目的探讨Twist相关蛋白1(Twist-related protein 1,TWIST1)对野百合碱(Monocrotaline,MCT)诱导的肺动脉高压(pulmonary arterial hypertension,PAH)大鼠肺血管重塑的影响及机制。方法将50只健康雄性SD大鼠,随机分为5组,即对照组、模型...目的探讨Twist相关蛋白1(Twist-related protein 1,TWIST1)对野百合碱(Monocrotaline,MCT)诱导的肺动脉高压(pulmonary arterial hypertension,PAH)大鼠肺血管重塑的影响及机制。方法将50只健康雄性SD大鼠,随机分为5组,即对照组、模型组、二甲基亚砜(Dimethyl sulfoxide,DMSO)溶剂处理的模型组、TWIST1抑制剂Harmine组、自噬抑制剂羟氯喹组。检测右心室收缩压(RVSP),右心室肥厚指数(RVHI)和内膜厚度百分比(MT%)以评估大鼠PAH的发展。采用免疫印迹法检测TWIST1,自噬相关蛋白LC3B以及RND3的蛋白质水平。结果与对照组比较,MCT诱导的PAH大鼠中TWIST1和LC3B表达增加,分别为对照组的2.32±0.22倍和0.87±0.19倍,差异具有统计学意义(t=15.812,11.227,均P<0.001);同时RND3表达下调,为对照组的0.32±0.07倍,差异具有统计学意义(t=-13.003,P<0.001)。给与TWIST1抑制剂Harmine或自噬抑制剂羟氯喹可显著抑制MCT诱导的自噬激活和RND3表达下调,同时降低了MCT诱导的PAH大鼠的RVSP,RVHI和MT%,差异具有统计学意义(t=-24.277~16.636,均P<0.001)。结论TWIST1通过诱导自噬激活促进肺血管重塑,促进PAH的发生发展。展开更多
Nanoparticles(NPs)have gained significant attention as a functional material due to their ability to effectively enhance pressure reduction in injection processes in ultra-low permeability reservoirs.NPs are typically...Nanoparticles(NPs)have gained significant attention as a functional material due to their ability to effectively enhance pressure reduction in injection processes in ultra-low permeability reservoirs.NPs are typically studied in controlled laboratory conditions,and their behavior in real-world,complex environments such as ultra-low permeability reservoirs,is not well understood due to the limited scope of their applications.This study investigates the efficacy and underlying mechanisms of NPs in decreasing injection pressure under various injection conditions(25—85℃,10—25 MPa).The results reveal that under optimal injection conditions,NPs effectively reduce injection pressure by a maximum of 22.77%in core experiment.The pressure reduction rate is found to be positively correlated with oil saturation and permeability,and negatively correlated with temperature and salinity.Furthermore,particle image velocimetry(PIV)experiments(25℃,atmospheric pressure)indicate that the pressure reduction is achieved by NPs through the reduction of wall shear resistance and wettability change.This work has important implications for the design of water injection strategies in ultra-low permeability reservoirs.展开更多
Moirésuperlattices in twisted two-dimensional materials have emerged as ideal platforms for engineering quantum phenomena,which are highly sensitive to twist angles,including both the global value and the spatial...Moirésuperlattices in twisted two-dimensional materials have emerged as ideal platforms for engineering quantum phenomena,which are highly sensitive to twist angles,including both the global value and the spatial inhomogeneity.However,only a few methods provide spatial-resolved information for characterizing local twist angle distribution.展开更多
Following the publication,concerns have been raised about a number of figures in this article.An unexpected area of similarity was identified in terms of the cellular data,where the results from differently performed ...Following the publication,concerns have been raised about a number of figures in this article.An unexpected area of similarity was identified in terms of the cellular data,where the results from differently performed experiments were intended to have been shown,although the areas immediately surrounding this area featured comparatively different distributions of cells.In addition,the western blots in this article were presented with atypical,unusually shaped and possibly anomalous protein bands in many cases.展开更多
We study the valley-dependent electron transport in a four-terminal mesoscopic device of the two monolayer graphene nanoribbons vertically stacked together, where the intersection forms a bilayer graphene lattice with...We study the valley-dependent electron transport in a four-terminal mesoscopic device of the two monolayer graphene nanoribbons vertically stacked together, where the intersection forms a bilayer graphene lattice with a controllable twist angle. Using a tight-binding lattice model, we show that the longitudinal and transverse conductances exhibit significant valley polarization in the low energy regime for small twist angles. As the twist angle increases, the valley polarization shifts to the high energy regime. This arises from the regrouping effect of the electron band in the twisted bilayer graphene region. But for relatively large twist angles, no significant valley polarization is observed. These results are consistent with the spectral densities of the twisted bilayer graphene.展开更多
