期刊文献+
共找到23,657篇文章
< 1 2 250 >
每页显示 20 50 100
Low-energy-consumption temperature swing system for CO_(2) capture by combining passive radiative cooling and solar heating 被引量:2
1
作者 Ying-Xi Dang Peng Tan +3 位作者 Bin Hu Chen Gu Xiao-Qin Liu Lin-Bing Sun 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第3期507-515,共9页
Temperature-swing adsorption(TSA)is an effective technique for CO_(2) capture,but the temperature swing procedure is energy-intensive.Herein,we report a low-energy-consumption system by combining passive radiative coo... Temperature-swing adsorption(TSA)is an effective technique for CO_(2) capture,but the temperature swing procedure is energy-intensive.Herein,we report a low-energy-consumption system by combining passive radiative cooling and solar heating for the uptake of CO_(2) on commercial activated carbons(CACs).During adsorption,the adsorbents are coated with a layer of hierarchically porous poly(vinylidene fluoride-co-hexafluoropropene)[P(VdF-HFP)HP],which cools the adsorbents to a low temperature under sunlight through radiative cooling.For desorption,CACs with broad absorption of the solar spectrum are exposed to light irradiation for heating.The heating and cooling processes are completely driven by solar energy.Adsorption tests under mimicked sunlight using the CACs show that the performance of this system is comparable to that of the traditional ones.Furthermore,under real sunlight irradiation,the adsorption capacity of the CACs can be well maintained after multiple cycles.The present work may inspire the development of new temperature swing procedures with little energy consumption. 展开更多
关键词 CO_(2)capture Solar heating Passive radiative cooling temperature swing adsorption
下载PDF
Effects of the Water-Cement Ratio and the Molding Temperature on the Hydration Heat of Cement
2
作者 代金鹏 HE Jie +1 位作者 WANG Qicai LOU Xuyu 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第4期990-998,共9页
The effects of the water-cement ratio and the molding temperature on the hydration heat of cement were investigated with semi-adiabatic calorimetry.The specimens were prepared with water-cement ratios of 0.31,0.38,and... The effects of the water-cement ratio and the molding temperature on the hydration heat of cement were investigated with semi-adiabatic calorimetry.The specimens were prepared with water-cement ratios of 0.31,0.38,and 0.45,and the molding temperature was specified at 10 and 20℃.The experimental results show that,as the water-binder ratio increases,the value of the second temperature peak on the temperature curve of the cement paste decreases,and the age at which the peak appears is delayed.The higher the water-cement ratio,the higher the hydration heat release in the early period of cement hydration,but this trend reverses in the late period.There are intersection points of the total hydration heat curve of the cement pastes under the influence of the water-cement ratio,and this law can be observed at both molding temperatures.With the increase in the molding temperature,the age of the second temperature peak on the temperature curve of the cement paste will advance,but the temperature peak will decrease.The higher the molding temperature,the earlier the acceleration period of the cement hydration began,and the larger the hydration heat of the cement in the early stage,but the smaller the total heat in the late period.A subsection function calculation model of the hydration heat,which was based on the existing models,was proposed in order to predict the heat of the hydration of the concrete. 展开更多
关键词 semi-adiabatic calorimetry hydration heat water-cement ratio molding temperature MODELING
下载PDF
Calculation of Mass Concrete Temperature and Creep Stress under the Influence of Local Air Heat Transfer
3
作者 Heng Zhang Chao Su +2 位作者 Xiaohu Chen Zhizhong Song Weijie Zhan 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第9期2977-3000,共24页
Temperature-induced cracking during the construction of mass concrete is a significant concern.Numerical simulations of concrete temperature have primarily assumed that the concrete is placed in an open environment.Th... Temperature-induced cracking during the construction of mass concrete is a significant concern.Numerical simulations of concrete temperature have primarily assumed that the concrete is placed in an open environment.The problem of heat transfer between the air and concrete has been simplified to the concrete’s heat dissipation boundary.However,in the case of tubular concrete structures,where air inlet and outlet are relatively limited,the internal air temperature does not dissipate promptly to the external environment as it rises.To