The high frequency gravitational waves (around lOS-lO12 Hz) could interact with a specially designed electro- magnetic resonance system. It is found that the power of transverse perturbative photon flux (PPF) of a...The high frequency gravitational waves (around lOS-lO12 Hz) could interact with a specially designed electro- magnetic resonance system. It is found that the power of transverse perturbative photon flux (PPF) of an electromagnetic resonance system can be improved significantly by virtue of an astigmatic Caussian beam. Cor- respondingly the signal-to-noise ratio (SNR) would also be improved. When the eccentric ratio of waist satisfying w0x : w0y 〉 1, the peak value of signal photon flux could be raised by 2-4 times with typical systematic parameters, while the background photon flux would be depressed. Therefore, the ratio of transverse PPF to background photon flux (i.e., SNR) can be further improved 3-8 times with dimensionless amplitude of relic gravitational wave ht = 10-36.展开更多
The research aimed to propose a non-destructive technology to control subterranean termites Coptotermes curvignathus Holmgren infestation based on electromagnetic waves. A portable apparatus for this technology has be...The research aimed to propose a non-destructive technology to control subterranean termites Coptotermes curvignathus Holmgren infestation based on electromagnetic waves. A portable apparatus for this technology has been built and its experiment is presented in this paper. Some electrical parameters were measured and analyzed along with their effects to the termites. The experiment using frequency range between 30 Hz - 600 kHz has been done. The average error of the apparatus by comparing the result with the direct measurement using oscilloscope was also measured. The highest error value appeared at 600 kHz with frequency error 6.05 kHz. The highest error of voltage (i.e. 0.186 Volt) appeared at 100 kHz. For safetiness, the highest magnetic field at 300 kHz was 0.1815 μT and at 500 kHz was 0.00725 μT which were safe for human. The average value of termites mortality was higher on irradiation time 120 minutes than 60 minutes respectively in all test frequency: 300 kHz, 400 kHz, 500 kHz and 600 kHz. This paper presents an important information of the electromagnatic-based technology for environmental friendly termites control in spite of using the insecticides.展开更多
We present preliminary results from the experimental investigation of the response of the atmosphere due to the impact of powerful shock waves. The response is evidenced as ultra low frequency electromagnetic wave rad...We present preliminary results from the experimental investigation of the response of the atmosphere due to the impact of powerful shock waves. The response is evidenced as ultra low frequency electromagnetic wave radiation at frequency of 2-5 kHz and in duration of 3 7s. We hypothesize that this radiation appears due to the following process: the shock wave ionizes the neutral particles in the air and these charged and neutral particles continue their vertical motion, which forms in the trail of the shock wave. Such motion can cause the cyclotron-like radiation measured.展开更多
Various cosmology models, brane oscillation scenarios, interaction of interstellar plasma with intense electromagnetic radiation, and even high-energy physics experiments (e.g., Large Hadron Collider (LHC)) all pr...Various cosmology models, brane oscillation scenarios, interaction of interstellar plasma with intense electromagnetic radiation, and even high-energy physics experiments (e.g., Large Hadron Collider (LHC)) all predict high frequency gravitational waves (HFGWs, i.e., high-energy gravitons) in the microwave band and higher frequency region, and some of them have large energy densities. Electromagnetic (EM) detection to such HFGWs would be suitable due to very high frequencies and large energy densities of the HFGWs. We review several typical EM detection schemes, i.e., inverse Gertsenshtein effect (G-effect), coupling of the inverse G effect with a coherent EM wave, coupling of planar superconducting open cavity with a static magnetic field, cylindrical superconducting closed cavity, and the EM sychro-resonance system, and discuss related minimal detectable amplitudes and sensitivities. Furthermore, we give some new ideas and improvement ways enhancing the possibility of measuring the HFGWs. It is shown that there is still a large room for improvement for those schemes to approach and even reach up the requirement of detection of HFGWs expected by the cosmological models and high-energy astrophysical process.展开更多
