The dynamic performances of an ultra-precision fly cutting machine tool(UFCMT)has a dramatic impact on the quality of ultra-precision machining.In this study,the dynamic model of an UFCMT was established based on the ...The dynamic performances of an ultra-precision fly cutting machine tool(UFCMT)has a dramatic impact on the quality of ultra-precision machining.In this study,the dynamic model of an UFCMT was established based on the transfer matrix method for multibody systems.In particular,the large-span scale flow field mesh model was created;and the variation in linear and angular stiffness of journal and thrust bearings with respect to film thickness was investigated by adopting the dynamic mesh technique.The dynamic model was proven to be valid by comparing the dynamic characteristics of the machine tool obtained by numerical simulation with the experimental results.In addition,the power spectrum density estimation method was adopted to simulate the statistical ambient vibration excitation by processing the ambient vibration signal measured over a long period of time.Applying it to the dynamic model,the dynamic response of the tool tip under ambient vibration was investigated.The results elucidated that the tool tip response was significantly affected by ambient vibration,and the isolation foundation had a good effect on vibration isolation.展开更多
For the technology of diamond cutting of optical glass, the high tool wear rate is a main reason for hindering the practical application of this technology. Many researches on diamond tool wear in glass cutting rest o...For the technology of diamond cutting of optical glass, the high tool wear rate is a main reason for hindering the practical application of this technology. Many researches on diamond tool wear in glass cutting rest on wear phenomenon describing simply without analyzing the genesis of wear phenomenon and interpreting the formation process of tool wear in mechanics. For in depth understanding of the tool wear and its effect on surface roughness in diamond cutting of glass, experiments of diamond turning with cutting distance increasing gradually are carried out on soda-lime glass. The wear morphology of rake face and flank face, the corresponding surface features of workpiece and the surface roughness, and the material compositions of flank wear area are detected. Experimental results indicate that the flank wear is predominant in diamond cutting glass and the flank wear land is characterized by micro-grooves, some smooth crater on the rake face is also seen. The surface roughness begins to increase rapidly, when the cutting mode changes from ductile to brittle for the aggravation of tool wear with the cutting distance over 150 m. The main mechanisms of inducing tool wear in diamond cutting of glass are diffusion, mechanical friction, thermo-chemical action and abrasive wear. The proposed research makes analysis and research from wear mechanism on the tool wear and its effect on surface roughness in diamond cutting of glass, and provides theoretical basis for minimizing the tool wear in diamond cutting brittle materials, such as optical glass.展开更多
Lower surface roughness and sharper cutting edge are beneficial for improving the machining quality of the cut?ting tool, while coatings often deteriorate them. Focusing on the diamond coated WC?Co milling cutter, the...Lower surface roughness and sharper cutting edge are beneficial for improving the machining quality of the cut?ting tool, while coatings often deteriorate them. Focusing on the diamond coated WC?Co milling cutter, the abrasive flow machining(AFM) is selected for reducing the surface roughness and sharpening the cutting edge. Comparative cutting tests are conducted on di erent types of coated cutters before and after AFM, as well as uncoated WC?Co one, demonstrating that the boron?doped microcrystalline and undoped fine?grained composite diamond coated cutter after the AFM(AFM?BDM?UFGCD) is a good choice for the finish milling of the 6063 Al alloy in the present case, because it shows favorable machining quality close to the uncoated one, but much prolonged tool lifetime. Besides, compared with the micro?sized diamond films, it is much more convenient and e cient to finish the BDM?UFGCD coated cutter covered by nano?sized diamond grains, and resharpen its cutting edge by the AFM, owing to the lower initial surface roughness and hardness. Moreover, the boron incorporation and micro?sized grains in the underly?ing layer can enhance the film?substrate adhesion, avoid the rapid film removal in the machining process, and thus maximize the tool life(1040 m, four times more than the uncoated one). In general, the AFM is firstly proposed and discussed for post?processing the diamond coated complicated cutting tools, which is proved to be feasible for improving the cutting performance展开更多
Diamond tools play a critical role in ultra-precision machining due to their excellent physical and mechanical material properties,such as that cutting edge can be sharpened to nanoscale accuracy.However,abrasive chem...Diamond tools play a critical role in ultra-precision machining due to their excellent physical and mechanical material properties,such as that cutting edge can be sharpened to nanoscale accuracy.However,abrasive chemical reactions between diamond and non-diamond-machinable metal elements,including Fe,Cr,Ti,Ni,etc,can cause excessive tool wear in diamond cutting of such metals and most of their alloys.This paper reviews the latest achievements in the chemical wear and wear suppression methods for diamond tools in cutting of ferrous metals.The focus will be on the wear mechanism of diamond tools,and the typical wear reduction methods for diamond cutting of ferrous metals,including ultrasonic vibration cutting,cryogenic cutting,surface nitridation and plasma assisted cutting,etc.Relevant commercially available devices are introduced as well.Furthermore,future research trends in diamond tool wear suppression are discussed and examined.展开更多