accurately simulate the temperature and creep stress in tubular concrete structures with enclosed air spaces during construction,we establish an air–concrete coupled heat transfer model according to the principles of conjugate heat transfer,and the accuracy of the model is verified through experiments.Furthermore,we conduct a case study to analyze the impact of airflow within the ship lock corridor on concrete temperature and creep stress.The results demonstrate that enhancing airflow within the corridor can significantly reduce the maximum concrete temperature.Compared with cases in which airflow within the corridor is neglected,the maximum concrete temperature and maximum tensile stress can be reduced by 12.5℃ and 0.7 MPa,respectively,under a wind speed of 4 m/s.The results of the traditional calculation method are relatively close to those obtained at a wind speed of 1 m/s.However,the temperature reduction process in the traditional method is faster,and the method yields greater tensile stress values for the corridor location. 展开更多
关键词 Conjugate heat transfer temperature field mass concrete creep stress
下载PDF
Factors Influencing the Spatial Variability of Air Temperature Urban Heat Island Intensity in Chinese Cities
4
作者 Heng LYU Wei WANG +3 位作者 Keer ZHANG Chang CAO Wei XIAO Xuhui LEE 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第5期817-829,共13页
Few studies have investigated the spatial patterns of the air temperature urban heat island(AUHI)and its controlling factors.In this study,the data generated by an urban climate model were used to investigate the spat... Few studies have investigated the spatial patterns of the air temperature urban heat island(AUHI)and its controlling factors.In this study,the data generated by an urban climate model were used to investigate the spatial variations of the AUHI across China and the underlying climate and ecological drivers.A total of 355 urban clusters were used.We performed an attribution analysis of the AUHI to elucidate the mechanisms underlying its formation.The results show that the midday AUHI is negatively correlated with climate wetness(humid:0.34 K;semi-humid:0.50 K;semi-arid:0.73 K).The annual mean midnight AUHI does not show discernible spatial patterns,but is generally stronger than the midday AUHI.The urban–rural difference in convection efficiency is the largest contributor to the midday AUHI in the humid(0.32±0.09 K)and the semi-arid(0.36±0.11 K)climate zones.The release of anthropogenic heat from urban land is the dominant contributor to the midnight AUHI in all three climate zones.The rural vegetation density is the most important driver of the daytime and nighttime AUHI spatial variations.A spatial covariance analysis revealed that this vegetation influence is manifested mainly through its regulation of heat storage in rural land. 展开更多
关键词 air temperature urban heat island spatial variations biophysical drivers Chinese cities climate model
下载PDF
Long-term ocean temperature trend and marine heatwaves
5
作者 Min ZHANG Yangyan CHENG +4 位作者 Gang WANG Qi SHU Chang ZHAO Yuanling ZHANG Fangli QIAO 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2024年第4期1037-1047,共11页
Marine heatwaves(MHWs)can cause irreversible damage to marine ecosystems and livelihoods.Appropriate MHW characterization remains difficult,because the choice of a sea surface temperature(SST)temporal baseline strongl... Marine heatwaves(MHWs)can cause irreversible damage to marine ecosystems and livelihoods.Appropriate MHW characterization remains difficult,because the choice of a sea surface temperature(SST)temporal baseline strongly influences MHW identification.Following a recent work suggesting that there should be a communicating baseline for long-term ocean temperature trends(LTT)and MHWs,we provided an effective and quantitative solution to calculate LTT and MHWs simultaneously by using the ensemble empirical mode decomposition(EEMD)method.The long-term nonlinear trend of SST obtained by EEMD shows superiority over the traditional linear trend in that the data extension does not alter prior results.The MHWs identified from the detrended SST data exhibited low sensitivity to the baseline choice,demonstrating the robustness of our method.We also derived the total heat exposure(THE)by combining LTT and MHWs.The THE was sensitive to the fixed-period baseline choice,with a response to increasing SST that depended on the onset time of a perpetual MHW state(identified MHW days equal to the year length).Subtropical areas,the Indian Ocean,and part of the Southern Ocean were most sensitive to the long-term global warming trend. 展开更多
