 public buildings. Three years data for each building type among 2006-2011 was used. Several detailed energy balances are presented for apartment buildings. In addition the different ways of domestic hot water preparation are analyzed for apartment buildings. The school buildings average consumption values are represented in study. Also valuable information of measured electrical energy consumption balance for a new office building is presented. Finally there is included the energy consumption analysis of public buildings.
基金Student s Platform for Innovation and Entrepreneurship Training Program at State Level,the Ministry of Education of China(201910414024)Student s Platform for Innovation and Entrepreneurship Training Program at State Level,the Ministry of Education of China(201910414012).
文摘In the context of the new period,the living standards and comfort demands of rural residents are increasing,which promotes the continuous growth of the total energy consumption of rural residential buildings.In this study,it estimated the total energy consumption of rural residential buildings in 30 provinces(or cities)in China from 2004 to 2016.Through the division of climate regions of the residential buildings,this paper analyzed the characteristics of changes in the energy structure of residential buildings and the trend of energy consumption from the perspective of the province.Then based on the people s livelihood and from the perspective of development,it came up with some pertinent strategies and recommendations for energy saving and emission reduction in rural residential buildings.
文摘China is currently going through a phase of rapid mass urbanisation, and it is important to investigate how the growing built environment will cope with climate change, to see how the energy consumption of buildings in China will be affected. This is especially important for the fast-growing cities in the north, and around the east and south coasts. This paper aims to study the effects of future climate change on the energy consumption of buildings in the three main climate regions of China, namely the “Cold” region in the north, which includes Beijing;the “Hot Summer Cold Winter” region in the east, which includes cities such as Shanghai and Ningbo;and the “Hot Summer Mild Winter” region in the south, which includes Guangzhou. Using data from the climate model, HadCM3, Test Reference Years are generated for the 2020s, 2050s and 2080s, for various IPCC future scenarios. These are then used to access the energy performance of typical existing buildings, and also the effects of retrofitting them to the standard of the current building codes. It was found that although there are reductions in energy consumption for heating and cooling with retrofitting existing residential buildings to the current standard, the actual effects are very small compared with the extra energy consumption that comes as a result of future climate change. This is especially true for Guangzhou, which currently have very little heating load, so there is little benefit of the reduction in heating demand from climate change. The effects of retrofitting in Beijing are also limited, and only in Ningbo was the effect of retrofitting able to nullify the effects of climate change up to 2020s. More improvements in building standards in all three regions are required to significantly reduce the effects of future climate change, especially to beyond 2020s.
文摘Riyadh city is the fastest growing city in Saudi Arabia. The rapid urban growth that happened recently in Riyadh was not based on the traditional urban planning principles, which have been established and applied for the city development process. The imported building regulations have created a new urban structures and street patterns. The contemporary urban form in Riyadh city is based mainly on traffic and economic consideration with the neglect of environmental dimensions. This research aims to examine the impacts of building regulations on the thermal performance of residential buildings in Riyadh city, with the ultimate goal of establishing planning guidelines that consider the environmental conditions of the city. The methodology adopted for achieving the aim of this study consists of two phases. First, the literature related to building regulations development in Riyadh, as of 2018, was reviewed. Second, buildings energy simulation was conducted to examine the thermal performance of the typical current status of residential building blocks in Riyadh city, and then several changes to building regulations were made to investigate their impacts on the thermal performance of buildings. The results showed that the impacts of Riyadh building regulations on the thermal performance of residential buildings differ across the evaluated cases. The ratio of building height to street width, urban block street orientation, and building orientation are the main factors affecting thermal performance of buildings within urban block. The study also concludes that adjusting the ratio of building height to the distance between buildings could have a significant impact in reducing cooling loads. This study will help policy makers, planners and designers to investigate the shortcoming in the current building regulations.
文摘With the continuous development of science and technology and the gradual improvement of modem building technology, people pay more and more attention to the introduction of advanced technology in architectural design, such as the application of intelligent technology. With the increasingly severe environmental situation, people are increasingly demanding the environmental performance and green performance of buildings. The establishment of ultra-low energy consumption passive buildings has become one of the key construction contents of construction projects. This paper mainly analyzes the design points and architectural forms of related buildings from the perspective of intelligent control.