The effects of the nonuniform cutting force and elastic recovery of processed materials in ultra-precision machining are too complex to be treated using traditional cutting theories,and it is necessary to take account...The effects of the nonuniform cutting force and elastic recovery of processed materials in ultra-precision machining are too complex to be treated using traditional cutting theories,and it is necessary to take account of factors such as size effects,the undeformed cutting thickness,the tool blunt radius,and the tool rake angle.Therefore,this paper proposes a new theoretical calculation model for accurately predicting the cutting force in ultra-precision machining,taking account of such factors.The model is first used to analyze the material deformation of the workpiece and the cutting force distribution along the cutting edge of a diamond tool.The size of the strain zone in different cutting deformation zones is then determined by using the distribution of strain work per unit volume and considering the characteristics of the stress distribution in these different deformation zones.Finally,the cutting force during ultra-precision machining is predicted precisely by calculating the material strain energy in different zones.A finite element analysis and experimental data on ultra-precision cutting of copper and aluminum are used to verify the predictions of the theoretical model.The results show that the error in the cutting force between the calculation results and predictions of the model is less than 14%.The effects of the rake face stress distribution of the diamond tool,the close contact zone,and material elastic recovery can be fully taken into account by the theoretical model.Thus,the proposed theoretical calculation method can effectively predict the cutting force in ultra-precision machining.展开更多
With the increasing market demand for optical complex surface parts,the application of multi-axis ultraprecision single-point diamond turning is increasing.A tool path generation method is very important to decrease m...With the increasing market demand for optical complex surface parts,the application of multi-axis ultraprecision single-point diamond turning is increasing.A tool path generation method is very important to decrease manufacturing time,enhance surface quality,and reduce cost.Compared with the tool path generation of the traditional multi-axis milling,that of the ultra-precision single-point diamond turning requires higher calculation accuracy and efficiency.This paper reviews the tool path generation of ultra-precision diamond turning,considering several key issues:cutter location(CL)points calculation,the topological form of tool path,interpolation mode,and G code optimization.展开更多
A surface engineering approach for a novel pre-treatment of hard metal tool substrate for optimum adhesion of diamond coatings is presented. Firsfly, an alkaline solution was used to etch the WC grains to generate a r...A surface engineering approach for a novel pre-treatment of hard metal tool substrate for optimum adhesion of diamond coatings is presented. Firsfly, an alkaline solution was used to etch the WC grains to generate a rough surface for better mechanical interlocking. Subsequently, surface Co was removed by etching in acid solution. Then the hard metal substrate was boronized to form a compound interlayer which acted as an efficient diffusion barrier to prevent the outward diffusion of Co. Novel nano-microcrystalline composite diamond film coatings with a very smooth surface was deposited on the surface engineering pre-treated hard metal surface. Promising results of measurement in adhesion strength as well as field cutting tests have been obtained.展开更多
The aim of this work is to simulate thermal deformation of tool system and investigate the influence of cutting parameters on it in single-point diamond turning(SPDT) of aluminum alloy. The experiments with various cu...The aim of this work is to simulate thermal deformation of tool system and investigate the influence of cutting parameters on it in single-point diamond turning(SPDT) of aluminum alloy. The experiments with various cutting parameters were conducted. Cutting temperature was measured by FLIR A315 infrared thermal imager. Tool wear was measured by scanning electron microscope(SEM). The numerical model of heat flux considering tool wear generated in cutting zone was established. Then two-step finite element method(FEM) simulations matching the experimental conditions were carried out to simulate the thermal deformation. In addition, the tests of deformation of tool system were performed to verify previous simulation results. And then the influence of cutting parameters on thermal deformation was investigated. The results show that the temperature and thermal deformation from simulations agree well with the results from experiments in the same conditions. The maximum thermal deformation of tool reaches to 7 μm. The average flank wear width and cutting speed are the dominant factors affecting thermal deformation, and the effective way to decrease the thermal deformation of tool is to control the tool wear and the cutting speed.展开更多