关键词 marine heatwaves(MHWs) ensemble empirical mode decomposition(EEMD) long-term temperature(LTT)trend total heat exposure(THE)
下载PDF
Effect of temperature on dielectric property and microwave heating behavior of low grade Panzhihua ilmenite ore 被引量:10
6
作者 刘晨辉 张利波 +4 位作者 彭金辉 刘秉国 夏洪应 顾晓春 史谊峰 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第11期3462-3469,共8页
The permittivity of low grade Panzhuhua ilmenite ore at 2.45 GHz in the temperatures from 20 ℃ up to 100 ℃ was measured using the technology of open-ended coaxial sensor combined with theoretical computation. The re... The permittivity of low grade Panzhuhua ilmenite ore at 2.45 GHz in the temperatures from 20 ℃ up to 100 ℃ was measured using the technology of open-ended coaxial sensor combined with theoretical computation. The results show that both the real (ε′) and imaginary (ε′) part of complex permittivity (ε′-jε′) of the ilmenite significantly increase with temperature. The loss tangent (tanδ) is a quadratic function of temperature, and the penetration depth of ilmenite decreases with temperature increase from 20 ℃to 100 ℃ The increase of the sample temperature under microwave radiation displays a nonlinear relationship between the temperature (T) and microwave heating time (t). The positive feedback interaction between complex permittivity and sample temperature amplifies the interaction between ilmenite and the microwave radiation. The optimum dimensions for uniform heat deposition vary from 10 cm to 5 cm (about two power penetration depths) in a sample being irradiated from both sides in a 2.45 GHz microwave field when temperature increases from room temperature to 100 ℃ 展开更多
关键词 dielectric properties Panzhihua ilmenite low grade microwave heating temperature increase
下载PDF
Operation optimization of prefabricated light modular radiant heating system:Thermal resistance analysis and numerical study
7
作者 LI Yao HU Ru-kun +4 位作者 XIN Li XUE Jie HUANG Fei XIA Jian-wei YANG Xiao-hu 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第6期1983-1997,共15页
The utilization of prefabricated light modular radiant heating system has demonstrated significant increases in heat transfer efficiency and energy conservation capabilities.Within prefabricated building construction,... The utilization of prefabricated light modular radiant heating system has demonstrated significant increases in heat transfer efficiency and energy conservation capabilities.Within prefabricated building construction,this new heating method presents an opportunity for the development of comprehensive facilities.The parameters for evaluating the effectiveness of such a system are the upper surface layer’s heat flux and temperature.In this paper,thermal resistance analysis calculation based on a simplified model for this unique radiant heating system analysis is presented with the heat transfer mechanism’s evaluation.The results obtained from thermal resistance analysis calculation and numerical simulation indicate that the thermal resistance analysis method is highly accurate with temperature discrepancies ranging from 0.44℃ to−0.44℃ and a heat flux discrepancy of less than 7.54%,which can meet the requirements of practical engineering applications,suggesting a foundation for the prefabricated radiant heating system. 展开更多
关键词 radiant heating system thermal resistance analysis simplified model numerical simulation heat flux temperatur
下载PDF
Alternating current heating techniques for lithium-ion batteries in electric vehicles:Recent advances and perspectives
8
作者 Xinrong Huang Jinhao Meng +5 位作者 Wei Jiang Wenjie Liu Kailong Liu Yipu Zhang Daniel-Ioan Stroe Remus Teodorescu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第9期679-697,共19页
The significant decrease in battery performance at low temperatures is one of the critical challenges that electric vehicles(EVs)face,thereby affecting the penetration rate in cold regions.Alternating current(AC)heati... The significant decrease in battery performance at low temperatures is one of the critical challenges that electric vehicles(EVs)face,thereby affecting the penetration rate in cold regions.Alternating current(AC)heating has attracted widespread attention due to its low energy consumption and uniform heating advantages.This paper introduces the recent advances in AC heating from the perspective of practical EV applications.First,the performance degradation of EVs in low-temperature environments is introduced briefly.The concept of AC heating and its research methods are provided.Then,the effects of various AC heating methods on battery heating performance are reviewed.Based on existing studies,the main factors that affect AC heating performance are analyzed.Moreover,various heating circuits based on EVs are categorized,and their cost,size,complexity,efficiency,reliability,and heating rate are elaborated and compared.The evolution of AC heaters is presented,and the heaters used in brand vehicles are sorted out.Finally,the perspectives and challenges of AC heating are discussed.This paper can guide the selection of heater implementation methods and the optimization of heating effects for future EV applications. 展开更多
