Narrow gap welding has merits of lower residual stress and distortion, and superior mechanical properties of joints. A major problem of this process is the lack of fusion in sidewalls, hence many methods of weaving ar...Narrow gap welding has merits of lower residual stress and distortion, and superior mechanical properties of joints. A major problem of this process is the lack of fusion in sidewalls, hence many methods of weaving arc have been developed to increase heating effect of arc to the sidewalls. In this work, a new approach Without weaving arc is attempted to ensure the penetration of sidewall, and ultra-narrow gap welding with the gap of less than 5 mm was executed successfully. In this approach, the width of gap is decreased further, so that the sidewalls are made within range of arc heating to obtain the enough heat. In order to prevent the arc from being attracted by sidewall and going up along the sidewalls, two pieces of flux bands consisting of the specified aggregates are adhered to the sidewalls to constrain the arc. In addition, when flux band being heated by the arc, slag and gases are formed to shield the arc and the weld pool. This technique was tested on the welding experiment of pipeline steel with thickness of 20 mm. The involved welding parameters were obtained, that is, the width of gap is 4 mm, the welding current 250 A, and the heat input 0. 5 kJ/mm, the width of heat-affected zone is 1 -2 mm.展开更多
Ultra-narrow gap welding (UNGW) process with high stabilization, reliability and without spatter can be achieved with constricted arc by molten slag wall, which is made from melted flux. The experiments are carried ...Ultra-narrow gap welding (UNGW) process with high stabilization, reliability and without spatter can be achieved with constricted arc by molten slag wall, which is made from melted flux. The experiments are carried out by changing voltage under different currents. The results indicate voltage range being fit for UNGW is about 22 -31 V under the current range of 200 -320 A. With the increasing of voltage, weld formation of UNGW has the law of lack of fusion on sidewall, good weld and undercut in turn under a certain current. In addition, the action relationships among arc, molten slag wall and sidewalls can be improved by properly adjusting voltage and current of arc, which makes cathode spot properly distribute in ultra-narrow gap. Therefore, the effective control of weld formation of UNGW has been achieved.展开更多
In this paper, the droplet transfer in oscillating arc narrow gap gas metal arc ( GMA ) welding was studied. According to the experimental results, the oscillating arc has effect on the droplet transfer mode. The dr...In this paper, the droplet transfer in oscillating arc narrow gap gas metal arc ( GMA ) welding was studied. According to the experimental results, the oscillating arc has effect on the droplet transfer mode. The droplet transfer frequency in narrow gap groove is higher than that in bead-on-plate welding. Because of the change of arc location in narrow gap groove, the droplet transfer in oscillating arc narrow gap changes regularly. The droplet transfer frequency near groove sidewall is higher than that at the middle of narrow gap groove.展开更多
Multi-layer narrow-gap welding of thick S32101 duplex stainless steel was conducted using laser welding with beam wobble process.The phase transition,grain size,phase proportion and crystal texture of welded joint wer...Multi-layer narrow-gap welding of thick S32101 duplex stainless steel was conducted using laser welding with beam wobble process.The phase transition,grain size,phase proportion and crystal texture of welded joint were also studied and compared with gas metal arc welding process.The microhardness and tensile strength were measured and fracture surface was analyzed to evaluate the mechanical properties of welded joints.The results showed that beam wobble technology improved the misalignment of laser beam and filler wire in narrow groove and helped to avoid incomplete fusion defects.Compared to arc welding process,the groove size and heat input were reduced,while welding efficiency was increased.The faster cooling rate and lower temperature gradient of laser wobble welding favored grain refinement,while the austenite content in weld zone decreased.Both the beam wobble and swing arc were conducive to stir weld pool,optimizing the weld microstructure and joint formation.The microstructural variance in various weld passes was caused by the heat input and heat dissipation ability.The microhardness of laser welded joint was lower,while the tensile strength and elongation percentage were higher.The fracture surface of arc welded joint was featured with shallower dimples and cleavage steps.展开更多
The influence of rotating speed on metal transfer and the wire metal speed was studied in the high rotating speed arc narrow gap welding.The results indicate that the high rotating speed arc has benefit on the metal t...The influence of rotating speed on metal transfer and the wire metal speed was studied in the high rotating speed arc narrow gap welding.The results indicate that the high rotating speed arc has benefit on the metal transfer,and that with the rotating speed increasing,the droplet volume decreases.It is shown that the rotating speed has little influence on the wire metal speed with DC electrode positive polarity(DCEP),but the melting speed decreases with increasing of rotating speed in DC electrode negative polarity(DCEN).展开更多