Ray tracing study of electromagnetic ion cyclotron (EMIC) waves is conducted based on a realistic plasma density model. The simulation result shows that EMIC waves propagate away from the equatorial source region to...Ray tracing study of electromagnetic ion cyclotron (EMIC) waves is conducted based on a realistic plasma density model. The simulation result shows that EMIC waves propagate away from the equatorial source region to higher latitudes basically along geomagnetic field lines, and are reflected at the region where their frequency matches the local bi-ion frequency. H+ band suffers H+-He+ bi-ion frequency reflection at lower latitudes, whereas He+ band suffers He+-O+ bi-ion frequency reflection at higher latitudes. Moreover, the concentration of heavy ions slightly affects the bi-ion frequencies and then slightly determines the reflection location of ray paths of EMIC waves. The current results present the first detailed study on the propagation characteristics of EMIC waves associated with bi-ion frequencies.展开更多
This paper took the abnormal geological objects with high or low resistivity in the coal face as the background to establish the physical model. 2D forward numerical simulation for electromagnetic wave equation was im...This paper took the abnormal geological objects with high or low resistivity in the coal face as the background to establish the physical model. 2D forward numerical simulation for electromagnetic wave equation was implemented by the finite-difference scheme. According to the simulative results, the attenuation-absorption coefficient were calculated respectively based on field intensity and frequency shift parameter. Research result indicates, when coal-bed contains high electric resistivity geological abnormal object or low electric resistivity geological abnormal object, absorption attenuation function researched by frequency shift parameter of electromagnetic wave signal is more sensitive than by electromagnetic field intensity parameter.展开更多
Porous carbon(PC)is a promising electromagnetic(EM)wave absorbing material thanks to its light weight,large specific surface area as well as good dissipating capacity.To further improve its microwave absorbing perform...Porous carbon(PC)is a promising electromagnetic(EM)wave absorbing material thanks to its light weight,large specific surface area as well as good dissipating capacity.To further improve its microwave absorbing performance,silver coated porous carbon(Ag@PC)is synthesized by one-step hydro-thermal synthesis process making use of fir as a biomass formwork.Phase compositions,morphological structure,and microwave absorption capability of the Ag@PC has been explored.Research results show that the metallic Ag was successfully reduced and the particles are evenly distributed inward the pores of the carbon formwork,which accelerates graphitization process of the amorphous carbon.The Ag@PC composite without adding polyvinyl pyrrolidone(PVP)exhibits higher dielectric constant and better EM wave dissipating capability.This is because the larger particles of Ag give rise to higher electric conductivity.After combing with frequency selective surface(FSS),the EM wave absorbing performance is further improved and the frequency region below-10 d B is located in8.20-11.75 GHz,and the minimal reflection loss value is-22.5 dB.This work indicates that incorporating metallic Ag particles and FSS provides a valid way to strengthen EM wave absorbing capacity of PC material.展开更多
The aim of the work was confined to the investigation of the epileptic activity dynamics under conditions of extremely high frequency electromagnetic waves(EHF) radiation(7.1 mm,0.1 mW/cm2) upon focal epileptic activi...The aim of the work was confined to the investigation of the epileptic activity dynamics under conditions of extremely high frequency electromagnetic waves(EHF) radiation(7.1 mm,0.1 mW/cm2) upon focal epileptic activity,which was penicillin-induced(10 000 IU/ml) in frontal zone of the brain cortex in myorelaxed and artificially ventilated rats under acute experimental condition.It was established that preliminarily performed hypogeomagnetic period(3.0 h) with the inductivity of geomagnetic field reduction not less than by 100 times caused the intensification of antiepileptic effects of EHF(15.0 min of exposition).It was pronounced in the form of decrease of foci intensity and significant reduction of life-span of foci-up to 115.3±13.4 minutes,which was both significant when compared with separate effects of hypogeomagnetic influence(187.3±12.5 min) and EHF(15.0 minutes of exposition) effect(164.2±12.5 minutes)(P <0.05).展开更多