关键词 Lithium-ion battery Low temperature Alternating current heating heatER Electric vehicle
下载PDF
Extraction of the key infrared radiation temperature features concerning stress and crack evolution of loaded rocks
9
作者 Wei Liu Liqiang Ma +4 位作者 Michel Jaboyedoff Marc-Henri Derron Qiangqiang Gao Fengchang Bu Hai Sun 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第8期1059-1081,共23页
The infrared radiation temperature(IRT)variation concerning stress and crack evolution of rocks is a critical focus in rock mechanics domain and engineering disaster warning.In this paper,a methodology to extract the ... The infrared radiation temperature(IRT)variation concerning stress and crack evolution of rocks is a critical focus in rock mechanics domain and engineering disaster warning.In this paper,a methodology to extract the key IRT features related to stress and crack evolution of loaded rocks is proposed.Specifically,the wavelet denoising and reconstruction in thermal image sequence(WDRTIS)method is employed to eliminate temporal noise in thermal image sequences.Subsequently,the adaptive partition temperature drift correction(APTDC)method is introduced to alleviate temperature drift.On this basis,the spatial noise correction method based on threshold segmentation and adaptive median filtering(OTSU-AMF)is proposed to extract the key IRT features associated with microcracks of loaded rocks.Following temperature drift correction,IRT provides an estimation of the thermoelastic factor in rocks,typically around 5.29×10^(-5) MPa^(-1) for sandstones.Results reveal that the high-temperature concentrated region in cumulative thermal images of crack evolution(TICE)can elucidate the spatiotemporal evolution of localized damage.Additionally,heat dissipation of crack evolution(HDCE)acquired from TICE quantifies the progressive failure process of rocks.The proposed methodology enhances the reliability of IRT monitoring results and provides an innovative approach for conducting research in rock mechanics and monitoring engineering disasters. 展开更多
关键词 Infrared radiation(IR) temperature drift Spatial background noise Rock fracture Average infrared radiation temperature(AIRT) heat dissipation of crack evolution(HDCE)
下载PDF
HadISDH.extremes Part Ⅱ:Exploring Humid Heat Extremes Using Wet Bulb Temperature Indices 被引量:2
10
作者 Kate M.WILLETT 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2023年第11期1968-1985,共18页
Heat events may be humid or dry.While several indices incorporate humidity,such combined indices obscure identification and exploration of heat events by their different humidity characteristics.The new HadISDH.extrem... Heat events may be humid or dry.While several indices incorporate humidity,such combined indices obscure identification and exploration of heat events by their different humidity characteristics.The new HadISDH.extremes global gridded monitoring product uniquely provides a range of wet and dry bulb temperature extremes indices.Analysis of this new data product demonstrates its value as a tool for quantifying exposure to humid verses dry heat events.It also enables exploration into“stealth heat events”,where humidity is high,perhaps enough to affect productivity and health,while temperature remains moderate.Such events may not typically be identified as“heat events”by temperature-focused heat indices.Over 1973-2022,the peak magnitude of humid extremes(maximum daily wet bulb temperature over a month;T_(w)X)for the global annual mean increased significantly at 0.13±0.04℃(10 yr)^(−1),which is slightly slower than the global annual mean T_(w) increase of 0.22±0.04℃(10 yr)^(−1).The frequency of moderate humid extreme events per year(90th per-centile daily maxima wet bulb temperature exceedance;T_(w)X90p)also increased significantly at 4.61±1.07 d yr^(−1)(10 yr)^(−1).These rates were slower than for temperature extremes,TX and TX90p,which respectively increased significantly at 0.27±0.04℃(10 yr)^(−1) and 5.53±0.72 d yr^(−1)(10 yr)^(−1).Similarly,for the UK/Europe focus region,JJA-mean T_(w)X increased significantly,again at a slower rate than for TX and mean T_(w).HadISDH.extremes shows some evidence of“stealth heat events”occurring where humidity is high but temperature remains more moderate. 展开更多
