期刊文献+
共找到7,792篇文章
< 1 2 250 >
每页显示 20 50 100
Experimental study of the influencing factors and mechanisms of the pressure-reduction and augmented injection effect by nanoparticles in ultra-low permeability reservoirs
1
作者 Pan Wang Yu-Hang Hu +8 位作者 Liao-Yuan Zhang Yong Meng Zhen-Fu Ma Tian-Ru Wang Zi-Lin Zhang Ji-Chao Fang Xiao-Qiang Liu Qing You Yan Zhang 《Petroleum Science》 SCIE EI CAS CSCD 2024年第3期1915-1927,共13页
Nanoparticles(NPs)have gained significant attention as a functional material due to their ability to effectively enhance pressure reduction in injection processes in ultra-low permeability reservoirs.NPs are typically... Nanoparticles(NPs)have gained significant attention as a functional material due to their ability to effectively enhance pressure reduction in injection processes in ultra-low permeability reservoirs.NPs are typically studied in controlled laboratory conditions,and their behavior in real-world,complex environments such as ultra-low permeability reservoirs,is not well understood due to the limited scope of their applications.This study investigates the efficacy and underlying mechanisms of NPs in decreasing injection pressure under various injection conditions(25—85℃,10—25 MPa).The results reveal that under optimal injection conditions,NPs effectively reduce injection pressure by a maximum of 22.77%in core experiment.The pressure reduction rate is found to be positively correlated with oil saturation and permeability,and negatively correlated with temperature and salinity.Furthermore,particle image velocimetry(PIV)experiments(25℃,atmospheric pressure)indicate that the pressure reduction is achieved by NPs through the reduction of wall shear resistance and wettability change.This work has important implications for the design of water injection strategies in ultra-low permeability reservoirs. 展开更多
关键词 NANOPARTICLE Pressure reduction Augmented injection ultra-low permeability reservoir
下载PDF
Optimization of Gas-Flooding Fracturing Development in Ultra-Low Permeability Reservoirs
2
作者 Lifeng Liu Menghe Shi +3 位作者 Jianhui Wang Wendong Wang Yuliang Su Xinyu Zhuang 《Fluid Dynamics & Materials Processing》 EI 2024年第3期595-607,共13页
Ultra-low permeability reservoirs are characterized by small pore throats and poor physical properties, which areat the root of well-known problems related to injection and production. In this study, a gas injection f... Ultra-low permeability reservoirs are characterized by small pore throats and poor physical properties, which areat the root of well-known problems related to injection and production. In this study, a gas injection floodingapproach is analyzed in the framework of numerical simulations. In particular, the sequence and timing of fracturechanneling and the related impact on production are considered for horizontal wells with different fracturemorphologies. Useful data and information are provided about the regulation of gas channeling and possible strategiesto delay gas channeling and optimize the gas injection volume and fracture parameters. It is shown that inorder to mitigate gas channeling and ensure high production, fracture length on the sides can be controlled andlonger fractures can be created in the middle by which full gas flooding is obtained at the fracture location in themiddle of the horizontal well. A Differential Evolution (DE) algorithm is provided by which the gas injectionvolume and the fracture parameters of gas injection flooding can be optimized. It is shown that an improvedoil recovery factor as high as 6% can be obtained. 展开更多
关键词 ultra-low permeability reservoir gas injection flooding component simulation fracture parameters intelligent optimization differential evolution
下载PDF
Profile improvement during CO_2 flooding in ultra-low permeability reservoirs 被引量:13
3
作者 Zhao Fenglan Zhang Lei +1 位作者 Hou Jirui Cao Shujun 《Petroleum Science》 SCIE CAS CSCD 2014年第2期279-286,共8页
Gas flooding such as CO2 flooding may be effectively applied to ultra-low permeability reservoirs, but gas channeling is inevitable due to low viscosity and high mobility of gas and formation heterogeneity. In order t... Gas flooding such as CO2 flooding may be effectively applied to ultra-low permeability reservoirs, but gas channeling is inevitable due to low viscosity and high mobility of gas and formation heterogeneity. In order to mitigate or prevent gas channeling, ethylenediamine is chosen for permeability profile control. The reaction mechanism of ethylenediamine with CO2, injection performance, swept volume, and enhanced oil recovery were systematically evaluated. The reaction product of ethylenediamine and CO2 was a white solid or a light yellow viscous liquid, which would mitigate or prevent gas channeling. Also, ethylenediamine could be easily injected into ultra-low permeability cores at high temperature with protective ethanol slugs. The core was swept by injection of 0.3 PV ethylenediamine. Oil displacement tests performed on heterogeneous models with closed fractures, oil recovery was significantly enhanced with injection of ethylenediamine. Experimental results showed that using ethylenediamine to plug high permeability layers would provide a new research idea for the gas injection in fractured, heterogeneous and ultra-low permeability reservoirs. This technology has the potential to be widely applied in oilfields. 展开更多