We numerically simulated and experimentally studied the interfacialcarbon diffusion between diamond tooland workpiece materials.A diffusion modelwith respect to carbon atoms of diamond toolpenetrating into chips and m...We numerically simulated and experimentally studied the interfacialcarbon diffusion between diamond tooland workpiece materials.A diffusion modelwith respect to carbon atoms of diamond toolpenetrating into chips and machined surface was established.The numericalsimulation results of the diffusion process revealthat the distribution laws of carbon atoms concentration have a close relationship with the diffusion distance,the diffusion time,and the originalcarbon concentration of the work material.In addition,diamond face cutting tests of die steels with different carbon content are conducted at different depth of cuts and feed rates to verify the previous simulation results.The micro-morphology of the chips is detected by scanning electron microscopy.Energy dispersive X-ray analysis was proposed to investigate the change in carbon content of the chips surface.The experimentalresults of this work are of benefit to a better understanding on the diffusion wear mechanism in single crystaldiamond cutting of ferrous metals.Moreover,the experimentalresults show that the diffusion wear of diamond could be reduced markedly by applying ultrasonic vibration to the cutting toolcompared with conventionalturning.展开更多
In ductile mode cutting of brittle materials using di amond tools, such as ductile cutting of silicon and quartz for wafer fabrication , one of the key conditions for achieving ductile chip formation is to get the r i...In ductile mode cutting of brittle materials using di amond tools, such as ductile cutting of silicon and quartz for wafer fabrication , one of the key conditions for achieving ductile chip formation is to get the r ight ratio of tool cutting edge radius to the undeformed chip thickness. It has been shown that the undeformed chip thickness has to be in the order of nanomete rs and that the tool cutting edge radius has to be smaller than the undeformed c hip thickness. Therefore, nanoprecision measurement of diamond cutting tools has become a key issue for ductile mode cutting of brittle materials. In this paper , a non-destructive nanoprecision measurement method for diamond tool cutting e dge radius is presented. The basis of the method is that the exact profile of th e tool cutting edge can be perfectly copied by indenting the tool cutting edge o n the surface of a rigid-perfect plastic material, and that the copy of the pro file can be measured at nanoprecision level. Ideally, the first aspect of th e method is to make a perfect copy of the tool cutting edge profile by indentati on on the surface of a rigid-perfect plastic material which has no elastic spri ng back, so that a true copy of the tool cutting edge is maintained for subseque nt measurement. Since no rigid-perfect plastic material can be found in realit y, actual materials of rigid-elastic-plastic nature have to be used for the in dentation in the measurement method, and the material elastic error compensation coefficients have to be determined to cancel out the effect of elastic spring b ack. For the minimization of error compensation, criteria for the selection of t he optimal materials for the indentation measurement are found to be: 1) high ri gidity and high density, 2) large Young’s elastic modulus, and 3) low yield strength. One of such materials identified is copper. The second aspect of the method is to measure the radius of the indented profile on the surface of the ma terial. This can be achieved by using an atomic force microscope (AFM), and in t his paper the results for measurement of diamond tool edge radii of nanometer sc ales by indentation on a copper material are presented. The elastic error compen sation coefficient for the copper material is determined through the indentation of a tungsten carbide tool edge on the copper surface. By comparing the actual tool edge radius measured using SEM on the sectional view of the tungsten carbid e tool with the one measured from the copied profile of the tool edge on the cop per surface, the coefficient is obtained. Analysis is given for the accuracy of the proposed method, showing that as far as the elastic compensation coefficient is consistent with the material used for the indentation measurement, the only source of errors with the measurement will come from the device for measuring th e indented profile on the surface of the solid, in this case it will come from t he AFM which measures on the sub-nanometer scales.展开更多
In this paper, a series of experiments were performed by high speed milling of Ti-6.5Al-2Zr-1Mo-1V (TA15) by use of polycrystalline diamond (PCD) tools. The characteristics of high speed machining (HSM) dynamic millin...In this paper, a series of experiments were performed by high speed milling of Ti-6.5Al-2Zr-1Mo-1V (TA15) by use of polycrystalline diamond (PCD) tools. The characteristics of high speed machining (HSM) dynamic milling forces were investi- gated. The effects of the parameters of the process, i.e., cutting speed, feed per tooth, and depth of axial cut, on cutting forces were studied. The cutting force signals under different cutting speed conditions and different cutting tool wear stages were analyzed by frequency spectrum analysis. The trend and frequency domain aspects of the dynamic forces were evaluated and discussed. The results indicate that a characteristic frequency in cutting force power spectrum does in fact exist. The amplitudes increase with the increase of cutting speed and tool wear level, which could be applied to the monitoring of the cutting process.展开更多