关键词 wet bulb temperature heat extremes climate monitoring
下载PDF
Investigation on Temperature Field Calibration and Analysis of Wind Tunnel
11
作者 Zhaokun Ren Zhanyuan Ma +3 位作者 Yue Zhang Hongda Xu Yunxiang Wang Hui Xu 《Journal of Harbin Institute of Technology(New Series)》 CAS 2024年第3期63-79,共17页
For wind tunnels,it is essential to conduct temperature and flow field calibration on their test section,which is an important indicator for evaluating the quality of wind tunnel flow fields.In the paper,a truss compo... For wind tunnels,it is essential to conduct temperature and flow field calibration on their test section,which is an important indicator for evaluating the quality of wind tunnel flow fields.In the paper,a truss composed of temperature sensors was used to calibrate the temperature field of a completed wind tunnel section.By adjusting the distance between the temperature measurement truss and the nozzle,as well as the wind speed,the temperature field distribution data at different positions could be obtained.Analyze these data to identify important factors that affect the distribution of temperature field.Simultaneously,the temperature field of the wind tunnel was simulated accordingly.The purpose is to further analyze the fluid heat transfer between air and wind tunnel walls through numerical simulation.Through the above analysis methods,the quality of the temperature field in the wind tunnel has been further verified,providing reference for future wind tunnel tests of relevant models. 展开更多
关键词 wind tunnel temperature field numerical simulation fluid heat transfer
下载PDF
Spatiotemporal dynamics of land use/land cover(LULC)changes and its impact on land surface temperature:A case study in New Town Kolkata,eastern India
12
作者 Bubun MAHATA Siba Sankar SAHU +2 位作者 Archishman SARDAR Laxmikanta RANA Mukul MAITY 《Regional Sustainability》 2024年第2期26-48,共23页
Rapid urbanization creates complexity,results in dynamic changes in land and environment,and influences the land surface temperature(LST)in fast-developing cities.In this study,we examined the impact of land use/land ... Rapid urbanization creates complexity,results in dynamic changes in land and environment,and influences the land surface temperature(LST)in fast-developing cities.In this study,we examined the impact of land use/land cover(LULC)changes on LST and determined the intensity of urban heat island(UHI)in New Town Kolkata(a smart city),eastern India,from 1991 to 2021 at 10-a intervals using various series of Landsat multi-spectral and thermal bands.This study used the maximum likelihood algorithm for image classification and other methods like the correlation analysis and hotspot analysis(Getis–Ord Gi^(*) method)to examine the impact of LULC changes on urban thermal environment.This study noticed that the area percentage of built-up land increased rapidly from 21.91%to 45.63%during 1991–2021,with a maximum positive change in built-up land and a maximum negative change in sparse vegetation.The mean temperature significantly increased during the study period(1991–2021),from 16.31℃to 22.48℃in winter,29.18℃to 34.61℃in summer,and 19.18℃to 27.11℃in autumn.The result showed that impervious surfaces contribute to higher LST,whereas vegetation helps decrease it.Poor ecological status has been found in built-up land,and excellent ecological status has been found in vegetation and water body.The hot spot and cold spot areas shifted their locations every decade due to random LULC changes.Even after New Town Kolkata became a smart city,high LST has been observed.Overall,this study indicated that urbanization and changes in LULC patterns can influence the urban thermal environment,and appropriate planning is needed to reduce LST.This study can help policy-makers create sustainable smart cities. 展开更多
关键词 Urbanization Land use/land cover (LULC)changes Land surface temperature Urban heat island Hotspot analysis Smart city
下载PDF
Temperature Drop of Molten Metals in Open Channels
13
作者 Miguel A. Barron-Meza Joan Reyes-Miranda 《World Journal of Engineering and Technology》 2024年第3期493-500,共8页
The temperature drop of molten metal flowing in open channels is numerically determined. Rectangular, trapezoidal and triangular geometries are considered. The overall heat transfer coefficients for the bottom, side w... The temperature drop of molten metal flowing in open channels is numerically determined. Rectangular, trapezoidal and triangular geometries are considered. The overall heat transfer coefficients for the bottom, side walls and free surface of the channel have been taken from the literature. For each geometry, the volumetric flow rate, mean residence time and temperature drop as a function of the channel inclination angle were determined. The rectangular and trapezoidal geometries present the smallest temperature drops, while the triangular geometry presents the greatest temperature drop. The factors that most affect this drop are the value of the free surface area of the channel, and the average residence time of the molten metal in the channel. 展开更多