We investigate the characteristics of electromagnetic wave reflection and transmission by multilayered structures consisting of a pair of left-handed material (LHM) and dielectric slabs inserted between two semi-infin...We investigate the characteristics of electromagnetic wave reflection and transmission by multilayered structures consisting of a pair of left-handed material (LHM) and dielectric slabs inserted between two semi-infinite dielectric media. The theoretical aspect is based on Maxwell's equations and matching the boundary conditions for the electric and magnetic fields of the incident waves at each layer interface. We calculate the reflected and transmitted powers of the multilayered structure taking into account the widths of the slabs and the frequency dependence of permittivity and permeability of the LHM. The obtained results satisfy the law of conservation of energy. We show that if the semi-infinite dielectric media have the same refractive index and the slabs have the same width, then the reflected (and transmitted) powers can be minimized (and maximized) and the powers-frequency curves show no ripple. On the other hand if the semi-infinite dielectric media have different values of refractive indices and the slabs have different widths, then under certain conditions the situation of minimum and maximum values of the mentioned powers will be reversed.展开更多
Drying of the banana in the hot water has a negative impact on the quality of the product and drying effect. The purposes of this study are increasing the drying rate, using the relatively low temperature to improve t...Drying of the banana in the hot water has a negative impact on the quality of the product and drying effect. The purposes of this study are increasing the drying rate, using the relatively low temperature to improve the quality (40℃, 50℃ and 60℃) and investigate the use of electromagnetic waves to increase the drying speed. Therefore, experiments are performed using 5 kHz,10 kHz and 15 kHz low frequency electromagnetic waves in the air velocity values of 0.5 m/s, 1 m/s, 1.5 m/s and 2 m/s and 40℃, 50℃, 60℃ centigrade degrees of air blast in a special compartment. Mathematical model of the drying process has been created as using the electrical circuits methods and experimental results. As a result, a simple equation describing the drying process has been obtained. Nonlinear expression of the diffusion coefficient for a different situation in this equation has been identified for the first time. The obtained theoretical results and experimental results have been provided a good agreement. This study is considered to be useful for all studies in the drying area.展开更多
In our daily lives,low-frequency kinetic energy primarily manifests as vibrations.However,effective harnessing of lowfrequency kinetic energy remains a formidable challenge.This paper proposes a rope-driven rotor that...In our daily lives,low-frequency kinetic energy primarily manifests as vibrations.However,effective harnessing of lowfrequency kinetic energy remains a formidable challenge.This paper proposes a rope-driven rotor that rotates around an axis and consists of an ultra-high-molecular-weight polyethylene(UHMWPE)wire wrapped around a metal shaft.The rotor can convert ultra-low frequency vibration/linear motion into rapid rotation by pressing the top at low frequencies and driving the rope for a quick release.The harvester can generate up to 36.25 m W power using a 0.1-mm-diameter UHMWPE wire as the rotor when periodically pressed down to 20 mm at a frequency of 1 Hz.A simple power generation floor is assembled,generating 28.58-m W power with a matching load at a frequency of 1.5 Hz.Moreover,the harvester can increase the charging voltage of a 0.47-F supercapacitor from 0 to 6.8 V within 10 min.In addition,the harvester can harvest energy through a light finger press motion,and the energy obtained can also support the continuous operation of multiple electronic devices concurrently.This study introduces an effective method for harvesting ultra-low frequency energy and has great prospects in the field of power generation floor and human movement energy harvesting.展开更多
This article presents some new experimental data for study the shielding effect of electromagnetic wave. The frequencies of electromagnetic wave are mainly focused on emission of daily electrical equipments, which are...This article presents some new experimental data for study the shielding effect of electromagnetic wave. The frequencies of electromagnetic wave are mainly focused on emission of daily electrical equipments, which are normally called “low frequency electromagnetic waves”. In this work, a water pump with maximum magnetic field intensity of ca. 2300 mG was applied as emission source of the electromagnetic wave. Experimental measurements used various shielding materials with the major constituent iron (Fe) in the form of plate for studying shielding effect of electromagnetic wave. The studied parameters were different thicknesses and gaps of the plate. The results show that pure iron plate has the best effect for shielding the magnetic field and its transmission ratio of magnetic field is proportional to distance between the emission source and the shielding plate. Moreover, the shielding plate close to the emission source received better protection.展开更多
