Micro-texturing has been widely proven to be an effective technology for achieving sustainable machining.However,the performance of micro-textured tools under different cooling conditions,especially their coupling eff...Micro-texturing has been widely proven to be an effective technology for achieving sustainable machining.However,the performance of micro-textured tools under different cooling conditions,especially their coupling effect on machined surface integrity,was scarcely reported.In this paper,the non-textured,linear micro-grooved,and curvilinear micro-grooved inserts were used to turn aluminum alloy 6061 under dry,emulsion,and liquid nitrogen cryogenic cooling conditions.The coupling effects of different micro-textures and cooling conditions on cutting force,cutting temperature,and machined surface integrity,including the surface roughness,work hardening,and residual stress,were revealed and discussed in detail.Results indicated that the micro-grooved tools,especially the curvilinear micro-grooved tools,not only reduced the cutting force and cutting temperature,but also improved the machined surface integrity.In addition,the micro-grooved tools can cooperate with the emulsion or liquid nitrogen to reduce the cutting force,cutting temperature,and improve the machined surface integrity generally,although the combination of emulsion cooling condition and micro-grooved tools generated negative coupling effects on cutting forces and surface work hardening.Especially,the combination of curvilinear micro-grooved cutting tools and cryogenic cooling condition resulted in the lowest cutting force and cutting temperature,which generated the surface with low roughness,weak work hardening,and compressive residual stress.展开更多
基金financially supported by the National Natural Science Foundation of China(Grant Nos.52005281,52005215 and 52074161)the Natural Science Foundation of Shandong Province(Grant No.ZR2020QE181)the Open Research Fund of State Key Laboratory of High Performance Complex Manufacturing,Central South University(Grant No.Kfkt2020-06).
文摘Micro-texturing has been widely proven to be an effective technology for achieving sustainable machining.However,the performance of micro-textured tools under different cooling conditions,especially their coupling effect on machined surface integrity,was scarcely reported.In this paper,the non-textured,linear micro-grooved,and curvilinear micro-grooved inserts were used to turn aluminum alloy 6061 under dry,emulsion,and liquid nitrogen cryogenic cooling conditions.The coupling effects of different micro-textures and cooling conditions on cutting force,cutting temperature,and machined surface integrity,including the surface roughness,work hardening,and residual stress,were revealed and discussed in detail.Results indicated that the micro-grooved tools,especially the curvilinear micro-grooved tools,not only reduced the cutting force and cutting temperature,but also improved the machined surface integrity.In addition,the micro-grooved tools can cooperate with the emulsion or liquid nitrogen to reduce the cutting force,cutting temperature,and improve the machined surface integrity generally,although the combination of emulsion cooling condition and micro-grooved tools generated negative coupling effects on cutting forces and surface work hardening.Especially,the combination of curvilinear micro-grooved cutting tools and cryogenic cooling condition resulted in the lowest cutting force and cutting temperature,which generated the surface with low roughness,weak work hardening,and compressive residual stress.