Manipulating strain mode and degree that can be applied to epitaxial complex oxide thin films have been a cornerstone of strain engineering.In recent years,lift-off and transfer technology of the epitaxial oxide thin ...Manipulating strain mode and degree that can be applied to epitaxial complex oxide thin films have been a cornerstone of strain engineering.In recent years,lift-off and transfer technology of the epitaxial oxide thin films have been developed that enabled the integration of heterostructures without the limitation of material types and crystal orientations.Moreover,twisted integration would provide a more interesting strategy in artificial magnetoelectric heterostructures.A specific twist angle between the ferroelectric and ferromagnetic oxide layers corresponds to the distinct strain regulation modes in the magnetoelectric coupling process,which could provide some insight in to the physical phenomena.In this work,the La_(0.67)Sr_(0.33)MnO_(3)(001)/0.7Pb(Mg_(1/3)Nb_(2/3))O_(3)-0.3PbTiO_(3)(011)(LSMO/PMN-PT)heterostructures with 45.and 0.twist angles were assembled via water-etching and transfer process.The transferred LSMO films exhibit a fourfold magnetic anisotropy with easy axis along LSMO<110>.A coexistence of uniaxial and fourfold magnetic anisotropy with LSMO[110]easy axis is observed for the 45°Sample by applying a 7.2 kV cm^(−1)electrical field,significantly different from a uniaxial anisotropy with LSMO[100]easy axis for the 0°Sample.The fitting of the ferromagnetic resonance field reveals that the strain coupling generated by the 45°twist angle causes different lattice distortion of LSMO,thereby enhancing both the fourfold and uniaxial anisotropy.This work confirms the twisting degrees of freedom for magnetoelectric coupling and opens opportunities for fabricating artificial magnetoelectric heterostructures.展开更多
Ultra-low permeability reservoirs are characterized by small pore throats and poor physical properties, which areat the root of well-known problems related to injection and production. In this study, a gas injection f...Ultra-low permeability reservoirs are characterized by small pore throats and poor physical properties, which areat the root of well-known problems related to injection and production. In this study, a gas injection floodingapproach is analyzed in the framework of numerical simulations. In particular, the sequence and timing of fracturechanneling and the related impact on production are considered for horizontal wells with different fracturemorphologies. Useful data and information are provided about the regulation of gas channeling and possible strategiesto delay gas channeling and optimize the gas injection volume and fracture parameters. It is shown that inorder to mitigate gas channeling and ensure high production, fracture length on the sides can be controlled andlonger fractures can be created in the middle by which full gas flooding is obtained at the fracture location in themiddle of the horizontal well. A Differential Evolution (DE) algorithm is provided by which the gas injectionvolume and the fracture parameters of gas injection flooding can be optimized. It is shown that an improvedoil recovery factor as high as 6% can be obtained.展开更多
Twisted bilayer graphene(TBG) has been extensively studied because of its novel physical properties and potential application in electronic devices.Here we report the synthesis and characterization of 300 TBG naturall...Twisted bilayer graphene(TBG) has been extensively studied because of its novel physical properties and potential application in electronic devices.Here we report the synthesis and characterization of 300 TBG naturally grown on Cu_(0.75)Ni_(0.25)(111) film and investigate the electronic structure by angle-resolved photoemission spectroscopy.Compared with other substrates,our TBG with a wafer scale is acquired with a shorter growth time.The Fermi velocity and energy gap of Dirac cones of TBG are comparable with those of a monolayer on Cu_(0.85)Ni_(0.15)(111).The signature of moré lattices has not been observed in either the low-energy electron diffraction patterns or the Fermi surface map within experimental resolution,possibly due to different Cu and Ni contents in the substrates enhancing the different couplings between the substrate and the first/second layers and hindering the formation of a quasiperiodic structure.展开更多