Diamond films were deposited on the WC-Co cemented carbide and Si3N4 ceramic cutting tool substrates by hot-filament-assisted chemical vapour deposition. The adherence property of diamond films was estimated using the...Diamond films were deposited on the WC-Co cemented carbide and Si3N4 ceramic cutting tool substrates by hot-filament-assisted chemical vapour deposition. The adherence property of diamond films was estimated using the critical load (Pcr) in the indentation test. The adhesive strength of diamond films is related to the intermediate layer between the film and the substrate. Poor adhesion of diamond films to polished cemented carbide substrate is owing to the formation of graphite phase in the interface. The adhesion of diamond films deposited on acid etched cemented carbide substrate is improved, and the peeling-off of the films often happens in the loosen layer of WC particles where the cobalt element is nearly removed. The diamond films' adhesion to cemented carbide substrate whose surface layer is decarbonizated is strengthened dramatically because WC phase forms by reaction between the deposited carbon and tungsten in the surface layer of substrates during the deposition of diamond, which results in chemical combination in the film-substrate interface. The adhesion of diamond films to silicon nitride substrate is the firmest due to the formation of chemical combination of the SiC intermediate layer in the interfaces. In the piston-turning application, the diamond-coated Si3N4 ceramic and the cemented carbide cutting tools usually fail in the form of collapsing of edge and cracking or flaking respectively. They have no built-up edge(BUE) as long as coating is intact.As it wears through, BUE develops and the cutting force on it increases 1 - 3 times than that prior to failure. This can predict the failure of diamond-coated cutting tools.展开更多
Deburring of high-precision components to their micrometer features without any damage is very important but of great difficulty as the burr-to-functionality size ratio increases. To this end, this paper proposes a ne...Deburring of high-precision components to their micrometer features without any damage is very important but of great difficulty as the burr-to-functionality size ratio increases. To this end, this paper proposes a new deburring method in which the micro burr should be directly removed based on ultraprecision cutting with the designed monocrystalline diamond tool. To determine the feasibility of the proposed method, this paper applies it for deburring of the precision working edge of the servo valve core. Firstly, the monocrystalline diamond tool is carefully designed by covering a variety of topics like rake angle,clearance angle, edge radius. Then, the finite element(FE) simulation was conducted to characterize the deburring performance during the removal of the micro burr produced by the single abrasive grinding. Finally, an innovative self-designed deburring system was introduced and the deburring process was evaluated in terms of cutting forces, temperatures, tool wear mechanisms and deburring quality of the working edges by experiments. The FE simulation results indicate the suitability of the proposed deburring method. Meanwhile, the experimental findings agree well with simulation results and show that ultraprecision cutting with the specialized monocrystalline diamond tool could be successfully used for deburring of servo valve core edge without any damage. This work can provide technical guidance for similar engineering applications, and thus brings an increase to the machining efficiency for the manufacture of precision components.展开更多
Machining experiment of micro channel structure with 6:4 brass was carried out by shaping process using a single crystal diamond tool. FEM simulation using solid cantilever beam model was analyzed. In result of experi...Machining experiment of micro channel structure with 6:4 brass was carried out by shaping process using a single crystal diamond tool. FEM simulation using solid cantilever beam model was analyzed. In result of experiment, tool deflection is observed as machining characteristics through result of experiments such as surface roughness, cutting force and burr formations. And the influence of tool deflection is experimentally proved.展开更多
Large-size thin-walled curved surface parts of pure iron are crucial in aerospace,national defense,energy and precision physical experiments.However,the high machining accuracy and surface quality are difficult to ach...Large-size thin-walled curved surface parts of pure iron are crucial in aerospace,national defense,energy and precision physical experiments.However,the high machining accuracy and surface quality are difficult to achieve due to the serious tool wear and deformation when machining the parts with conventional cutting tools.In this paper,an elliptical vibration cutting(EVC)with active cutting edge shift(ACES)based on a long arbor vibration device is proposed for ultraprecision machining the pure iron parts by using diamond tool.Compared with cutting at a fixed cutting edge,the influence of ACES on the EVC was analyzed.Experiments in EVC of pure iron with ACES were conducted.The evolutions of the surface roughness,surface topography,and chip morphology with tool wear in EVC with ACES are revealed.The reasonable parameters of ultraprecision machining the pure iron parts by EVC with ACES were determined.It shows that the ACES has a slight influence on the machined surface roughness and surface topography.The diamond tool life can be significantly prolonged in EVC of pure iron with ACES than that with a fixed cutting edge,so that high profile accuracy and surface quality could be obtained even at higher nominal cutting speed.A typical thin-walled curved surface pure iron part with diameter φ240 mm,height 122 mm,and wall thickness 2 mm was fabricated by the presented method,and its profile error and surface roughness achieved PV 2.2μm and Ra less than 50 nm,respectively.展开更多