关键词 ETHYLENEDIAMINE organic amine profile improvement ultra-low permeability reservoirs mitigation of gas channeling CO2 flooding
下载PDF
On the Development of an Effective Pressure Driving System for Ultra-Low Permeability Reservoirs 被引量:4
4
作者 Yapu Zhang Zhengming Yang +2 位作者 Dajian Li Xuewei Liu Xinli Zhao 《Fluid Dynamics & Materials Processing》 EI 2021年第6期1067-1075,共9页
Given its relevance to the exploitation of ultra-low permeability reservoirs,which account for a substantial proportion of the world’s exploited and still unexploited reserves,in the present study the development of ... Given its relevance to the exploitation of ultra-low permeability reservoirs,which account for a substantial proportion of the world’s exploited and still unexploited reserves,in the present study the development of an adequate water injection system is considered.Due to the poor properties and weak seepage capacity of these reservoirs,the water injection pressure typically increases continuously during water flooding.In this research,the impact on such a process of factors as permeability,row spacing,and pressure gradient is evaluated experimentally using a high-pressure large-scale outcrop model.On this basis,a comprehensive evaluation coefficient is introduced able to account for the effective driving pressure. 展开更多
关键词 ultra-low permeability reservoir physical simulation effective development water flooding effective driving coefficient
下载PDF
The control effect of low-amplitude structure on oil-gaswater enrichment and development performance of ultra-low permeability reservoirs 被引量:1
5
作者 WANG Jianmin ZHANG San +4 位作者 DU Wei LI Le QIAO Zhen ZHANG Jun DUAN Mengyue 《Petroleum Exploration and Development》 2019年第4期767-778,共12页
Based on drilling, logging, test production and dynamic monitoring data, the control effects of low-amplitude structure on hydrocarbon accumulation and development performance of ultra-low permeability reservoirs were... Based on drilling, logging, test production and dynamic monitoring data, the control effects of low-amplitude structure on hydrocarbon accumulation and development performance of ultra-low permeability reservoirs were discussed by using the methods of dense well pattern, multi-factor geological modeling, macro and micro analysis and static and dynamic analysis. The results show that the low-amplitude structure always had a significant control and influence on the distribution and accumulation of original hydrocarbon and water and the evolution trend of water flooding performance in ultra-low permeability reservoirs, and it was not only the direction of oil and gas migration, but also a favorable place for relative accumulation of oil and gas. The controlling effect of low-amplitude structure on ultra-low permeability reservoir mainly depended on its tectonic amplitude and scale;the larger the tectonic amplitude and scale, and the higher the tectonic position of the low amplitude structure, the better the reservoir characteristic parameters, oil and gas enrichment degree and development effect, and the larger the spatial scope it controlled and influenced;water cut and oil well output always fluctuated orderly with the height of the low-amplitude structure;the dynamic response of waterflooding was closely related to the relative structural position of the injection and production wells;the injected water always advanced to the low-lying area of the structure first and then moved up to the high-lying area of the structure gradually;with the continuous expansion of the flooded area, part of the oil and gas in the low-lying part of the structure was forced to be distributed to the high part of the structure, resulting in a new oil and gas enrichment, so that the dynamic reserves of oil wells in the high part increased, and the production capacity remained stable. 展开更多
关键词 ultra-low permeability reservoirS LOW-AMPLITUDE structure OIL-GAS-WATER ENRICHMENT development dynamics control effect
下载PDF
A novel numerical simulation of CO_(2) immiscible flooding coupled with viscosity and starting pressure gradient modeling in ultra-low permeability reservoir
6
作者 Jie CHI Binshan JU +3 位作者 Jiabei WANG Xing ZHANG Wenbin CHEN Mengfei ZHANG 《Frontiers of Earth Science》 SCIE CSCD 2023年第3期884-898,共15页