In this paper,the combustion conditions in the boiler furnace of a 660 MWtangential fired pulverized coal boiler are numerically simulated at 15%and 20%rated loads,to study the flexibility of coal-fired power units on...In this paper,the combustion conditions in the boiler furnace of a 660 MWtangential fired pulverized coal boiler are numerically simulated at 15%and 20%rated loads,to study the flexibility of coal-fired power units on ultra-low load operation.The numerical results show that the boiler can operate safely at 15%and 20%ultra-low loads,and the combustion condition in the furnace is better at 20%load,and the tangent circles formed by each characteristic section in the furnace are better,and when the boiler load is decreased to 15%,the tangent circles in the furnace begin to deteriorate.The average flue gas temperature of different areas of the furnace shows that when the boiler furnace operates under ultra-low load conditions,the average smoke temperature of the cold ash hopper at 20%load is basically the same as the average smoke temperature at 15%load;in the burner area,the average smoke temperature of the cold ash hopper at 20%load is about 50 K higher than that at 15%load;in the burned out area,the average smoke temperature of the cold ash hopper at 20%load is slightly higher than that at 15%load.The average temperature of flue gas in the furnace showed a tendency to increase rapidly with the height of the furnace,then slow down and fluctuate the temperature in the burner area,and finally increase slightly in the burnout area due to the further combustion of combustible components to release heat,and then began to decrease.展开更多
Heat augmentation techniques play a vital role in the heating and cooling processes in industries,including solar collectors and many applications that utilize heat exchangers.Several studies are based on inserting fi...Heat augmentation techniques play a vital role in the heating and cooling processes in industries,including solar collectors and many applications that utilize heat exchangers.Several studies are based on inserting fillers inside the tubes to enhance heat transfer.This investigation considered the effects of twisted tapes with large holes on a tubular heat exchanger’s(HX)heat transmission,pressure drop,and thermal boosting factor.In the experimental section,counter-swirl flow generators used twisted tapes with pairs of 1.0 cm-diameter holes and changes in porosity(Rp)at 1.30%and 2.70%.In the experiments,air was utilized as a working fluid in a tube with a circular cross-section.The turbulent flow was considered,with Reynolds numbers(Re)domain from 4800 to 9500,and a boundary condition with a uniform wall heat flux was constructed.The findings expound that when the number of holes rose,the Nusselt number(Nu),the factor of friction(f),and the thermal enhancement factor(η)all increased as well.Additionally,as the friction factor increased,the Nusselt number of the tape-equipped tube was noticeably higher.Additionally,it was discovered that the friction factor was between 70%and 94%lower than the values of the tube without tape,while the(Nu)was between 87%and 97%higher than the conventional tube values.The maximum value ofηis 89%.According to the experimental results,empirical correlations for Nu,f,andηwere also generated.展开更多
The glass-ceramics were prepared with the spodumene mineral as the main raw material,and the effects of ZrO_(2)replacing TiO_(2)on the samples were systematically investigated.The results show that the substitution of...The glass-ceramics were prepared with the spodumene mineral as the main raw material,and the effects of ZrO_(2)replacing TiO_(2)on the samples were systematically investigated.The results show that the substitution of ZrO_(2)for TiO_(2)is not conductive to precipitate𝛽β-quartz solid solution phase,but can improve the transparency and flexural strength of glass-ceramics.And the glass-ceramic with the highest visible light transmittance(87%)and flexural strength(231.80 MPa)exhibits an ultra-low thermal expansion of-0.028×10^(-7)K^(-1)in the region of 30-700℃.展开更多
A dynamic analysis of both twisting and regular towers is carried out to determine the results of considering soil-structure interaction(SSI)on high-rise buildings.In addition,the difference between the seismic perfor...A dynamic analysis of both twisting and regular towers is carried out to determine the results of considering soil-structure interaction(SSI)on high-rise buildings.In addition,the difference between the seismic performance of using twisting towers over regular ones is investigated.The twisting tower is a simulation of the Evolution Tower(Moscow).The towers’skeletons consist of RC elements and rest on a reinforced concrete piled-raft foundation.The soil model is considered as multi-layered with the same soil properties as the zone chosen for the analysis(New Mansoura City,Egypt).The only difference between both towers is their shape in elevation.The whole system is modelled and analyzed in a single step as one full 3D model,which is known as the direct approach in SSI.All analyses are carried out using finite-element software(Midas GTS NX).Dynamic output responses due to three records of seismic loads are proposed and presented in some graphs.Based on the results,it is concluded that SSI has a considerable effect on the dynamic response of tall buildings mainly because of the foundation flexibility,as it leads to lengthening the vibration period,increasing the story drift and the base shear for both cases.