In this article, the results obtained from a study carried out on the some elements-incorporated diamond-like carbon (DLC) films are reported. All the films were deposited using plasma-based ion implantation (PBII) te...In this article, the results obtained from a study carried out on the some elements-incorporated diamond-like carbon (DLC) films are reported. All the films were deposited using plasma-based ion implantation (PBII) technique. The deposited films were annealed at 400℃, 650℃ and 900℃ in an air atmosphere for 1 hour. The effects of adding hydrogen, silicon/oxygen and silicon/nitrogen into the DLC film on chemical composition, friction coefficient and corrosion resistance were investigated. The films coated micro end mills performance was also assessed. The results indicate that all the films showed almost constant atomic contents of C, Si, O and N until annealing at 400℃. However, the films were completely destroyed at 650℃ with the increased Si and O contents, while the C content decreased. The incorporation of silicon/oxygen and silicon/nitrogen into the DLC exhibited lower values of friction coefficients than the hydrogenated DLC (DLC and H-DLC) before and after annealing at 400℃, whereas all the films presented the same values of friction coefficients after annealing at 650℃ due to the completely destroy of the films. Furthermore, the incorporation of silicon/nitrogen into the DLC also exhibited better corrosion resistance and unbroken micro end mills performance on their surfaces. Thus, the incorporation of silicon/nitrogen into the DLC film can be considered beneficial in improving the micro end mills performance.展开更多
文摘The dynamic performances of an ultra-precision fly cutting machine tool(UFCMT)has a dramatic impact on the quality of ultra-precision machining.In this study,the dynamic model of an UFCMT was established based on the transfer matrix method for multibody systems.In particular,the large-span scale flow field mesh model was created;and the variation in linear and angular stiffness of journal and thrust bearings with respect to film thickness was investigated by adopting the dynamic mesh technique.The dynamic model was proven to be valid by comparing the dynamic characteristics of the machine tool obtained by numerical simulation with the experimental results.In addition,the power spectrum density estimation method was adopted to simulate the statistical ambient vibration excitation by processing the ambient vibration signal measured over a long period of time.Applying it to the dynamic model,the dynamic response of the tool tip under ambient vibration was investigated.The results elucidated that the tool tip response was significantly affected by ambient vibration,and the isolation foundation had a good effect on vibration isolation.
基金supported by National Natural Science Foundation of China(Grant No. 50775057)
文摘For the technology of diamond cutting of optical glass, the high tool wear rate is a main reason for hindering the practical application of this technology. Many researches on diamond tool wear in glass cutting rest on wear phenomenon describing simply without analyzing the genesis of wear phenomenon and interpreting the formation process of tool wear in mechanics. For in depth understanding of the tool wear and its effect on surface roughness in diamond cutting of glass, experiments of diamond turning with cutting distance increasing gradually are carried out on soda-lime glass. The wear morphology of rake face and flank face, the corresponding surface features of workpiece and the surface roughness, and the material compositions of flank wear area are detected. Experimental results indicate that the flank wear is predominant in diamond cutting glass and the flank wear land is characterized by micro-grooves, some smooth crater on the rake face is also seen. The surface roughness begins to increase rapidly, when the cutting mode changes from ductile to brittle for the aggravation of tool wear with the cutting distance over 150 m. The main mechanisms of inducing tool wear in diamond cutting of glass are diffusion, mechanical friction, thermo-chemical action and abrasive wear. The proposed research makes analysis and research from wear mechanism on the tool wear and its effect on surface roughness in diamond cutting of glass, and provides theoretical basis for minimizing the tool wear in diamond cutting brittle materials, such as optical glass.
基金Supported by National Natural Science Foundation of China(Grant No.51275302)China Postdoctoral Science Foundation Special Funded Project(Grant No.2016T90370)China Postdoctoral Science Foundation(Grant No.2015M580327)
文摘Lower surface roughness and sharper cutting edge are beneficial for improving the machining quality of the cut?ting tool, while coatings often deteriorate them. Focusing on the diamond coated WC?Co milling cutter, the abrasive flow machining(AFM) is selected for reducing the surface roughness and sharpening the cutting edge. Comparative cutting tests are conducted on di erent types of coated cutters before and after AFM, as well as uncoated WC?Co one, demonstrating that the boron?doped microcrystalline and undoped fine?grained composite diamond coated cutter after the AFM(AFM?BDM?UFGCD) is a good choice for the finish milling of the 6063 Al alloy in the present case, because it shows favorable machining quality close to the uncoated one, but much prolonged tool lifetime. Besides, compared with the micro?sized diamond films, it is much more convenient and e cient to finish the BDM?UFGCD coated cutter covered by nano?sized diamond grains, and resharpen its cutting edge by the AFM, owing to the lower initial surface roughness and hardness. Moreover, the boron incorporation and micro?sized grains in the underly?ing layer can enhance the film?substrate adhesion, avoid the rapid film removal in the machining process, and thus maximize the tool life(1040 m, four times more than the uncoated one). In general, the AFM is firstly proposed and discussed for post?processing the diamond coated complicated cutting tools, which is proved to be feasible for improving the cutting performance
基金This work was supported by Science Challenge Project(Nos.TZ2016006-0103 and TZ2016006-0107-02)National Natural Science Foundation of China(Nos.90923025 and 51905194)Science Fund for Creative Research Groups of NSFC(No.51621064).The sincere thanks are given to Professor Zhang Xinquan(Shanghai Jiao Tong University)for his comments,and Mr Xu Yongbo for his kind assistance.