According to the wire and nozzle movement track in groove, the movement parameters of wire were memorized and recalled for the following top welds by using a single chip computer. In this paper, it was also discussed...According to the wire and nozzle movement track in groove, the movement parameters of wire were memorized and recalled for the following top welds by using a single chip computer. In this paper, it was also discussed that the design problems of correcting deviation of wire movement track in narrow gap submerged arc welding process must be noticed in order to obtain the sound welding result.展开更多
Rotating arc borizontal narrow gap welding of quenched & tempered (Q&T) steel was innovatively performed for solving the bottleneck that the molten pool sagged due to the gravity. The shapely multilayer single pas...Rotating arc borizontal narrow gap welding of quenched & tempered (Q&T) steel was innovatively performed for solving the bottleneck that the molten pool sagged due to the gravity. The shapely multilayer single pass horizontal joint could be obtairzed by using the rotating are welding process. The cold crack was not observed in the joint without controlling the heat input and selecting the consumables intentionally. Microstructure of the joint could be divided into three zones: base metal zone (BMZ) , heat-affected zone ( HAZ) and weld zone (WZ). Because of the characteristic of the rotating arc horizontal welding process, the defects in the joints were slag inclztsion formed at the interlayer of lower side wall. Tbe tensile strength and hardness of HAZ and WZ were larger than those of BMZ. The impact toughness in WZ, HAZ and BM at 0 % is equal to 11.5, 212 and 236 J, respectively.展开更多
Arc pressure is the key influencing factor to forming of molten pool. Countering the characteristic of tungsten inert gas arc welding with micro gap for tantalum sheet, according to the fundament of arc physics, a dis...Arc pressure is the key influencing factor to forming of molten pool. Countering the characteristic of tungsten inert gas arc welding with micro gap for tantalum sheet, according to the fundament of arc physics, a distribution model of arc pressure and forming mechanism of molten pool with micro butt gap are proposed, and the influences of arc pressure on forming of molten pool are discussed. Experimental researches for the dynamic formation process of weld molten pool by using high-speed vidicon camera show that when butt gap is appropriate, that is from 0. 1 to 0. 15 mm, molten metals formed on two workpiece uplift and grow up first, then are fused and form uniform molten pool finally.展开更多
A series of experiments of tandem narrow gap GMAW for flat welding position were carried out. The arc behavior and metal transfer process were observed by a high-speed photography system. The effects of the welding pa...A series of experiments of tandem narrow gap GMAW for flat welding position were carried out. The arc behavior and metal transfer process were observed by a high-speed photography system. The effects of the welding parameters on the metal transfer were investigated. The results show that the arc behavior and metal transfer process of tandem narrow gap GMA W are different from these of bead-on-plate tandem GMA W. The arc behavior and metal transfer process are influenced by the distance between the two wires, the peak voltage, the pulse frequency and the peak time. With the increase of the distance between the two wires, the metal transfer mode gradually transforms from one pulse-multi droplets into one pulse-one droplet, and the average welding current increases. With the increase of the peak voltage, pulse frequency or peak time, the metal transfer mode transforms from one pulse-one droplet into one pulse-multi droplets, and the arc tends to occur between the wire and the sidewall.展开更多
A novel synergetic arc control method was used to control twin-electrode alternating current ( AC) to direct current (DC) pulsed arc welding and the mechanism of poor sidewall fusion in narrow gap welding was inve...A novel synergetic arc control method was used to control twin-electrode alternating current ( AC) to direct current (DC) pulsed arc welding and the mechanism of poor sidewall fusion in narrow gap welding was investigated. The synergetic arc control method easured that the arc voltage of DC welding source could switch in phase with the AC welding source. To test the reliability and operability of this method, a twin-electrode AC to DC pulsed arc welding system was set up and data was acquired through high-speed photography and electrical signal measurement system. The results show that the interactions between the two arcs can be controlled effectively and the control method is a sensitive and efficient control method.展开更多