展开更多
A certain variety of non-switched polynomials provides a uni-figure representation for a wide range of linear functional equations. This is properly adapted for the calculations. We reinterpret from this point of view...A certain variety of non-switched polynomials provides a uni-figure representation for a wide range of linear functional equations. This is properly adapted for the calculations. We reinterpret from this point of view a number of algorithms.展开更多
基金supported by the National Natural Science Foundation of China(Nos.52074249,U1663206,52204069)Fundamental Research Funds for the Central Universities。
文摘Nanoparticles(NPs)have gained significant attention as a functional material due to their ability to effectively enhance pressure reduction in injection processes in ultra-low permeability reservoirs.NPs are typically studied in controlled laboratory conditions,and their behavior in real-world,complex environments such as ultra-low permeability reservoirs,is not well understood due to the limited scope of their applications.This study investigates the efficacy and underlying mechanisms of NPs in decreasing injection pressure under various injection conditions(25—85℃,10—25 MPa).The results reveal that under optimal injection conditions,NPs effectively reduce injection pressure by a maximum of 22.77%in core experiment.The pressure reduction rate is found to be positively correlated with oil saturation and permeability,and negatively correlated with temperature and salinity.Furthermore,particle image velocimetry(PIV)experiments(25℃,atmospheric pressure)indicate that the pressure reduction is achieved by NPs through the reduction of wall shear resistance and wettability change.This work has important implications for the design of water injection strategies in ultra-low permeability reservoirs.
基金supported by the National Natural Science Foundation of China(Grant Nos.61888102 and 12374199)the National Key Research&Development Projects of China(Grant Nos.2022YFA1204100,2019YFA0308501,and 2021YFA1401300)+1 种基金the Chinese Academy of Sciences(Grant No.XDB33030100)the Innovation Program of Quantum Science and Technology(Grant No.2021ZD0302700)。
文摘Moirésuperlattices in twisted two-dimensional materials have emerged as ideal platforms for engineering quantum phenomena,which are highly sensitive to twist angles,including both the global value and the spatial inhomogeneity.However,only a few methods provide spatial-resolved information for characterizing local twist angle distribution.
文摘Following the publication,concerns have been raised about a number of figures in this article.An unexpected area of similarity was identified in terms of the cellular data,where the results from differently performed experiments were intended to have been shown,although the areas immediately surrounding this area featured comparatively different distributions of cells.In addition,the western blots in this article were presented with atypical,unusually shaped and possibly anomalous protein bands in many cases.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.12174051 and 11874221)。
文摘We study the valley-dependent electron transport in a four-terminal mesoscopic device of the two monolayer graphene nanoribbons vertically stacked together, where the intersection forms a bilayer graphene lattice with a controllable twist angle. Using a tight-binding lattice model, we show that the longitudinal and transverse conductances exhibit significant valley polarization in the low energy regime for small twist angles. As the twist angle increases, the valley polarization shifts to the high energy regime. This arises from the regrouping effect of the electron band in the twisted bilayer graphene region. But for relatively large twist angles, no significant valley polarization is observed. These results are consistent with the spectral densities of the twisted bilayer graphene.