文摘Diamond tools play a critical role in ultra-precision machining due to their excellent physical and mechanical material properties,such as that cutting edge can be sharpened to nanoscale accuracy.However,abrasive chemical reactions between diamond and non-diamond-machinable metal elements,including Fe,Cr,Ti,Ni,etc,can cause excessive tool wear in diamond cutting of such metals and most of their alloys.This paper reviews the latest achievements in the chemical wear and wear suppression methods for diamond tools in cutting of ferrous metals.The focus will be on the wear mechanism of diamond tools,and the typical wear reduction methods for diamond cutting of ferrous metals,including ultrasonic vibration cutting,cryogenic cutting,surface nitridation and plasma assisted cutting,etc.Relevant commercially available devices are introduced as well.Furthermore,future research trends in diamond tool wear suppression are discussed and examined.
基金This work was supported by the National Natural Science Foundation of China(Grant No.51305278)the Liaoning Revitalization Talents Program,China(GrantNo.XLYC2007133)the Natural Science Foundation of Liaoning Province,China(GrantNo.2020-MS-213).
文摘The effects of the nonuniform cutting force and elastic recovery of processed materials in ultra-precision machining are too complex to be treated using traditional cutting theories,and it is necessary to take account of factors such as size effects,the undeformed cutting thickness,the tool blunt radius,and the tool rake angle.Therefore,this paper proposes a new theoretical calculation model for accurately predicting the cutting force in ultra-precision machining,taking account of such factors.The model is first used to analyze the material deformation of the workpiece and the cutting force distribution along the cutting edge of a diamond tool.The size of the strain zone in different cutting deformation zones is then determined by using the distribution of strain work per unit volume and considering the characteristics of the stress distribution in these different deformation zones.Finally,the cutting force during ultra-precision machining is predicted precisely by calculating the material strain energy in different zones.A finite element analysis and experimental data on ultra-precision cutting of copper and aluminum are used to verify the predictions of the theoretical model.The results show that the error in the cutting force between the calculation results and predictions of the model is less than 14%.The effects of the rake face stress distribution of the diamond tool,the close contact zone,and material elastic recovery can be fully taken into account by the theoretical model.Thus,the proposed theoretical calculation method can effectively predict the cutting force in ultra-precision machining.
基金supports of the Funds for the National Natural Science Foundation of China [grant numbers 51575386,51275344]
文摘With the increasing market demand for optical complex surface parts,the application of multi-axis ultraprecision single-point diamond turning is increasing.A tool path generation method is very important to decrease manufacturing time,enhance surface quality,and reduce cost.Compared with the tool path generation of the traditional multi-axis milling,that of the ultra-precision single-point diamond turning requires higher calculation accuracy and efficiency.This paper reviews the tool path generation of ultra-precision diamond turning,considering several key issues:cutter location(CL)points calculation,the topological form of tool path,interpolation mode,and G code optimization.
文摘A surface engineering approach for a novel pre-treatment of hard metal tool substrate for optimum adhesion of diamond coatings is presented. Firsfly, an alkaline solution was used to etch the WC grains to generate a rough surface for better mechanical interlocking. Subsequently, surface Co was removed by etching in acid solution. Then the hard metal substrate was boronized to form a compound interlayer which acted as an efficient diffusion barrier to prevent the outward diffusion of Co. Novel nano-microcrystalline composite diamond film coatings with a very smooth surface was deposited on the surface engineering pre-treated hard metal surface. Promising results of measurement in adhesion strength as well as field cutting tests have been obtained.
基金Project(51175122)supported by the National Natural Science Foundation of China
文摘The aim of this work is to simulate thermal deformation of tool system and investigate the influence of cutting parameters on it in single-point diamond turning(SPDT) of aluminum alloy. The experiments with various cutting parameters were conducted. Cutting temperature was measured by FLIR A315 infrared thermal imager. Tool wear was measured by scanning electron microscope(SEM). The numerical model of heat flux considering tool wear generated in cutting zone was established. Then two-step finite element method(FEM) simulations matching the experimental conditions were carried out to simulate the thermal deformation. In addition, the tests of deformation of tool system were performed to verify previous simulation results. And then the influence of cutting parameters on thermal deformation was investigated. The results show that the temperature and thermal deformation from simulations agree well with the results from experiments in the same conditions. The maximum thermal deformation of tool reaches to 7 μm. The average flank wear width and cutting speed are the dominant factors affecting thermal deformation, and the effective way to decrease the thermal deformation of tool is to control the tool wear and the cutting speed.