The frequency selective surface (FSS) has been widely applied by means of its spatial frequency-filter characteristic, but it is always designed and used as a device with fixed frequency response. In order to tune the...The frequency selective surface (FSS) has been widely applied by means of its spatial frequency-filter characteristic, but it is always designed and used as a device with fixed frequency response. In order to tune the resonant frequency and switch the frequency channel, a scheme of mechanically tunable FSS is theoretically analyzed by using the method of Floquet's vector modes expansion and fields matching. A double-layer tunable FSS with dipole element can perform a dynamic range of resonant frequency covering whole X-band.展开更多
Assisted reproductive technology (ART) laboratories represent the marriage of the most basic of biological activities with the most cutting edge technologies. While this association has worked well, the mixture of bio...Assisted reproductive technology (ART) laboratories represent the marriage of the most basic of biological activities with the most cutting edge technologies. While this association has worked well, the mixture of biology and technology can create risks to normal embryo development. Recently a significant amount of literature has explored the risks of manmade, electrically induced magnetic fields and carrier waves on reproduction, which some studies have suggested will lower functional gamete numbers in the males and potentially induce genetic issues in embryos. However, little is known about these phenomena within the ART laboratory, a laboratory filled with electronic equipment. The object of the present study was to explore the potential exposure of gametes and early stage embryos to two of the most prevalent fields and waves utilized in manmade technologies seen in the general environment, electromagnetic fields (EMF) and radio frequency waves (RF), and determine the effect varying levels of these energetic forces had on gamete function and embryo development. Results indicated that while extremely high concentrations of EMF (approximately 50-100X of laboratory background) caused negative outcomes in both gametes and embryos, levels consistent will the majority of lab equipment did not appear to impact growth, or function. Further, even extremely high RF appeared to have no impact cellular function. Results suggest few issues with EMF or RF on gamete and embryo function at normal laboratory levels for the relatively short exposure times seen in the ART laboratory.展开更多
An iterative physical optics(IPO) model is proposed to solve extra large scale electric electromagnetic(EM) scattering from randomly rough surfaces. In order to accelerate the convergence of the IPO model, the for...An iterative physical optics(IPO) model is proposed to solve extra large scale electric electromagnetic(EM) scattering from randomly rough surfaces. In order to accelerate the convergence of the IPO model, the forward-backward methodology and its modification with underrelaxation iteration are developed to simulate the rough surface scattering; the local iteration methodology and the fast far field approximation(Fa FFA) in the matrix-vector product are proposed to reduce greatly the computational complexity. These techniques make Monte Carlo simulations possible. Thus, the average Doppler spectra of backscattered signals obtained from the simulations are compared for different incident angles and sea states. In particular, the simulations show a broadening of the Doppler spectra for a more complicated sea state at a low grazing angle(LGA).展开更多
The effects of electromagnetic waves in drying processes of solid materials are investigated theoretically and experimentally. Modified model of mass transfer being constituted by the effect of electromagnetic waves w...The effects of electromagnetic waves in drying processes of solid materials are investigated theoretically and experimentally. Modified model of mass transfer being constituted by the effect of electromagnetic waves which have different frequency has been obtained. Modeling of the drying process with a two-port electric circuit for the determination of diffusion coefficients is designed. The frequency limits of electromagnetic wave which will be able to hasten the drying process are determined. The effects of the electromagnetic wave in the potato slice drying process by the influence of different frequencies and temperatures are experimentally examined. The results obtained are compared with theoretical calculations. Moisture concentration curves in drying process have been commented by drawing. Theoretical and experimental results which have been obtained are identified as a well adaptation.展开更多