文摘San Antonio, Texas is the seventh largest city in the United States with a population of 1.4 million people, and ranked among the fastest growing cities. To assess the implications of past and present building practices within the residential sector on future energy consumption, the energy utilization of single-family attached homes (SFAH) in Bexar County, Texas is studied. The available dataset includes 3932 SFAH records representing about 33% of the total number of SFAHs within the county. The study is based on pairing and analyzing data at the individual building level from a variety of sources including the buildings’ physical characteristics, access to fuels, and monthly energy consumption. The results indicate that the area of conditioned space, presence of swimming pools, number of stories, presence of fireplaces, fuel-type, and number of shared walls are a significant factor on the energy consumption of single-family attached homes. In terms of energy consumption, all-electric two-story homes sharing two walls are the most energy efficient among SFAHs. This study can aid comprehensive master planning efforts for developing sustainable communities by highlighting key features of SFAHs and making the case for higher density housing as a viable and more energy efficient alternative to single-family detached homes (SFDH).
基金This research was supported by the program for HUST Academic Frontier Youth Team(No.2019QYTD10)the Fundamental Research Funds for the Central Universities(No.2019kfyXKJC029)the National Natural Science Foundation of China(No.51678261,No.51978296).
文摘Studies on urban energy have been growing in interest,and past research has mostly been focused on studies of urban solar potential or urban building energy consumption independently.However,holistic research on the combination of urban building energy consumption and solar potential at the urban block-scale is required in order to minimize energy use and maximize solar power generation simultaneously.The aim of this study is to comprehensively evaluate the impact of urban morphological factors on photovoltaic(PV)potential and building energy consumption.Firstly,58 residential blocks were classified into 6 categories by k-means clustering.Secondly,3 energy performance factors,which include the energy use intensity(EUI),the energy use intensity combined with PV potential(EUI-PV),and photovoltaic substitution rate(PSR)were calculated for these blocks.The study found that the EUI of the Small Length&High Height blocks was the lowest at around 30 kWh/(m^(2)·y),while the EUI-PV of the Small Length&Low Height blocks was the lowest at around 4.45 kWh/(m^(2)·y),and their PSR was the highest at 87%.Regression modelling was carried out,and the study concluded that the EUI of residential blocks was mainly affected by shape factor,building density and floor area ratio,while EUI-PV and PSR were mainly affected by height and sky view factor.In this study,the results and developed methodology are helpful to provide recommendations and strategies for sustainable planning of residential blocks in central China.
文摘As the national buildings in each climate zone and passive low energy consumption building demonstration projects expand,there has been a wave of innovation across the construction industry.China is also becoming a hot zone for energy-efficient and high-performance passive buildings.Along with the traditional passive building structure,steel structure passive construction,assembled PC structure passive construction such as the emergence of various types of passive construction,as well as a variety of new building materials,doors and Windows,and air conditioning air equipment,put forward a new challenge for building electrical engineering design personnel and requirements.
文摘A smart city incorporates infrastructure methods that are environmentally responsible,such as smart communications,smart grids,smart energy,and smart buildings.The city administration has prioritized the use of cutting-edge technology and informatics as the primary strategy for enhancing service quality,with energy resources taking precedence.To achieve optimal energy management in themultidimensional system of a city tribe,it is necessary not only to identify and study the vast majority of energy elements,but also to define their implicit interdependencies.This is because optimal energy management is required to reach this objective.The lighting index is an essential consideration when evaluating the comfort indicators.In order to realize the concept of a smart city,the primary objective of this research is to create a system for managing and monitoring the lighting index.It is possible to identify two distinct phaseswithin the intelligent system.Once data collection concludes,the monitoring system will be activated.In the second step,the operation of the control system is analyzed and its effect on the performance of the numerical model is determined.This evaluation is based on the proposed methodology.The optimized resultswere deemed satisfactory because they maintained the brightness index value(79%)while consuming less energy.The intelligent implementation system generated satisfactory outcomes,which were observed 1.75 times on average.
文摘The role that occupants have on energy consumption and performance of buildings is known,but still requires a great deal of research.In this paper,the most common techniques to detect occupancy and occupant behavior in buildings are categorized with their advantages and disadvantages.Being the buildings characterized by different energy usage,the presentation of the studies that applied surveys and monitoring campaigns is conducted with differentiation between residential and office buildings.
文摘The research presents an improved method of rational design of energy-efficient low-rise residential buildings according to their life cycle. The mathematical model for finding the optimal version of draft power-efficient residential building has been developed. For conditions of Ukraine the optimization problem has been set and solved (finding the optimal version of the draft energy-efficient buildings). The calculations prove the fact that the construction of passive houses in Ukraine today is economically feasible. Scientific and practical regulations, outlined in the research, can be used by all participants of the investment programs, and energy-efficiency projects, renovation projects and developing normative-technical documents.