Magneto-optical traps (MOTs) composed of magnetic fields and light fields have been widely utilized to cool andconfine microscopic particles. Practical technology applications require miniaturized MOTs. The advancemen...Magneto-optical traps (MOTs) composed of magnetic fields and light fields have been widely utilized to cool andconfine microscopic particles. Practical technology applications require miniaturized MOTs. The advancement of planaroptics has promoted the development of compact MOTs. In this article, we review the development of compact MOTs basedon planar optics. First, we introduce the standardMOTs. We then introduce the gratingMOTs with micron structures, whichhave been used to build cold atomic clocks, cold atomic interferometers, and ultra-cold sources. Further, we introducethe integrated MOTs based on nano-scale metasurfaces. These new compact MOTs greatly reduce volume and powerconsumption, and provide new opportunities for fundamental research and practical applications.展开更多
The infrared conformal window is one of the most critical components in aircraft.Conformal windows with high performance bring low aberrations,high aerodynamic performance,reliability in extreme working environments,a...The infrared conformal window is one of the most critical components in aircraft.Conformal windows with high performance bring low aberrations,high aerodynamic performance,reliability in extreme working environments,and added value for aircraft.Through the past decades,remarkable advances have been achieved in manufacturing technologies for conformal windows,where the machining accuracy approaches the nanometer level,and the surface form becomes more complex.These advances are critical to aircraft development,and these manufacturing technologies also have significant reference values for other directions of the ultra-precision machining field.In this review,the infrared materials suitable for manufacturing conformal windows are introduced and compared with insights into their performances.The remarkable advances and concrete work accomplished by researchers are reviewed.The challenges in manufacturing conformal windows that should be faced in the future are discussed.展开更多
Digital manufacturing technology can be used in optical field to solve many problems caused by traditional machining. According to the characters of digital manufacturing and the practical applications of ultra-precis...Digital manufacturing technology can be used in optical field to solve many problems caused by traditional machining. According to the characters of digital manufacturing and the practical applications of ultra-precision machining,the process of digital ultra-precision machining and its technical contents were presented in this paper. In the conclusions,it was stated that the digitalization of ultra-precision machining will be an economical and efficient way for the production of new sorts of optical workpieces.展开更多
The power consumption of a variable optical attenuator(VOA) array based on a silica planar lightwave circuit was investigated. The thermal field profile of the device was optimized using the finite-element analysis....The power consumption of a variable optical attenuator(VOA) array based on a silica planar lightwave circuit was investigated. The thermal field profile of the device was optimized using the finite-element analysis. The simulation results showed that the power consumption reduces as the depth of the heat-insulating grooves is deeper, the up-cladding is thinner,the down-cladding is thicker, and the width of the cladding ridge is narrower. The materials component and thickness of the electrodes were also optimized to guarantee the driving voltage under 5 V. The power consumption was successfully reduced to as low as 155 mW at an attenuation of 30 dB in the experiment.展开更多
A matrix method used in multilayer stack of dielectric films is applied-to planar dielectric optical waveguides. A simple and applicable method for obtaining characteristic equation is presented.