CO_(2) immiscible flooding is an environmentally-friendly and effective method to enhance oil recovery in ultra-low permeability reservoirs.A mathematical model of CO_(2) immiscible flooding was developed,considering ... CO_(2) immiscible flooding is an environmentally-friendly and effective method to enhance oil recovery in ultra-low permeability reservoirs.A mathematical model of CO_(2) immiscible flooding was developed,considering the variation in crude oil viscosity and starting pressure gradient in ultra-low permeability reservoirs based on the non-Darcy percolation theory.The mathematical model and numerical simulator were developed in the C++language to simulate the effects of fluid viscosity,starting pressure gradient,and other physical parameters on the distribution of the oil pressure field,oil saturation field,gas saturation field,oil viscosity field,and oil production.The results showed that the formation pressure and pressure propagation velocity in CO_(2) immiscible flooding were lower than the findings without considering the starting pressure gradient.The formation oil content saturation and the crude oil formation viscosity were higher after the consideration of the starting pressure gradient.The viscosity of crude oil considering the initiation pressure gradient during the formation was higher than that without this gradient,but the yield was lower than that condition.Our novel mathematical models helped the characterization of seepage resistance,revealed the influence of fluid property changes on seepage,improved the mathematical model of oil seepage in immiscible flooding processes,and guided the improvement of crude oil recovery in immiscible flooding processes. 展开更多
关键词 VISCOSITY starting pressure gradient flow simulation CO_(2)immiscible flooding ultra-low permeability reservoir
原文传递
Synergistic anionic/zwitterionic mixed surfactant system with high emulsification efficiency for enhanced oil recovery in low permeability reservoirs 被引量:1
7
作者 Hai-Rong Wu Rong Tan +6 位作者 Shi-Ping Hong Qiong Zhou Bang-Yu Liu Jia-Wei Chang Tian-Fang Luan Ning Kang Ji-Rui Hou 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期936-950,共15页
Emulsification is one of the important mechanisms of surfactant flooding. To improve oil recovery for low permeability reservoirs, a highly efficient emulsification oil flooding system consisting of anionic surfactant... Emulsification is one of the important mechanisms of surfactant flooding. To improve oil recovery for low permeability reservoirs, a highly efficient emulsification oil flooding system consisting of anionic surfactant sodium alkyl glucosyl hydroxypropyl sulfonate(APGSHS) and zwitterionic surfactant octadecyl betaine(BS-18) is proposed. The performance of APGSHS/BS-18 mixed surfactant system was evaluated in terms of interfacial tension, emulsification capability, emulsion size and distribution, wettability alteration, temperature-resistance and salt-resistance. The emulsification speed was used to evaluate the emulsification ability of surfactant systems, and the results show that mixed surfactant systems can completely emulsify the crude oil into emulsions droplets even under low energy conditions. Meanwhile,the system exhibits good temperature and salt resistance. Finally, the best oil recovery of 25.45% is achieved for low permeability core by the mixed surfactant system with a total concentration of 0.3 wt%while the molar ratio of APGSHS:BS-18 is 4:6. The current study indicates that the anionic/zwitterionic mixed surfactant system can improve the oil flooding efficiency and is potential candidate for application in low permeability reservoirs. 展开更多
关键词 Anionic/zwitterionic mixed surfactant system EMULSIFICATION Synergistic effect Low permeability reservoir Enhanced oil recovery
下载PDF
A novel profile modification HPF-Co gel satisfied with fractured low permeability reservoirs in high temperature and high salinity
8
作者 Ya-Kai Li Ji-Rui Hou +6 位作者 Wei-Peng Wu Ming Qu Tuo Liang Wei-Xin Zhong Yu-Chen Wen Hai-Tong Sun Yi-Nuo Pan 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期683-693,共11页
Conformance control and water plugging are a widely used EOR method in mature oilfields.However,majority of conformance control and water plugging agents are unavoidable dehydrated situation in high-temperature and hi... Conformance control and water plugging are a widely used EOR method in mature oilfields.However,majority of conformance control and water plugging agents are unavoidable dehydrated situation in high-temperature and high-salinity low permeability reservoirs.Consequently,a novel conformance control system HPF-Co gel,based on high-temperature stabilizer(CoCl_(2)·H_(2)O,CCH)is developed.The HPF-Co bulk gel has better performances with high temperature(120℃)and high salinity(1×10^(5)mg/L).According to Sydansk coding system,the gel strength of HPF-Co with CCH is increased to code G.The dehydration rate of HPF-Co gel is 32.0%after aging for 150 d at 120℃,showing excellent thermal stability.The rheological properties of HPF gel and HPF-Co gel are also studied.The results show that the storage modulus(G′)of HPF-Co gel is always greater than that of HPF gel.The effect of CCH on the microstructure of the gel is studied.The results show that the HPF-Co gel with CCH has a denser gel network,and the diameter of the three-dimensional network skeleton is 1.5-3.5μm.After 90 d of aging,HPF-Co gel still has a good three-dimensional structure.Infrared spectroscopy results show that CCH forms coordination bonds with N and O atoms in the gel amide group,which can suppress the vibration of cross-linked sites and improve the stability at high temperature.Fractured core plugging test determines the optimized polymer gel injection strategy and injection velocity with HPF-Co bulk gel system,plugging rate exceeding 98%.Moreover,the results of subsequent waterflooding recovery can be improved by 17%. 展开更多