基金Funded by the National High-Tech R&D Program(863 Program)of China(No.2012AA040405)
文摘We numerically simulated and experimentally studied the interfacialcarbon diffusion between diamond tooland workpiece materials.A diffusion modelwith respect to carbon atoms of diamond toolpenetrating into chips and machined surface was established.The numericalsimulation results of the diffusion process revealthat the distribution laws of carbon atoms concentration have a close relationship with the diffusion distance,the diffusion time,and the originalcarbon concentration of the work material.In addition,diamond face cutting tests of die steels with different carbon content are conducted at different depth of cuts and feed rates to verify the previous simulation results.The micro-morphology of the chips is detected by scanning electron microscopy.Energy dispersive X-ray analysis was proposed to investigate the change in carbon content of the chips surface.The experimentalresults of this work are of benefit to a better understanding on the diffusion wear mechanism in single crystaldiamond cutting of ferrous metals.Moreover,the experimentalresults show that the diffusion wear of diamond could be reduced markedly by applying ultrasonic vibration to the cutting toolcompared with conventionalturning.
文摘In ductile mode cutting of brittle materials using di amond tools, such as ductile cutting of silicon and quartz for wafer fabrication , one of the key conditions for achieving ductile chip formation is to get the r ight ratio of tool cutting edge radius to the undeformed chip thickness. It has been shown that the undeformed chip thickness has to be in the order of nanomete rs and that the tool cutting edge radius has to be smaller than the undeformed c hip thickness. Therefore, nanoprecision measurement of diamond cutting tools has become a key issue for ductile mode cutting of brittle materials. In this paper , a non-destructive nanoprecision measurement method for diamond tool cutting e dge radius is presented. The basis of the method is that the exact profile of th e tool cutting edge can be perfectly copied by indenting the tool cutting edge o n the surface of a rigid-perfect plastic material, and that the copy of the pro file can be measured at nanoprecision level. Ideally, the first aspect of th e method is to make a perfect copy of the tool cutting edge profile by indentati on on the surface of a rigid-perfect plastic material which has no elastic spri ng back, so that a true copy of the tool cutting edge is maintained for subseque nt measurement. Since no rigid-perfect plastic material can be found in realit y, actual materials of rigid-elastic-plastic nature have to be used for the in dentation in the measurement method, and the material elastic error compensation coefficients have to be determined to cancel out the effect of elastic spring b ack. For the minimization of error compensation, criteria for the selection of t he optimal materials for the indentation measurement are found to be: 1) high ri gidity and high density, 2) large Young’s elastic modulus, and 3) low yield strength. One of such materials identified is copper. The second aspect of the method is to measure the radius of the indented profile on the surface of the ma terial. This can be achieved by using an atomic force microscope (AFM), and in t his paper the results for measurement of diamond tool edge radii of nanometer sc ales by indentation on a copper material are presented. The elastic error compen sation coefficient for the copper material is determined through the indentation of a tungsten carbide tool edge on the copper surface. By comparing the actual tool edge radius measured using SEM on the sectional view of the tungsten carbid e tool with the one measured from the copied profile of the tool edge on the cop per surface, the coefficient is obtained. Analysis is given for the accuracy of the proposed method, showing that as far as the elastic compensation coefficient is consistent with the material used for the indentation measurement, the only source of errors with the measurement will come from the device for measuring th e indented profile on the surface of the solid, in this case it will come from t he AFM which measures on the sub-nanometer scales.
基金Project (No.IRT0837) supported by the Program for Changjiang Scholars and Innovative Research Team in University of China
文摘In this paper, a series of experiments were performed by high speed milling of Ti-6.5Al-2Zr-1Mo-1V (TA15) by use of polycrystalline diamond (PCD) tools. The characteristics of high speed machining (HSM) dynamic milling forces were investi- gated. The effects of the parameters of the process, i.e., cutting speed, feed per tooth, and depth of axial cut, on cutting forces were studied. The cutting force signals under different cutting speed conditions and different cutting tool wear stages were analyzed by frequency spectrum analysis. The trend and frequency domain aspects of the dynamic forces were evaluated and discussed. The results indicate that a characteristic frequency in cutting force power spectrum does in fact exist. The amplitudes increase with the increase of cutting speed and tool wear level, which could be applied to the monitoring of the cutting process.
文摘Diamond films were deposited on the WC-Co cemented carbide and Si3N4 ceramic cutting tool substrates by hot-filament-assisted chemical vapour deposition. The adherence property of diamond films was estimated using the critical load (Pcr) in the indentation test. The adhesive strength of diamond films is related to the intermediate layer between the film and the substrate. Poor adhesion of diamond films to polished cemented carbide substrate is owing to the formation of graphite phase in the interface. The adhesion of diamond films deposited on acid etched cemented carbide substrate is improved, and the peeling-off of the films often happens in the loosen layer of WC particles where the cobalt element is nearly removed. The diamond films' adhesion to cemented carbide substrate whose surface layer is decarbonizated is strengthened dramatically because WC phase forms by reaction between the deposited carbon and tungsten in the surface layer of substrates during the deposition of diamond, which results in chemical combination in the film-substrate interface. The adhesion of diamond films to silicon nitride substrate is the firmest due to the formation of chemical combination of the SiC intermediate layer in the interfaces. In the piston-turning application, the diamond-coated Si3N4 ceramic and the cemented carbide cutting tools usually fail in the form of collapsing of edge and cracking or flaking respectively. They have no built-up edge(BUE) as long as coating is intact.As it wears through, BUE develops and the cutting force on it increases 1 - 3 times than that prior to failure. This can predict the failure of diamond-coated cutting tools.