关键词 Free Surface heat Transfer Molten Metal Open Channel Geometry Residence Time temperature Drop
下载PDF
The Application of Thermomechanical Dynamics (TMD) to Thermoelectric Energy Generation by Employing a Low Temperature Stirling Engine
14
作者 Hiroshi Uechi Lisa Uechi Schun T. Uechi 《Journal of Applied Mathematics and Physics》 2024年第9期3185-3207,共23页
A thermoelectric generation Stirling engine (TEG-Stirling engine) is discussed by employing a low temperature Stirling engine and the dissipative equation of motion derived from the method of thermomechanical dynamics... A thermoelectric generation Stirling engine (TEG-Stirling engine) is discussed by employing a low temperature Stirling engine and the dissipative equation of motion derived from the method of thermomechanical dynamics (TMD). The results and mechanism of axial flux electromagnetic induction (AF-EMI) are applied to a low temperature Stirling engine, resulting in a TEG-Stirling engine. The method of TMD produced thermodynamically consistent and time-dependent physical quantities for the first time, such as internal energy ℰ(t), thermodynamic work Wth(t), the total entropy (heat dissipation) Qd(t)and measure or temperature of a nonequilibrium state T˜(t). The TMD analysis produced a lightweight mechanical system of TEG-Stirling engine which derives electric power from waste heat of temperature (40˚CT100˚C) by a thermoelectric conversion method. An optimal low rotational speed about 30θ′(t)/(2π)60(rpm) is found, applicable to devices for sustainable, clean energy technologies. The stability of a thermal state and angular rotations of TEG-Stirling engine are specifically shown by employing properties of nonequilibrium temperature T˜(t), which is also applied to study optimal fuel-injection and combustion timings of heat engines. 展开更多
关键词 Thermoelectric Generation Stirling Engine (TEG-Stirling Engine) Thermomechanical Dynamics (TMD) Time-Dependent Nonequilibrium temperature Stability of heat Engines in a Thermal State Optimal Fuel-Injection and Combustion Timings
下载PDF
Effect of Ultra-low Temperature on Carbonation Performance of SFRRC and Prediction Model
15
作者 钱维民 苏骏 +1 位作者 ZHAO Jiayu JI Wei 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第4期778-788,共11页
Through the rapid carbonation test of SFRRC with different fiber volume fractions at ultralow temperature,the influence of ultra-low temperature damage on the carbonation resistance of SFRRC was analyzed,which provide... Through the rapid carbonation test of SFRRC with different fiber volume fractions at ultralow temperature,the influence of ultra-low temperature damage on the carbonation resistance of SFRRC was analyzed,which provides a theoretical basis for the application of SFRRC in ultra-low temperature engineering.The experimental results show that ultra-low temperatures can significantly weaken the carbonization resistance of SFRRC.When the temperature reaches 160℃,the carbonization depth increases by 67.66%compared with the normal state.The proper amount of steel fiber has an evident influence on the carbonation resistance of the material.However,when the addition amount exceeds the optimum content,the carbonation resistance of the material decreases.The grey prediction model established by constructing the original sequence can reasonably predict the carbonation resistance of SFRRC after ultra-low temperatures. 展开更多
关键词 ultra-low temperature SFRRC CARBONIZATION grey model
下载PDF
Numerical Analysis on Temperature Distribution in a Single Cell of PEFC Operated at Higher Temperature by1D Heat Transfer Model and 3D Multi-Physics Simulation Model
16
作者 Akira Nishimura Kyohei Toyoda +1 位作者 Daiki Mishima Eric Hu 《Energy and Power Engineering》 CAS 2023年第5期205-227,共23页