关键词 Low permeability reservoir High-temperature resistant gel Complexation reaction Polymer gel injection strategy Plugging rate Enhanced oil recovery
下载PDF
Development of Superhydrophobic Nano-SiO_(2)and Its Field Application in Low-permeability,High-temperature,and High-salinity Oil Reservoirs
9
作者 Qin Bing Gao Min +4 位作者 Lei Xue Zhao Lin Zhu Qizhi Meng Fanbin Jiang Jianlin 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS CSCD 2024年第3期1-14,共14页
In this study,to meet the stringent requirements on the hydrophobicity of nano-SiO_(2)particles for use in depressurization and enhanced injection operations in high-temperature and high-salinity oil reservoirs,second... In this study,to meet the stringent requirements on the hydrophobicity of nano-SiO_(2)particles for use in depressurization and enhanced injection operations in high-temperature and high-salinity oil reservoirs,secondary chemical grafting modification of nano-SiO_(2)is performed using a silane coupling agent to prepare superhydrophobic nano-SiO_(2) particles.Using these superhydrophobic nano-SiO_(2)particles as the core agent,and liquid paraffin or diesel as the dispersion medium,a uniform dispersion of nano-SiO_(2)particles is achieved under high-speed stirring,and a chemically enhanced water injection system with colloidal stability that can be maintained for more than 60 d is successfully developed.Using this system,a field test of depressurization and enhanced injection is carried out on six wells in an oilfield,and the daily oil production level is increased by 11 t.The cumulative increased water injection is 58784 m^(3),the effective rate of the measures was 100%,and the average validity period is 661 d. 展开更多
关键词 nano-SiO_(2)particle hydrophobic modification enhanced injection operation low-grade reservoir low permeability oilfield
下载PDF
Numerical Simulation of Oil-Water Two-Phase Flow in Low Permeability Tight Reservoirs Based on Weighted Least Squares Meshless Method
10
作者 Xin Liu Kai Yan +3 位作者 Bo Fang Xiaoyu Sun Daqiang Feng Li Yin 《Fluid Dynamics & Materials Processing》 EI 2024年第7期1539-1552,共14页
In response to the complex characteristics of actual low-permeability tight reservoirs,this study develops a meshless-based numerical simulation method for oil-water two-phase flow in these reservoirs,considering comp... In response to the complex characteristics of actual low-permeability tight reservoirs,this study develops a meshless-based numerical simulation method for oil-water two-phase flow in these reservoirs,considering complex boundary shapes.Utilizing radial basis function point interpolation,the method approximates shape functions for unknown functions within the nodal influence domain.The shape functions constructed by the aforementioned meshless interpolation method haveδ-function properties,which facilitate the handling of essential aspects like the controlled bottom-hole flow pressure in horizontal wells.Moreover,the meshless method offers greater flexibility and freedom compared to grid cell discretization,making it simpler to discretize complex geometries.A variational principle for the flow control equation group is introduced using a weighted least squares meshless method,and the pressure distribution is solved implicitly.Example results demonstrate that the computational outcomes of the meshless point cloud model,which has a relatively small degree of freedom,are in close agreement with those of the Discrete Fracture Model(DFM)employing refined grid partitioning,with pressure calculation accuracy exceeding 98.2%.Compared to high-resolution grid-based computational methods,the meshless method can achieve a better balance between computational efficiency and accuracy.Additionally,the impact of fracture half-length on the productivity of horizontal wells is discussed.The results indicate that increasing the fracture half-length is an effective strategy for enhancing production from the perspective of cumulative oil production. 展开更多
关键词 Weighted least squares method meshless method numerical simulation of low permeability tight reservoirs oil-water two-phase flow fracture half-length
下载PDF
INVESTIGATION AND APPLICATION ON GAS-DRIVE DEVELOPMENT IN ULTRA-LOW PERMEABILITY RESERVOIRS 被引量:8
11
作者 ZHAO Ming-guo ZHOU Hai-fei CHEN Ding-feng 《Journal of Hydrodynamics》 SCIE EI CSCD 2008年第2期254-260,共7页