基金supported by the National Key Research and Development Program of China (Grant No. 2021YFB3201800)Natural Science Foundation of China (Grant Nos. U22A2019, 91964109, 52372123)+3 种基金State Key Laboratory for Mechanical Behavior of Materials (No. 20222405)Innovation Capability Support Program of Shaanxi (Grant No. 2021TD-12)National 111 Project of China (B14040)support from the Instrumental Analysis Center of Xi’an Jiaotong University
文摘Manipulating strain mode and degree that can be applied to epitaxial complex oxide thin films have been a cornerstone of strain engineering.In recent years,lift-off and transfer technology of the epitaxial oxide thin films have been developed that enabled the integration of heterostructures without the limitation of material types and crystal orientations.Moreover,twisted integration would provide a more interesting strategy in artificial magnetoelectric heterostructures.A specific twist angle between the ferroelectric and ferromagnetic oxide layers corresponds to the distinct strain regulation modes in the magnetoelectric coupling process,which could provide some insight in to the physical phenomena.In this work,the La_(0.67)Sr_(0.33)MnO_(3)(001)/0.7Pb(Mg_(1/3)Nb_(2/3))O_(3)-0.3PbTiO_(3)(011)(LSMO/PMN-PT)heterostructures with 45.and 0.twist angles were assembled via water-etching and transfer process.The transferred LSMO films exhibit a fourfold magnetic anisotropy with easy axis along LSMO<110>.A coexistence of uniaxial and fourfold magnetic anisotropy with LSMO[110]easy axis is observed for the 45°Sample by applying a 7.2 kV cm^(−1)electrical field,significantly different from a uniaxial anisotropy with LSMO[100]easy axis for the 0°Sample.The fitting of the ferromagnetic resonance field reveals that the strain coupling generated by the 45°twist angle causes different lattice distortion of LSMO,thereby enhancing both the fourfold and uniaxial anisotropy.This work confirms the twisting degrees of freedom for magnetoelectric coupling and opens opportunities for fabricating artificial magnetoelectric heterostructures.
基金supported by the Forward Looking Basic Major Scientific and Technological Projects of CNPC (Grant No.2021DJ2202).
文摘Ultra-low permeability reservoirs are characterized by small pore throats and poor physical properties, which areat the root of well-known problems related to injection and production. In this study, a gas injection floodingapproach is analyzed in the framework of numerical simulations. In particular, the sequence and timing of fracturechanneling and the related impact on production are considered for horizontal wells with different fracturemorphologies. Useful data and information are provided about the regulation of gas channeling and possible strategiesto delay gas channeling and optimize the gas injection volume and fracture parameters. It is shown that inorder to mitigate gas channeling and ensure high production, fracture length on the sides can be controlled andlonger fractures can be created in the middle by which full gas flooding is obtained at the fracture location in themiddle of the horizontal well. A Differential Evolution (DE) algorithm is provided by which the gas injectionvolume and the fracture parameters of gas injection flooding can be optimized. It is shown that an improvedoil recovery factor as high as 6% can be obtained.
基金Project supported by the National Key R&D Program of China (Grant Nos. 2022YFB3608000 and 2022YFA1204900)the National Natural Science Foundation of China (Grant Nos. 12222413 and 12074205)+2 种基金the Natural Science Foundation of Shanghai (Grant Nos. 23ZR1482200 and 22ZR1473300)the Natural Science Foundation of Zhejiang Province (Grant No. LQ21A040004)the funding of Ningbo University (Grant No. LJ2024003)。
文摘Twisted bilayer graphene(TBG) has been extensively studied because of its novel physical properties and potential application in electronic devices.Here we report the synthesis and characterization of 300 TBG naturally grown on Cu_(0.75)Ni_(0.25)(111) film and investigate the electronic structure by angle-resolved photoemission spectroscopy.Compared with other substrates,our TBG with a wafer scale is acquired with a shorter growth time.The Fermi velocity and energy gap of Dirac cones of TBG are comparable with those of a monolayer on Cu_(0.85)Ni_(0.15)(111).The signature of moré lattices has not been observed in either the low-energy electron diffraction patterns or the Fermi surface map within experimental resolution,possibly due to different Cu and Ni contents in the substrates enhancing the different couplings between the substrate and the first/second layers and hindering the formation of a quasiperiodic structure.