By analysing the propagation law of electromagnetic wave,the distribution pattern of the field and the theory of frequency electromagnetic sounding,the physical mechanisms that make the frequency electromagnetic sound...By analysing the propagation law of electromagnetic wave,the distribution pattern of the field and the theory of frequency electromagnetic sounding,the physical mechanisms that make the frequency electromagnetic sounding in near-field zone difficult are discussed.Based on the theory of near source field,a new method of dual-frequency electromagnetic sounding of combination wave in near-field zone is advanced.Meanwhile,the method of measurement of fields,the definition of apparent resistivity and the numerical algorithm are approached.展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos 11205254 and 61501069the Fundamental Research Funds for the Central Universities under Grant No 106112016CDJXY300002
文摘The high frequency gravitational waves (around lOS-lO12 Hz) could interact with a specially designed electro- magnetic resonance system. It is found that the power of transverse perturbative photon flux (PPF) of an electromagnetic resonance system can be improved significantly by virtue of an astigmatic Caussian beam. Cor- respondingly the signal-to-noise ratio (SNR) would also be improved. When the eccentric ratio of waist satisfying w0x : w0y 〉 1, the peak value of signal photon flux could be raised by 2-4 times with typical systematic parameters, while the background photon flux would be depressed. Therefore, the ratio of transverse PPF to background photon flux (i.e., SNR) can be further improved 3-8 times with dimensionless amplitude of relic gravitational wave ht = 10-36.
文摘The research aimed to propose a non-destructive technology to control subterranean termites Coptotermes curvignathus Holmgren infestation based on electromagnetic waves. A portable apparatus for this technology has been built and its experiment is presented in this paper. Some electrical parameters were measured and analyzed along with their effects to the termites. The experiment using frequency range between 30 Hz - 600 kHz has been done. The average error of the apparatus by comparing the result with the direct measurement using oscilloscope was also measured. The highest error value appeared at 600 kHz with frequency error 6.05 kHz. The highest error of voltage (i.e. 0.186 Volt) appeared at 100 kHz. For safetiness, the highest magnetic field at 300 kHz was 0.1815 μT and at 500 kHz was 0.00725 μT which were safe for human. The average value of termites mortality was higher on irradiation time 120 minutes than 60 minutes respectively in all test frequency: 300 kHz, 400 kHz, 500 kHz and 600 kHz. This paper presents an important information of the electromagnatic-based technology for environmental friendly termites control in spite of using the insecticides.
文摘We present preliminary results from the experimental investigation of the response of the atmosphere due to the impact of powerful shock waves. The response is evidenced as ultra low frequency electromagnetic wave radiation at frequency of 2-5 kHz and in duration of 3 7s. We hypothesize that this radiation appears due to the following process: the shock wave ionizes the neutral particles in the air and these charged and neutral particles continue their vertical motion, which forms in the trail of the shock wave. Such motion can cause the cyclotron-like radiation measured.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11075224 and 11375279)the Foundation of China Academy of Engineering Physics(Grant Nos.2008 T0401 and T0402)
文摘Various cosmology models, brane oscillation scenarios, interaction of interstellar plasma with intense electromagnetic radiation, and even high-energy physics experiments (e.g., Large Hadron Collider (LHC)) all predict high frequency gravitational waves (HFGWs, i.e., high-energy gravitons) in the microwave band and higher frequency region, and some of them have large energy densities. Electromagnetic (EM) detection to such HFGWs would be suitable due to very high frequencies and large energy densities of the HFGWs. We review several typical EM detection schemes, i.e., inverse Gertsenshtein effect (G-effect), coupling of the inverse G effect with a coherent EM wave, coupling of planar superconducting open cavity with a static magnetic field, cylindrical superconducting closed cavity, and the EM sychro-resonance system, and discuss related minimal detectable amplitudes and sensitivities. Furthermore, we give some new ideas and improvement ways enhancing the possibility of measuring the HFGWs. It is shown that there is still a large room for improvement for those schemes to approach and even reach up the requirement of detection of HFGWs expected by the cosmological models and high-energy astrophysical process.