脉冲熔化极气体保护焊(pulsed gas metal arc welding,P-GMAW)起弧过程易产生不稳定现象,会严重影响电弧传感焊缝跟踪精度.针对这一问题,对摆动电弧窄间隙P-GMAW不稳定起弧过程的成因进行了研究,发现送丝速度对起弧过程稳定性具有重要影...脉冲熔化极气体保护焊(pulsed gas metal arc welding,P-GMAW)起弧过程易产生不稳定现象,会严重影响电弧传感焊缝跟踪精度.针对这一问题,对摆动电弧窄间隙P-GMAW不稳定起弧过程的成因进行了研究,发现送丝速度对起弧过程稳定性具有重要影响.通过对电弧图像与电信号特征进行对比分析,提取了表征电弧稳定性的电信号特征变量;为减小变量冗余性和过拟合,采用最大似然估计法筛选并提取了8个变量,并通过主成分分析法(principal component analysis,PCA)对变量进行融合,提取了方差贡献率最高的前两个主成分;根据因子载荷发现,相比熔滴过渡阶段和基值阶段,脉冲峰值阶段是电弧更易发生不稳定现象的阶段.结合提取的主成分变量与二分类Logistic回归模型建立了起弧过程电弧稳定性判别模型.通过受试者工作特征(receiver operating characteristic,ROC)曲线得到了模型的最佳阈值.结果表明,该模型对脉冲稳定性判别准确率达到了80%以上,表明模型具有良好的判别性能.该模型对提高窄间隙高低跟踪精度、保证焊接质量具有一定应用价值.展开更多
文摘Narrow gap welding has merits of lower residual stress and distortion, and superior mechanical properties of joints. A major problem of this process is the lack of fusion in sidewalls, hence many methods of weaving arc have been developed to increase heating effect of arc to the sidewalls. In this work, a new approach Without weaving arc is attempted to ensure the penetration of sidewall, and ultra-narrow gap welding with the gap of less than 5 mm was executed successfully. In this approach, the width of gap is decreased further, so that the sidewalls are made within range of arc heating to obtain the enough heat. In order to prevent the arc from being attracted by sidewall and going up along the sidewalls, two pieces of flux bands consisting of the specified aggregates are adhered to the sidewalls to constrain the arc. In addition, when flux band being heated by the arc, slag and gases are formed to shield the arc and the weld pool. This technique was tested on the welding experiment of pipeline steel with thickness of 20 mm. The involved welding parameters were obtained, that is, the width of gap is 4 mm, the welding current 250 A, and the heat input 0. 5 kJ/mm, the width of heat-affected zone is 1 -2 mm.
基金The work was supported by National Natural Science Foundation of China (51105185) and Advanced Project Foundation of Jinchuan Company(420032).
文摘Ultra-narrow gap welding (UNGW) process with high stabilization, reliability and without spatter can be achieved with constricted arc by molten slag wall, which is made from melted flux. The experiments are carried out by changing voltage under different currents. The results indicate voltage range being fit for UNGW is about 22 -31 V under the current range of 200 -320 A. With the increasing of voltage, weld formation of UNGW has the law of lack of fusion on sidewall, good weld and undercut in turn under a certain current. In addition, the action relationships among arc, molten slag wall and sidewalls can be improved by properly adjusting voltage and current of arc, which makes cathode spot properly distribute in ultra-narrow gap. Therefore, the effective control of weld formation of UNGW has been achieved.
基金They also thank the National Natural Science Foundation of China for its financial support
文摘In this paper, the droplet transfer in oscillating arc narrow gap gas metal arc ( GMA ) welding was studied. According to the experimental results, the oscillating arc has effect on the droplet transfer mode. The droplet transfer frequency in narrow gap groove is higher than that in bead-on-plate welding. Because of the change of arc location in narrow gap groove, the droplet transfer in oscillating arc narrow gap changes regularly. The droplet transfer frequency near groove sidewall is higher than that at the middle of narrow gap groove.
基金supported by the Science and Technology Innovation Program of Hunan Province(2022RC1060 and 2022GK4046)。
文摘Multi-layer narrow-gap welding of thick S32101 duplex stainless steel was conducted using laser welding with beam wobble process.The phase transition,grain size,phase proportion and crystal texture of welded joint were also studied and compared with gas metal arc welding process.The microhardness and tensile strength were measured and fracture surface was analyzed to evaluate the mechanical properties of welded joints.The results showed that beam wobble technology improved the misalignment of laser beam and filler wire in narrow groove and helped to avoid incomplete fusion defects.Compared to arc welding process,the groove size and heat input were reduced,while welding efficiency was increased.The faster cooling rate and lower temperature gradient of laser wobble welding favored grain refinement,while the austenite content in weld zone decreased.Both the beam wobble and swing arc were conducive to stir weld pool,optimizing the weld microstructure and joint formation.The microstructural variance in various weld passes was caused by the heat input and heat dissipation ability.The microhardness of laser welded joint was lower,while the tensile strength and elongation percentage were higher.The fracture surface of arc welded joint was featured with shallower dimples and cleavage steps.
文摘The influence of rotating speed on metal transfer and the wire metal speed was studied in the high rotating speed arc narrow gap welding.The results indicate that the high rotating speed arc has benefit on the metal transfer,and that with the rotating speed increasing,the droplet volume decreases.It is shown that the rotating speed has little influence on the wire metal speed with DC electrode positive polarity(DCEP),but the melting speed decreases with increasing of rotating speed in DC electrode negative polarity(DCEN).