基金supported by the National Key R&D Program of China(Grant No.2018YFB2002200)
文摘Deburring of high-precision components to their micrometer features without any damage is very important but of great difficulty as the burr-to-functionality size ratio increases. To this end, this paper proposes a new deburring method in which the micro burr should be directly removed based on ultraprecision cutting with the designed monocrystalline diamond tool. To determine the feasibility of the proposed method, this paper applies it for deburring of the precision working edge of the servo valve core. Firstly, the monocrystalline diamond tool is carefully designed by covering a variety of topics like rake angle,clearance angle, edge radius. Then, the finite element(FE) simulation was conducted to characterize the deburring performance during the removal of the micro burr produced by the single abrasive grinding. Finally, an innovative self-designed deburring system was introduced and the deburring process was evaluated in terms of cutting forces, temperatures, tool wear mechanisms and deburring quality of the working edges by experiments. The FE simulation results indicate the suitability of the proposed deburring method. Meanwhile, the experimental findings agree well with simulation results and show that ultraprecision cutting with the specialized monocrystalline diamond tool could be successfully used for deburring of servo valve core edge without any damage. This work can provide technical guidance for similar engineering applications, and thus brings an increase to the machining efficiency for the manufacture of precision components.
文摘Machining experiment of micro channel structure with 6:4 brass was carried out by shaping process using a single crystal diamond tool. FEM simulation using solid cantilever beam model was analyzed. In result of experiment, tool deflection is observed as machining characteristics through result of experiments such as surface roughness, cutting force and burr formations. And the influence of tool deflection is experimentally proved.
基金the financial support from Science Challenge Project(No.TZ2016006-0103-01)National Natural Science Foundation of China(No.51975096 and No.51805498).
文摘Large-size thin-walled curved surface parts of pure iron are crucial in aerospace,national defense,energy and precision physical experiments.However,the high machining accuracy and surface quality are difficult to achieve due to the serious tool wear and deformation when machining the parts with conventional cutting tools.In this paper,an elliptical vibration cutting(EVC)with active cutting edge shift(ACES)based on a long arbor vibration device is proposed for ultraprecision machining the pure iron parts by using diamond tool.Compared with cutting at a fixed cutting edge,the influence of ACES on the EVC was analyzed.Experiments in EVC of pure iron with ACES were conducted.The evolutions of the surface roughness,surface topography,and chip morphology with tool wear in EVC with ACES are revealed.The reasonable parameters of ultraprecision machining the pure iron parts by EVC with ACES were determined.It shows that the ACES has a slight influence on the machined surface roughness and surface topography.The diamond tool life can be significantly prolonged in EVC of pure iron with ACES than that with a fixed cutting edge,so that high profile accuracy and surface quality could be obtained even at higher nominal cutting speed.A typical thin-walled curved surface pure iron part with diameter φ240 mm,height 122 mm,and wall thickness 2 mm was fabricated by the presented method,and its profile error and surface roughness achieved PV 2.2μm and Ra less than 50 nm,respectively.
文摘In this article, the results obtained from a study carried out on the some elements-incorporated diamond-like carbon (DLC) films are reported. All the films were deposited using plasma-based ion implantation (PBII) technique. The deposited films were annealed at 400℃, 650℃ and 900℃ in an air atmosphere for 1 hour. The effects of adding hydrogen, silicon/oxygen and silicon/nitrogen into the DLC film on chemical composition, friction coefficient and corrosion resistance were investigated. The films coated micro end mills performance was also assessed. The results indicate that all the films showed almost constant atomic contents of C, Si, O and N until annealing at 400℃. However, the films were completely destroyed at 650℃ with the increased Si and O contents, while the C content decreased. The incorporation of silicon/oxygen and silicon/nitrogen into the DLC exhibited lower values of friction coefficients than the hydrogenated DLC (DLC and H-DLC) before and after annealing at 400℃, whereas all the films presented the same values of friction coefficients after annealing at 650℃ due to the completely destroy of the films. Furthermore, the incorporation of silicon/nitrogen into the DLC also exhibited better corrosion resistance and unbroken micro end mills performance on their surfaces. Thus, the incorporation of silicon/nitrogen into the DLC film can be considered beneficial in improving the micro end mills performance.