基金supported by National Natural Science Foundation of China(Nos.40925014,41204114,and 41274165)the Aid Program for Scienceand Technology Innovative Research Team in Higher Educational Institutions of Hunan Province,Chinathe Construct Program of theKey Discipline in Hunan Province,China
文摘Ray tracing study of electromagnetic ion cyclotron (EMIC) waves is conducted based on a realistic plasma density model. The simulation result shows that EMIC waves propagate away from the equatorial source region to higher latitudes basically along geomagnetic field lines, and are reflected at the region where their frequency matches the local bi-ion frequency. H+ band suffers H+-He+ bi-ion frequency reflection at lower latitudes, whereas He+ band suffers He+-O+ bi-ion frequency reflection at higher latitudes. Moreover, the concentration of heavy ions slightly affects the bi-ion frequencies and then slightly determines the reflection location of ray paths of EMIC waves. The current results present the first detailed study on the propagation characteristics of EMIC waves associated with bi-ion frequencies.
基金Supported by the Program for the National Natural Science Foundation of China (50534080) the New Century Excellent Talents in University of China (NCET-05-0602)+1 种基金 the Research Fund for the Doctoral Program of Higher Education of China (20060424001) the Research Award Fund for the Excellent Youth Scientist of Shandong Province(2006BS08006).
文摘This paper took the abnormal geological objects with high or low resistivity in the coal face as the background to establish the physical model. 2D forward numerical simulation for electromagnetic wave equation was implemented by the finite-difference scheme. According to the simulative results, the attenuation-absorption coefficient were calculated respectively based on field intensity and frequency shift parameter. Research result indicates, when coal-bed contains high electric resistivity geological abnormal object or low electric resistivity geological abnormal object, absorption attenuation function researched by frequency shift parameter of electromagnetic wave signal is more sensitive than by electromagnetic field intensity parameter.
基金supported by National Natural Science Foundation of China(No.52103361)Shaanxi University Youth Outstanding Talents Support Plan,Scientific and Technological Plan Project of Xi’an Beilin District(No.GX2143)。
文摘Porous carbon(PC)is a promising electromagnetic(EM)wave absorbing material thanks to its light weight,large specific surface area as well as good dissipating capacity.To further improve its microwave absorbing performance,silver coated porous carbon(Ag@PC)is synthesized by one-step hydro-thermal synthesis process making use of fir as a biomass formwork.Phase compositions,morphological structure,and microwave absorption capability of the Ag@PC has been explored.Research results show that the metallic Ag was successfully reduced and the particles are evenly distributed inward the pores of the carbon formwork,which accelerates graphitization process of the amorphous carbon.The Ag@PC composite without adding polyvinyl pyrrolidone(PVP)exhibits higher dielectric constant and better EM wave dissipating capability.This is because the larger particles of Ag give rise to higher electric conductivity.After combing with frequency selective surface(FSS),the EM wave absorbing performance is further improved and the frequency region below-10 d B is located in8.20-11.75 GHz,and the minimal reflection loss value is-22.5 dB.This work indicates that incorporating metallic Ag particles and FSS provides a valid way to strengthen EM wave absorbing capacity of PC material.
文摘The aim of the work was confined to the investigation of the epileptic activity dynamics under conditions of extremely high frequency electromagnetic waves(EHF) radiation(7.1 mm,0.1 mW/cm2) upon focal epileptic activity,which was penicillin-induced(10 000 IU/ml) in frontal zone of the brain cortex in myorelaxed and artificially ventilated rats under acute experimental condition.It was established that preliminarily performed hypogeomagnetic period(3.0 h) with the inductivity of geomagnetic field reduction not less than by 100 times caused the intensification of antiepileptic effects of EHF(15.0 min of exposition).It was pronounced in the form of decrease of foci intensity and significant reduction of life-span of foci-up to 115.3±13.4 minutes,which was both significant when compared with separate effects of hypogeomagnetic influence(187.3±12.5 min) and EHF(15.0 minutes of exposition) effect(164.2±12.5 minutes)(P <0.05).