This study is to understand the impact of operating conditions, especially initial operation temperature (T<sub>ini</sub>) which is set in a high temperature range, on the temperature profile of the interf... This study is to understand the impact of operating conditions, especially initial operation temperature (T<sub>ini</sub>) which is set in a high temperature range, on the temperature profile of the interface between the polymer electrolyte membrane (PEM) and the catalyst layer at the cathode (i.e., the reaction surface) in a single cell of polymer electrolyte fuel cell (PEFC). A 1D multi-plate heat transfer model based on the temperature data of the separator measured using the thermograph in a power generation experiment was developed to evaluate the reaction surface temperature (T<sub>react</sub>). In addition, to validate the proposed heat transfer model, T<sub>react</sub> obtained from the model was compared with that from the 3D numerical simulation using CFD software COMSOL Multiphysics which solves the continuity equation, Brinkman equation, Maxwell-Stefan equation, Butler-Volmer equation as well as heat transfer equation. As a result, the temperature gap between the results obtained by 1D heat transfer model and those obtained by 3D numerical simulation is below approximately 0.5 K. The simulation results show the change in the molar concentration of O<sub>2</sub> and H<sub>2</sub>O from the inlet to the outlet is more even with the increase in T<sub>ini</sub> due to the lower performance of O<sub>2</sub> reduction reaction. The change in the current density from the inlet to the outlet is more even with the increase in T<sub>ini</sub> and the value of current density is smaller with the increase in T<sub>ini </sub>due to the increase in ohmic over-potential and concentration over-potential. It is revealed that the change in T<sub>react</sub> from the inlet to the outlet is more even with the increase in T<sub>ini</sub> irrespective of heat transfer model. This is because the generated heat from the power generation is lower with the increase in T<sub>ini </sub>due to the lower performance of O<sub>2</sub> reduction reaction. 展开更多
关键词 PEFC heat Transfer Model temperature Distribution Numerical Simulation High temperature Operation
下载PDF
Study of energy-efficient heat resistance and cooling technology for high temperature working face with multiple heat sources in deep mine
17
作者 Hongbin Zhao Shihao Tu +2 位作者 Xun Liu Jieyang Ma Long Tang 《International Journal of Coal Science & Technology》 EI CAS CSCD 2023年第3期92-107,共16页
In the present research,we proposed a scheme to address the issues of severe heat damage,high energy consumption,low cooling system efficiency,and wastage of cold capacity in mines.To elucidate the seasonal variations... In the present research,we proposed a scheme to address the issues of severe heat damage,high energy consumption,low cooling system efficiency,and wastage of cold capacity in mines.To elucidate the seasonal variations of environmental temperature through field measurements,we selected a high-temperature working face in a deep mine as our engineering background.To enhance the heat damage control cability of the working face and minimize unnecessary cooling capac-ity loss,we introduced the multi-dimensional heat hazard prevention and control method called"Heat source barrier and cooling equipment".First,we utilize shotcrete and liquid nitrogen injection to eliminate the heat source and implemented pressure equalization ventilation to disrupt the heat transfer path,thereby creating a heat barrier.Second,we establish divi-sional prediction models for airflow temperature based on the variation patterns obtained through numerical simulation.Third,we devise the location and dynamic control strategy for the cooling equipment based on the prediction models.The results of field application show that the heat resistance and cooling linkage method comply with the safety requirement throughout the entire mining cycle while effectively reducing energy consumption.The ambient temperature is maintained below 30℃,resulting in the energy saving of 10%during the high-temperature period and over 50%during the low-temperature period.These findings serve as a valuable reference for managing heat damage in high-temperature working faces. 展开更多
关键词 High-temperature working face heat source barrier Multiple heat source effect Airflow temperature prediction Dynamic control strategy
下载PDF
An Efficient Method for Heat Recovery Process and Temperature Optimization
18
作者 Basim Kareem Naser Mohammed Dauwed +3 位作者 Ahmed Alkhayyat Mustafa Musa Jaber Shahad Alyousif Mohammed Hasan Ali 《Computers, Materials & Continua》 SCIE EI 2023年第4期1017-1031,共15页