文摘According to the wire and nozzle movement track in groove, the movement parameters of wire were memorized and recalled for the following top welds by using a single chip computer. In this paper, it was also discussed that the design problems of correcting deviation of wire movement track in narrow gap submerged arc welding process must be noticed in order to obtain the sound welding result.
基金Supported by National Natural Science Foundation of China (Grant No. 51005141 ).
文摘Rotating arc borizontal narrow gap welding of quenched & tempered (Q&T) steel was innovatively performed for solving the bottleneck that the molten pool sagged due to the gravity. The shapely multilayer single pass horizontal joint could be obtairzed by using the rotating are welding process. The cold crack was not observed in the joint without controlling the heat input and selecting the consumables intentionally. Microstructure of the joint could be divided into three zones: base metal zone (BMZ) , heat-affected zone ( HAZ) and weld zone (WZ). Because of the characteristic of the rotating arc horizontal welding process, the defects in the joints were slag inclztsion formed at the interlayer of lower side wall. Tbe tensile strength and hardness of HAZ and WZ were larger than those of BMZ. The impact toughness in WZ, HAZ and BM at 0 % is equal to 11.5, 212 and 236 J, respectively.
文摘Arc pressure is the key influencing factor to forming of molten pool. Countering the characteristic of tungsten inert gas arc welding with micro gap for tantalum sheet, according to the fundament of arc physics, a distribution model of arc pressure and forming mechanism of molten pool with micro butt gap are proposed, and the influences of arc pressure on forming of molten pool are discussed. Experimental researches for the dynamic formation process of weld molten pool by using high-speed vidicon camera show that when butt gap is appropriate, that is from 0. 1 to 0. 15 mm, molten metals formed on two workpiece uplift and grow up first, then are fused and form uniform molten pool finally.
基金This research is supported by National Natural Science Foundation of China (Grant No. 51275109).
文摘A series of experiments of tandem narrow gap GMAW for flat welding position were carried out. The arc behavior and metal transfer process were observed by a high-speed photography system. The effects of the welding parameters on the metal transfer were investigated. The results show that the arc behavior and metal transfer process of tandem narrow gap GMA W are different from these of bead-on-plate tandem GMA W. The arc behavior and metal transfer process are influenced by the distance between the two wires, the peak voltage, the pulse frequency and the peak time. With the increase of the distance between the two wires, the metal transfer mode gradually transforms from one pulse-multi droplets into one pulse-one droplet, and the average welding current increases. With the increase of the peak voltage, pulse frequency or peak time, the metal transfer mode transforms from one pulse-one droplet into one pulse-multi droplets, and the arc tends to occur between the wire and the sidewall.
基金Supported by National Natural Science Foundation of China (Grant No. 51175374), the Application of Basic & Frontier Technology Program of Tianjin (Grant No. 09JCYBJC05000) and the Science & Technology Pillar Program of Tianjin( Grant No. 10ZCKFSF00200).
文摘A novel synergetic arc control method was used to control twin-electrode alternating current ( AC) to direct current (DC) pulsed arc welding and the mechanism of poor sidewall fusion in narrow gap welding was investigated. The synergetic arc control method easured that the arc voltage of DC welding source could switch in phase with the AC welding source. To test the reliability and operability of this method, a twin-electrode AC to DC pulsed arc welding system was set up and data was acquired through high-speed photography and electrical signal measurement system. The results show that the interactions between the two arcs can be controlled effectively and the control method is a sensitive and efficient control method.
文摘脉冲熔化极气体保护焊(pulsed gas metal arc welding,P-GMAW)起弧过程易产生不稳定现象,会严重影响电弧传感焊缝跟踪精度.针对这一问题,对摆动电弧窄间隙P-GMAW不稳定起弧过程的成因进行了研究,发现送丝速度对起弧过程稳定性具有重要影响.通过对电弧图像与电信号特征进行对比分析,提取了表征电弧稳定性的电信号特征变量;为减小变量冗余性和过拟合,采用最大似然估计法筛选并提取了8个变量,并通过主成分分析法(principal component analysis,PCA)对变量进行融合,提取了方差贡献率最高的前两个主成分;根据因子载荷发现,相比熔滴过渡阶段和基值阶段,脉冲峰值阶段是电弧更易发生不稳定现象的阶段.结合提取的主成分变量与二分类Logistic回归模型建立了起弧过程电弧稳定性判别模型.通过受试者工作特征(receiver operating characteristic,ROC)曲线得到了模型的最佳阈值.结果表明,该模型对脉冲稳定性判别准确率达到了80%以上,表明模型具有良好的判别性能.该模型对提高窄间隙高低跟踪精度、保证焊接质量具有一定应用价值.