文摘We investigate the characteristics of electromagnetic wave reflection and transmission by multilayered structures consisting of a pair of left-handed material (LHM) and dielectric slabs inserted between two semi-infinite dielectric media. The theoretical aspect is based on Maxwell's equations and matching the boundary conditions for the electric and magnetic fields of the incident waves at each layer interface. We calculate the reflected and transmitted powers of the multilayered structure taking into account the widths of the slabs and the frequency dependence of permittivity and permeability of the LHM. The obtained results satisfy the law of conservation of energy. We show that if the semi-infinite dielectric media have the same refractive index and the slabs have the same width, then the reflected (and transmitted) powers can be minimized (and maximized) and the powers-frequency curves show no ripple. On the other hand if the semi-infinite dielectric media have different values of refractive indices and the slabs have different widths, then under certain conditions the situation of minimum and maximum values of the mentioned powers will be reversed.
文摘Drying of the banana in the hot water has a negative impact on the quality of the product and drying effect. The purposes of this study are increasing the drying rate, using the relatively low temperature to improve the quality (40℃, 50℃ and 60℃) and investigate the use of electromagnetic waves to increase the drying speed. Therefore, experiments are performed using 5 kHz,10 kHz and 15 kHz low frequency electromagnetic waves in the air velocity values of 0.5 m/s, 1 m/s, 1.5 m/s and 2 m/s and 40℃, 50℃, 60℃ centigrade degrees of air blast in a special compartment. Mathematical model of the drying process has been created as using the electrical circuits methods and experimental results. As a result, a simple equation describing the drying process has been obtained. Nonlinear expression of the diffusion coefficient for a different situation in this equation has been identified for the first time. The obtained theoretical results and experimental results have been provided a good agreement. This study is considered to be useful for all studies in the drying area.
基金supported by the National Natural Science Foundation of China(Grant Nos.62171414,U2341210,52175554,and 52205608)the Fundamental Research Program of Shanxi Province(Grant Nos.20210302123059,and 20210302124610)+1 种基金the Hebei Province Central Guiding Local Science and Technology Development Fund Project(Grant No.236Z4901G)the National Defense Fundamental Research Project。
文摘In our daily lives,low-frequency kinetic energy primarily manifests as vibrations.However,effective harnessing of lowfrequency kinetic energy remains a formidable challenge.This paper proposes a rope-driven rotor that rotates around an axis and consists of an ultra-high-molecular-weight polyethylene(UHMWPE)wire wrapped around a metal shaft.The rotor can convert ultra-low frequency vibration/linear motion into rapid rotation by pressing the top at low frequencies and driving the rope for a quick release.The harvester can generate up to 36.25 m W power using a 0.1-mm-diameter UHMWPE wire as the rotor when periodically pressed down to 20 mm at a frequency of 1 Hz.A simple power generation floor is assembled,generating 28.58-m W power with a matching load at a frequency of 1.5 Hz.Moreover,the harvester can increase the charging voltage of a 0.47-F supercapacitor from 0 to 6.8 V within 10 min.In addition,the harvester can harvest energy through a light finger press motion,and the energy obtained can also support the continuous operation of multiple electronic devices concurrently.This study introduces an effective method for harvesting ultra-low frequency energy and has great prospects in the field of power generation floor and human movement energy harvesting.