To select a proper displacement medium with the purpose of developing ultra-low permeability reservoirs both effectively and economically, three kinds of gases, including CO2, NG and N2, are studied through physical m... To select a proper displacement medium with the purpose of developing ultra-low permeability reservoirs both effectively and economically, three kinds of gases, including CO2, NG and N2, are studied through physical modeling and numerical simulation under the specified reservoir conditions. The results indicate that the oil recovery through water injection is relatively low in ultra-low permeability reservoirs, where the water breaks through early and the water cut rises rapidly. Gas injection can enhance the production, of which the gas-drive efficiency depends on the injection pressure and the gas itself. CO2 is proved to be the best one after comprehensive consideration of the recovery speed, the overall recovery efficiency and the time needed for gas to break through. The pressure of CO2 injection in the field experiments is lower, compared with that of water-drive. The injectivity index of CO2 is 7.2 times as high as that of water, and the oil production of the test well group increases by about 4 t/d. 展开更多
关键词 ultra-low permeability reservoir gas drive physical modeling numerical simulation field experiment
原文传递
Imbibition mechanisms of high temperature resistant microemulsion system in ultra-low permeability and tight reservoirs
12
作者 XIAO Lixiao HOU Jirui +4 位作者 WEN Yuchen QU Ming WANG Weiju WU Weipeng LIANG Tuo 《Petroleum Exploration and Development》 CSCD 2022年第6期1398-1410,共13页
Lower-phase microemulsions with core-shell structure were prepared by microemulsion dilution method.The high temperature resistant systems were screened and the performance evaluation experiments were conducted to cla... Lower-phase microemulsions with core-shell structure were prepared by microemulsion dilution method.The high temperature resistant systems were screened and the performance evaluation experiments were conducted to clarify the spontaneous imbibition mechanisms in ultra-low permeability and tight oil reservoirs,and to direct the field microfracture huff and puff test of oil well.The microemulsion system(O-ME)with cationic-nonionic surfactant as hydrophilic shell,No.3 white oil as oil phase core has the highest imbibition recovery;its spontaneous imbibition mechanisms include:the ultra-low interfacial tension and wettability reversal significantly reduce oil adhesion work to improve oil displacement efficiency,the nanoscale“core-shell structure”formed can easily enter micro-nano pores and throats to expand the swept volume,in addition,the remarkable effect of dispersing and solubilizing crude oil can improve the mobility of crude oil.Based on the experimental results,a microfracture huff and puff test of O-ME was carried out in Well YBD43-X506 of Shengli Oilfield.After being treated,the well had a significant increase of daily fluid production to 5 tons from 1.4 tons,and an increase of daily oil production to 2.7 tons from 1.0 ton before treatment. 展开更多
关键词 ultra-low permeability reservoir tight oil MICROEMULSION imbibition mechanism oil displacement efficiency EOR
下载PDF
Synchronous injection-production energy replenishment for a horizontal well in an ultra-low permeability sandstone reservoir: A case study of Changqing oilfield in Ordos Basin, NW China
13
作者 WANG Jing LIU Jungang +7 位作者 LI Zhaoguo LI Hongchang ZHANG Jiaosheng LI Wenqing ZHANG Yuanli PING Yi YANG Huanying WANG Ping 《Petroleum Exploration and Development》 2020年第4期827-835,共9页
It is difficult to build an effective water flooding displacement pressure system in the middle section of a horizontal well in an ultra-low permeability sandstone reservoir.To solve this problem,this study proposes t... It is difficult to build an effective water flooding displacement pressure system in the middle section of a horizontal well in an ultra-low permeability sandstone reservoir.To solve this problem,this study proposes to use packers,sealing cannula and other tools in the same horizontal well to inject water in some fractures and produce oil from other fractures.This new energy supplement method forms a segmental synchronous injection-production system in a horizontal well.The method can reduce the distance between the injection end and the production end,and quickly establish an effective displacement system.Changing the displacement between wells to displacement between horizontal well sections,and point water flooding to linear uniform water flooding,the method can enhance water sweeping volume and shorten waterflooding response period.The research shows that:(1)In the synchronous injection and production of horizontal well in an ultra-low-permeability sandstone reservoir,the water injection section should select the section where the natural fractures and artificial fractures are in the same direction or the section with no natural fractures,and the space between two sections should be 60?80 m.(2)In addition to controlling injection pressure,periodic water injection can be taken to reduce the risk of re-opening and growth of natural fractures or formation fracture caused by the gradual increase of water injection pressure with water injection going on.(3)Field tests have verified that this method can effectively improve the output of single well and achieve good economic benefits,so it can be widely used in the development of ultra-low permeability sandstone reservoirs. 展开更多