Flue gas heat loss accounts for a significant component of theoverall heat loss for coal-fired boilers in power plants. The flue gas absorbsmore heat as the exhaust gas temperature rises, which reduces boiler efficien... Flue gas heat loss accounts for a significant component of theoverall heat loss for coal-fired boilers in power plants. The flue gas absorbsmore heat as the exhaust gas temperature rises, which reduces boiler efficiencyand raises coal consumption. Additionally, if the exhaust gas temperatureis too high, a lot of water must be used to cool the flue gas for the wetflue gas desulfurization system to function well, which has an impact onthe power plant’s ability to operate profitably. It is consequently vital totake steps to lower exhaust gas temperatures in order to increase boilerefficiency and decrease the amount of coal and water used. Desulfurizationperformance may be enhanced and water use can be decreased by reasonableflue gas characteristics at the entry. This study analyzed the unit’s energyconsumption, investment, and coal savings while proposing four couplingstrategies for regulating flue gas temperature and waste heat recovery. Agraded flue gas conditioning and waste heat recovery plan was presentedunder the condition of ensuring high desulfurization efficiency, along withthe notion of minimizing energy loss owing to energy inflow temperaturedifference. Numerical results show that the proposed methods improved thesystem performance and reduced the water consumption and regulated theboiler temperature. 展开更多
关键词 heat exchange system BOILER energy optimization temperature control
下载PDF
Wire arc additive manufacturing of a heat-resistant Al-Cu-Ag-Sc alloy:microstructures and high-temperature mechanical properties
19
作者 董博伦 蔡笑宇 +4 位作者 夏云浩 刘放 赵宏伟 林三宝 戴鸿滨 《China Welding》 CAS 2023年第4期1-10,共10页
With a high energy efficiency,low geometric limitation,and low cracking susceptivity to cracks,wire arc additive manufacturing(WAAM)has become an ideal substitute for casting in the manufacturing of load-bearing high ... With a high energy efficiency,low geometric limitation,and low cracking susceptivity to cracks,wire arc additive manufacturing(WAAM)has become an ideal substitute for casting in the manufacturing of load-bearing high strength aluminum components in aerospace industry.Recently,in scientific researches,the room temperature mechanical performance of additive manufactured high strength aluminum alloys has been continuously broken through,and proves these alloys can achieve comparable or even higher properties than the forged counterpart.Since the aluminum components for aerospace usage experience high-low temperature cycling due to the absence of atmosphere protection,the high temperature performances of additive manufactured high strength aluminum alloys are also important.However,few research focuses on that.A special 2319Ag Sc with 0.4 wt.%Ag and 0.2 wt.%Sc addition designed for high temperature application is deposited successfully via cold metal transfer(CMT)based on WAAM.The microstructures and high temperature tensile properties are investigated.The results show that the as-deposited 2319Ag Sc alloy presents an alternate distribution of columnar grains and equiaxed grains with no significant textures.Main second phases are Al_(2)Cu and Al3Sc,while co-growth of Al_(2)Cu and bulk Al_(3)Sc is found on the grain boundary.During manufacturing,nanoscale Al_(2)Cu can precipitate out from the matrix.Ag and Mg form nano-scaleΩphase on the Al_(2)Cu precipitates.At 260℃,average yield strengths in the horizontal direction and vertical direction are 87 MPa±2 MPa,87 MPa±4 MPa,while average ultimate tensile strengths are 140 MPa±7 MPa,141 MPa±11 MPa,and average elongations are 11.0%±2.5%,13.5%±3.0%.Anisotropy in different directions is weak. 展开更多
关键词 Wire arc additive manufacturing Al-Cu-Ag-Sc heat resistance microstructure high temperature property
下载PDF
SIMULATION OF TEMPERATURE FIELD IN ULTRA-HIGH FREQUENCY INDUCTION HEATING AND VERIFICATION 被引量:2
20
作者 李奇林 徐九华 苏宏华 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2013年第2期155-161,共7页
An experimental and numerical study on the temperature field induced in the ultra-high frequency induction heating is carried out.With an aim of predicting the thermal history of the workpiece,the influence factors of... An experimental and numerical study on the temperature field induced in the ultra-high frequency induction heating is carried out.With an aim of predicting the thermal history of the workpiece,the influence factors of temperature field,such as the induction frequency,the dimension of coil and the gap between coil and workpiece,are investigated considering temperature-dependent material properties by using FLUX 2Dsoftware.The temperature field characteristic in ultra-high induction heating is obtained and discussed.The numerical values are compared with the experimental results.A good agreement between them is observed with 7.9% errors. 展开更多
关键词 ultra-high frequency induction heating temperature field FLUX 2Dsoftware
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部