文摘This article presents some new experimental data for study the shielding effect of electromagnetic wave. The frequencies of electromagnetic wave are mainly focused on emission of daily electrical equipments, which are normally called “low frequency electromagnetic waves”. In this work, a water pump with maximum magnetic field intensity of ca. 2300 mG was applied as emission source of the electromagnetic wave. Experimental measurements used various shielding materials with the major constituent iron (Fe) in the form of plate for studying shielding effect of electromagnetic wave. The studied parameters were different thicknesses and gaps of the plate. The results show that pure iron plate has the best effect for shielding the magnetic field and its transmission ratio of magnetic field is proportional to distance between the emission source and the shielding plate. Moreover, the shielding plate close to the emission source received better protection.
文摘The frequency selective surface (FSS) has been widely applied by means of its spatial frequency-filter characteristic, but it is always designed and used as a device with fixed frequency response. In order to tune the resonant frequency and switch the frequency channel, a scheme of mechanically tunable FSS is theoretically analyzed by using the method of Floquet's vector modes expansion and fields matching. A double-layer tunable FSS with dipole element can perform a dynamic range of resonant frequency covering whole X-band.
文摘Assisted reproductive technology (ART) laboratories represent the marriage of the most basic of biological activities with the most cutting edge technologies. While this association has worked well, the mixture of biology and technology can create risks to normal embryo development. Recently a significant amount of literature has explored the risks of manmade, electrically induced magnetic fields and carrier waves on reproduction, which some studies have suggested will lower functional gamete numbers in the males and potentially induce genetic issues in embryos. However, little is known about these phenomena within the ART laboratory, a laboratory filled with electronic equipment. The object of the present study was to explore the potential exposure of gametes and early stage embryos to two of the most prevalent fields and waves utilized in manmade technologies seen in the general environment, electromagnetic fields (EMF) and radio frequency waves (RF), and determine the effect varying levels of these energetic forces had on gamete function and embryo development. Results indicated that while extremely high concentrations of EMF (approximately 50-100X of laboratory background) caused negative outcomes in both gametes and embryos, levels consistent will the majority of lab equipment did not appear to impact growth, or function. Further, even extremely high RF appeared to have no impact cellular function. Results suggest few issues with EMF or RF on gamete and embryo function at normal laboratory levels for the relatively short exposure times seen in the ART laboratory.
基金supported by the National Natural Science Foundation of China(61372033)
文摘An iterative physical optics(IPO) model is proposed to solve extra large scale electric electromagnetic(EM) scattering from randomly rough surfaces. In order to accelerate the convergence of the IPO model, the forward-backward methodology and its modification with underrelaxation iteration are developed to simulate the rough surface scattering; the local iteration methodology and the fast far field approximation(Fa FFA) in the matrix-vector product are proposed to reduce greatly the computational complexity. These techniques make Monte Carlo simulations possible. Thus, the average Doppler spectra of backscattered signals obtained from the simulations are compared for different incident angles and sea states. In particular, the simulations show a broadening of the Doppler spectra for a more complicated sea state at a low grazing angle(LGA).
文摘The effects of electromagnetic waves in drying processes of solid materials are investigated theoretically and experimentally. Modified model of mass transfer being constituted by the effect of electromagnetic waves which have different frequency has been obtained. Modeling of the drying process with a two-port electric circuit for the determination of diffusion coefficients is designed. The frequency limits of electromagnetic wave which will be able to hasten the drying process are determined. The effects of the electromagnetic wave in the potato slice drying process by the influence of different frequencies and temperatures are experimentally examined. The results obtained are compared with theoretical calculations. Moisture concentration curves in drying process have been commented by drawing. Theoretical and experimental results which have been obtained are identified as a well adaptation.
基金Project supported by the Post-Doctoral Science Foundation and the Doctoral Fund of Education Commission of China.
文摘By analysing the propagation law of electromagnetic wave,the distribution pattern of the field and the theory of frequency electromagnetic sounding,the physical mechanisms that make the frequency electromagnetic sounding in near-field zone difficult are discussed.Based on the theory of near source field,a new method of dual-frequency electromagnetic sounding of combination wave in near-field zone is advanced.Meanwhile,the method of measurement of fields,the definition of apparent resistivity and the numerical algorithm are approached.