关键词 ultra-low permeability reservoir sandstone reservoir horizontal well staged fracturing synchronous injection-production intersegment displacement development effect
下载PDF
An overview of efficient development practices at low permeability sandstone reservoirs in China 被引量:1
14
作者 Bingyu Ji Jichao Fang 《Energy Geoscience》 2023年第3期149-157,共9页
Low permeability sandstone reservoirs in China typically have more complicated geological conditions, pore structures, and flow characteristics as compared to medium-to-high-permeability sandstone reservoirs. Traditio... Low permeability sandstone reservoirs in China typically have more complicated geological conditions, pore structures, and flow characteristics as compared to medium-to-high-permeability sandstone reservoirs. Traditional geological and seepage theories, and engineering methods are not applicable to the development of these low permeability reservoirs, and wells drilled into them often produce oil and gas at very low rates. Recent breakthroughs in reservoir exploitation technology have greatly improved the productivity of low permeability reservoirs, making them the primary target for oil exploration and extraction in China. The development theories and practices applied to low permeability reservoirs in China are reviewed in this study— based on relevant geological and engineering practices, including drilling, fracturing, recovery, and surface engineering. A unique series of technological advances that aid the development of low permeability reservoirs in China are summarized here. This study may serve as a meaningful guide in achieving scale efficiency for the development of low permeability reservoirs. 展开更多
关键词 Well pattern FRACTURING Development model reservoir description Low permeability reservoir
下载PDF
The tectonic fracture modeling of an ultra-low permeability sandstone reservoir based on an outcrop analogy: A case study in the Wangyao Oilfield of Ordos Basin, China 被引量:7
15
作者 Zhao Xiaoming Liu Li +2 位作者 Hu Jialiang Zhou Xiaojun Li Min 《Petroleum Science》 SCIE CAS CSCD 2014年第3期363-375,共13页
Due to inherent limits of data acquisition and geophysical data resolution, there are large uncertainties in the characterization of subsurface fractures. However, outcrop analogies can provide qualitative and quantit... Due to inherent limits of data acquisition and geophysical data resolution, there are large uncertainties in the characterization of subsurface fractures. However, outcrop analogies can provide qualitative and quantitative information on a large number of fractures, based on which the accuracy of subsurface fracture characterization can be improved. Here we take the tectonic fracture modeling of an ultra-low permeability sandstone reservoir based on an outcrop analogy, a case study of the Chang6t~ Formation of the Upper Triassic Yanchang Group of the Wangyao Oilfield in the Ordos Basin of China. An outcrop at the edge of the basin is a suitable analog for the reservoir, but the prerequisite is that they must have equivalent previous stress fields, similar final structural characteristics, relative timing and an identical depositional environment and diagenesis. The relationship among fracture density, rock type and bed thickness based on the outcrop is one of the most important fracture distribution models, and can be used to interpret fracture density in individual wells quantitatively. Fracture orientation, dip, geometry and scale, also should be described and measured in the outcrop, and can be used together with structure restoration and single well fracture density interpretation to guide fracture intensity prediction on bed surfaces and to constrain the construction of the 3D fracture geometry model of the subsurface reservoir. The application of the above principles shows the outcrop-based tectonic fracture models of the target ultra-low permeability sandstone reservoir are consistent with fractures inferred from microseismic interpretation and tracer tests. This illustrated that the fracture modeling based on the outcrop analogy is reliable and can reduce the uncertainty in stochastic fracture modeling. 展开更多
关键词 ultra-low permeability sandstone tectonic fracture modeling outcrop analog subsurface reservoir 3D modeling
下载PDF
Determination of microscopic waterflooding characteristics and influence factors in ultra-low permeability sandstone reservoir 被引量:2