文摘In this paper,the combustion conditions in the boiler furnace of a 660 MWtangential fired pulverized coal boiler are numerically simulated at 15%and 20%rated loads,to study the flexibility of coal-fired power units on ultra-low load operation.The numerical results show that the boiler can operate safely at 15%and 20%ultra-low loads,and the combustion condition in the furnace is better at 20%load,and the tangent circles formed by each characteristic section in the furnace are better,and when the boiler load is decreased to 15%,the tangent circles in the furnace begin to deteriorate.The average flue gas temperature of different areas of the furnace shows that when the boiler furnace operates under ultra-low load conditions,the average smoke temperature of the cold ash hopper at 20%load is basically the same as the average smoke temperature at 15%load;in the burner area,the average smoke temperature of the cold ash hopper at 20%load is about 50 K higher than that at 15%load;in the burned out area,the average smoke temperature of the cold ash hopper at 20%load is slightly higher than that at 15%load.The average temperature of flue gas in the furnace showed a tendency to increase rapidly with the height of the furnace,then slow down and fluctuate the temperature in the burner area,and finally increase slightly in the burnout area due to the further combustion of combustible components to release heat,and then began to decrease.
文摘Heat augmentation techniques play a vital role in the heating and cooling processes in industries,including solar collectors and many applications that utilize heat exchangers.Several studies are based on inserting fillers inside the tubes to enhance heat transfer.This investigation considered the effects of twisted tapes with large holes on a tubular heat exchanger’s(HX)heat transmission,pressure drop,and thermal boosting factor.In the experimental section,counter-swirl flow generators used twisted tapes with pairs of 1.0 cm-diameter holes and changes in porosity(Rp)at 1.30%and 2.70%.In the experiments,air was utilized as a working fluid in a tube with a circular cross-section.The turbulent flow was considered,with Reynolds numbers(Re)domain from 4800 to 9500,and a boundary condition with a uniform wall heat flux was constructed.The findings expound that when the number of holes rose,the Nusselt number(Nu),the factor of friction(f),and the thermal enhancement factor(η)all increased as well.Additionally,as the friction factor increased,the Nusselt number of the tape-equipped tube was noticeably higher.Additionally,it was discovered that the friction factor was between 70%and 94%lower than the values of the tube without tape,while the(Nu)was between 87%and 97%higher than the conventional tube values.The maximum value ofηis 89%.According to the experimental results,empirical correlations for Nu,f,andηwere also generated.
文摘The glass-ceramics were prepared with the spodumene mineral as the main raw material,and the effects of ZrO_(2)replacing TiO_(2)on the samples were systematically investigated.The results show that the substitution of ZrO_(2)for TiO_(2)is not conductive to precipitate𝛽β-quartz solid solution phase,but can improve the transparency and flexural strength of glass-ceramics.And the glass-ceramic with the highest visible light transmittance(87%)and flexural strength(231.80 MPa)exhibits an ultra-low thermal expansion of-0.028×10^(-7)K^(-1)in the region of 30-700℃.
文摘A dynamic analysis of both twisting and regular towers is carried out to determine the results of considering soil-structure interaction(SSI)on high-rise buildings.In addition,the difference between the seismic performance of using twisting towers over regular ones is investigated.The twisting tower is a simulation of the Evolution Tower(Moscow).The towers’skeletons consist of RC elements and rest on a reinforced concrete piled-raft foundation.The soil model is considered as multi-layered with the same soil properties as the zone chosen for the analysis(New Mansoura City,Egypt).The only difference between both towers is their shape in elevation.The whole system is modelled and analyzed in a single step as one full 3D model,which is known as the direct approach in SSI.All analyses are carried out using finite-element software(Midas GTS NX).Dynamic output responses due to three records of seismic loads are proposed and presented in some graphs.Based on the results,it is concluded that SSI has a considerable effect on the dynamic response of tall buildings mainly because of the foundation flexibility,as it leads to lengthening the vibration period,increasing the story drift and the base shear for both cases.
文摘A certain variety of non-switched polynomials provides a uni-figure representation for a wide range of linear functional equations. This is properly adapted for the calculations. We reinterpret from this point of view a number of algorithms.