16
作者 任大忠 孙卫 +2 位作者 黄海 南珺祥 陈斌 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第9期2134-2144,共11页
Actual sandstone micromodel was used in this work to conduct the microscopic waterflooding experiment of ultra-low sandstone reservoir,since the inside seepage characteristics of microscopic waterflooding process of C... Actual sandstone micromodel was used in this work to conduct the microscopic waterflooding experiment of ultra-low sandstone reservoir,since the inside seepage characteristics of microscopic waterflooding process of Chang 8 ultra-low permeability sandstone reservoir of Upper Triassic Yanchang formation in Huaqing region of the Ordos Basin,China is difficult to observe directly.Combined with physical property,casting thin sections,constant-rate mercury injection capillary pressure and nuclear magnetic resonance,the influence of reservoir property on the waterflooding characteristics in pores were analyzed and evaluated.Seepage paths of waterflooding characteristics were divided into four types:homogeneous seepage,reticular-homogeneous seepage,finger-reticular seepage and finger-like seepage,the waterflooding efficiency of which decreases in turn.More than 70%of residual oil occurs as flowing-around seepage and oil film.Physical property,pore structure and movable fluid characteristics are all controlled by digenesis and their impacts on waterflooding efficiency are in accordance.Generally,the pore throat radius size and distribution and movable fluid percentage are closely related to waterflooding law. 展开更多
关键词 WATERFLOODING seepage characteristics reservoir characteristics ultra-low permeability sandstone reservoir Ordos basin
下载PDF
Experimental and Numerical Assessment of the Influence of Bottomhole Pressure Drawdown on Terrigenous Reservoir Permeability and Well Productivity
17
作者 Sergey Popov Sergey Chernyshov Evgeniy Gladkikh 《Fluid Dynamics & Materials Processing》 EI 2023年第3期619-634,共16页
During oil and gas fields development,a decrease in reservoir and bottomhole pressure has often a detrimental effect on reservoir properties,especially permeability.This study presents the results of laboratory tests ... During oil and gas fields development,a decrease in reservoir and bottomhole pressure has often a detrimental effect on reservoir properties,especially permeability.This study presents the results of laboratory tests conducted to determine the response of terrigenous reservoir core-sample permeability to changes in the effective stresses and a decrease in the reservoir pressure.The considered samples were exposed for a long time to a constant high effective stress for a more reliable assessment of the viscoplastic deformations.According to these experiments,the decrease of the core samples permeability may reach 21%with a decrease in pressure by 9.5 MPa from the initial reservoir conditions.Numerical simulations have been also conducted.These have been based on the finite element modeling of the near-wellbore zone of the terrigenous reservoir using poroelasticity relations.The simulation results show a limited decrease in reservoir permeability in the near-wellbore zone(by 17%,which can lead to a decrease in the well productivity by 13%). 展开更多
关键词 Terrigenous reservoir permeability core sample reservoir pressure bottomhole pressure drawdown effective stress well productivity
下载PDF
Simultaneous hydraulic fracturing of ultra-low permeability sandstone reservoirs in China: Mechanism and its field test 被引量:9
18
作者 任岚 林然 +3 位作者 赵金洲 杨克文 胡永全 王秀娟 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第4期1427-1436,共10页
Based on the impact of the stress perturbation effect created by simultaneous propagation of multiple fractures in the process of simultaneous hydraulic fracturing, a thorough research on the mechanism and adaptation ... Based on the impact of the stress perturbation effect created by simultaneous propagation of multiple fractures in the process of simultaneous hydraulic fracturing, a thorough research on the mechanism and adaptation of simultaneous fracturing of double horizontal wells in ultra-low permeability sandstone reservoirs was conducted by taking two adjacent horizontal wells(well Yangping-1 and well Yangping-2 located in Longdong area of China Changqing Oilfield) as field test wells. And simultaneous fracturing optimal design of two adjacent horizontal wells was finished and employed in field test. Micro-seismic monitoring analysis of fracture propagation during the stimulation treatment shows that hydraulic fractures present a pattern of complicated network expansion, and the well test data after fracturing show that the daily production of well Yangping-1 and well Yangping-2 reach105.8 t/d and 87.6 t/d, which are approximately 9.4 times and 7.8 times the daily production of a fractured vertical well in the same area, respectively. Field test reflects that simultaneous hydraulic fracturing of two adjacent horizontal wells can enlarge the expansion area of hydraulic fractures to obtain a lager drainage area and realize the full stimulation of ultra-low permeability sandstone reservoirs in China Changqing oilfield. Therefore, simultaneous fracturing of two adjacent horizontal wells provides a good opportunity in stimulation techniques for the efficient development of ultra-low permeability reservoirs in China Changqing oilfield,and it has great popularization value and can provide a new avenue for the application of stimulation techniques in ultra-low permeability reservoirs in China. 展开更多
关键词 Changqing Oilfield ultra-low permeability simultaneous fracturing double horizontal wells
下载PDF
Method of moderate water injection and its application in ultra-low permeability oil reservoirs of Yanchang Oilfield, NW China 被引量:1
19
作者 WANG Xiangzeng DANG Hailong GAO Tao 《Petroleum Exploration and Development》 2018年第6期1094-1102,共9页
To explore the method of improving development effect and solving the problem of water breakthrough and water out for ultralow permeability fractured reservoirs, an indoor evaluation method of dynamic imbibition for f... To explore the method of improving development effect and solving the problem of water breakthrough and water out for ultralow permeability fractured reservoirs, an indoor evaluation method of dynamic imbibition for fracture-matrix system was established taking the Chang 8 reservoir in southern Yanchang Oilfield as a research target. Key factors for the imbibition effect were obtained, an imbibition's rate expression was obtained, a model considering the double effects of imbibition-displacement was built and optimal injection and production parameters for the research area were obtained as well. The results show that an optimum displacement rate that maximizes the oil displacement efficiency exists in the water displacing oil process, and the optimal displacing rate becomes smaller as the permeability decreases. The imbibition displacement efficiency increases as the reservoir quality index and water wettability index of rock become bigger. But the larger the initial water saturation or oil-water viscosity ratio is, the smaller the imbibition displacement efficiency is. The optimal injection-production ratio for the Chang 8 reservoir of southern Yanchang Oilfield is 0.95, and the predicted recovery is 17.2% when the water cut is 95%, it is 2.9% higher than the recovery of conventional injection-production ratio 1.2. By using the moderate water injection technique based on the double effects of imbibition-displacement mechanism, the water injection development effect for the ultra-low permeability fractured reservoirs can be improved significantly. 展开更多
关键词 ultra-low permeability OIL reservoir fractured OIL reservoir water-flooding IMBIBITION displacement water-flooding recovery Yanchang OILFIELD
下载PDF
A quantitative evaluation for well pattern adaptability in ultra-low permeability oil reservoirs:A case study of Triassic Chang 6 and Chang 8 reservoirs in Ordos Basin 被引量:1
20
作者 ZHAO Jiyong AN Xiaoping +4 位作者 WANG Jing FAN Jianming KANG Xingmei TAN Xiqun LI Wenqing 《Petroleum Exploration and Development》 2018年第3期499-506,共8页
Based on the previous studies and development practice in recent 10 years, a quantitative evaluation method for the adaptability of well patterns to ultra-low permeability reservoirs was established using cluster anal... Based on the previous studies and development practice in recent 10 years, a quantitative evaluation method for the adaptability of well patterns to ultra-low permeability reservoirs was established using cluster analysis and gray correlation method, and it includes 10 evaluation parameters in the four aspects of optimal evaluation parameters, determination of weights for evaluation parameters, development stage division, and determination of classification coefficients. This evaluation method was used to evaluate the well pattern adaptability of 13 main ultra-low permeability reservoirs in Triassic Chang 6 and Chang 8 of Ordos Basin. Three basic understandings were obtained: Firstly, the well pattern for ultra-low permeability type-I reservoirs has generally good adaptability, with proper well pattern forms and well pattern parameters. Secondly, square inverted nine-spot well pattern is suitable for reservoirs with no fractures; rhombic inverted nine-spot injection pattern is suitable for reservoirs with some fractures; and rectangular well pattern is suitable for reservoirs with rich fractures. Thirdly, for the ultra-low permeability type-Ⅱ and type-Ⅲ reservoirs, with the principles of well pattern form determination, the row spacing needs to be optimized further to improve the level of development of such reservoirs. 展开更多
关键词 ultra-low permeability oil reservoir well pattern adaptability comprehensive evaluation parameter ORDOS Basin TRIASSIC CHANG 6 FORMATION CHANG 8 FORMATION
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部