With the increasing market demand for optical complex surface parts,the application of multi-axis ultraprecision single-point diamond turning is increasing.A tool path generation method is very important to decrease m...With the increasing market demand for optical complex surface parts,the application of multi-axis ultraprecision single-point diamond turning is increasing.A tool path generation method is very important to decrease manufacturing time,enhance surface quality,and reduce cost.Compared with the tool path generation of the traditional multi-axis milling,that of the ultra-precision single-point diamond turning requires higher calculation accuracy and efficiency.This paper reviews the tool path generation of ultra-precision diamond turning,considering several key issues:cutter location(CL)points calculation,the topological form of tool path,interpolation mode,and G code optimization.展开更多
In this paper, the factors of affecting surface roughness and profiles accuracy of the machined larege depth diamter ratio aspheric surfaces in ultra-precision grinding process are analyzed theoretically. An ultra-pre...In this paper, the factors of affecting surface roughness and profiles accuracy of the machined larege depth diamter ratio aspheric surfaces in ultra-precision grinding process are analyzed theoretically. An ultra-precision aspheric grinding system is then designed and manufactured. Aerostatic form is adopted to build the spindle of the workpiece, transverse guideway, longitudinal guideway and the spindle of the grinder in this system. The following specification is achieved, such as the turning accuracy of the spindle of the workpiece is 0.05 μm, radial rigidity of the spindle is GE 220N/μm, axial rigidity is GE 160 N/μm, radial rigidity of the guideway is GE 200N/μm, the highest rotational speed of the grinder is 80 000 rev/min and its turning accuracy is 0.1 μm, the resolution of linear displacement of the transverse and longitudinal guideway is 4.9 nm. Adjusting range of this adjusting mechanism is 2 mm in the Y direction, the adjusting accuracy of the precise adjusting mechanism is 0.1 μm. Micro displacement measuring system of this ultra-precision aspheric grinding adopts two-backfeed strategy, and angle displacement back-feed is realized by photoelectric encoder, it’s resolution is 655 360 pulse/rev. after 4 frequency multiplication, it’s angle displacement resolution is achieved 2 621 440 pulse/rev. Straight-line displacement is monitored by single frequency laser interferometer (DLSTAX LTM-20B, made in Japan). This CNC system adopts inimitable bi-arc step length flex CN interpolation algorithm, it’s CN system resolution is 5 nm.So this aspheric grinding system ensures profile accuracy of the machined part. The resolution of this interferometer is 5 nm. Finally, lots of ultra-precision grinding experiments are carried out on this grinding system. Some optical aspheric parts, with profiles accuracy of 0.3 μm, surface roughness less than 0.01 μm, are obtained.展开更多
Planar optical waveguides are the key elements in a modern, high-speed optical network. An important problem facing the optical fiber communication system, specifically planar optical waveguides, is coupling. The curr...Planar optical waveguides are the key elements in a modern, high-speed optical network. An important problem facing the optical fiber communication system, specifically planar optical waveguides, is coupling. The current study presents a coupling model for planar optical waveguides and optical fibers. The various effects of the optical properties of the coupling interface were analyzed by the scalar finite difference beam propagation method, including the thickness, with or without the matching refractive index of the interface adhesive. The findings can serve as a guide for planar optical waveguide packaging.展开更多
Based on attenuated total reflection (ATR) and thermo-optic effect, the polymeric thin film planar optical waveguide is used as the temperature sensor, and the factors influencing the sensitivity of the temperature ...Based on attenuated total reflection (ATR) and thermo-optic effect, the polymeric thin film planar optical waveguide is used as the temperature sensor, and the factors influencing the sensitivity of the temperature sensor are comprehensively analyzed. Combined with theoretical analysis and experimental investigation, the sensitivity of the temperature sensor is related to the thicknesses of the upper cladding layer, the waveguide layer, the optical loss of the polymer material and the guided wave modes. The results show that the slope value about reflectivity and temperature, which stands for the sensitivity of the polymer thin film temperature sensor, is associated with the waveguide film thickness and the guided wave modes, and the slope value is the highest in the zero reflectance of a certain transverse electric (TE) mode. To improve the sensitivity of the temperature sensor, the sensor's working incident light exterior angle α should be chosen under a certain TE mode with the reflectivity to be zero. This temperature sensor is characterized by high sensitivity and simple structure and it is easily fabricated.展开更多
This paper presents an optical sensor technique used in the damage evaluation which is formed by structurally integrated fiber optic reticulate sensors embedded in the composite materials. The fibers are processed by ...This paper presents an optical sensor technique used in the damage evaluation which is formed by structurally integrated fiber optic reticulate sensors embedded in the composite materials. The fibers are processed by chemical method and their outsides are peeled to form particles of irregular distribution and they differ in size, so the slight disturbance range of stochastic wall are formed in fibers. According to the characteristics of power loss of waveguide mode caused by slight disturbance of stochastic wall and radiative mode transmission, the range of slight disturbance of stochastic wall may be served as the sensitive range of the sensor. On the basis of theory of slight disturbance of stochastic wall of planar optical waveguide, the relation between the corrosion time and the opposite power loss by experiments is investigated. In this paper, the measurement results of object of SIFORS are also presented. The results show that the optical sensor technique may be used in the damage evaluation of an aircraft.展开更多
Femtosecond laser direct inscription is a technique especially useful for prototyping purposes due to its distinctive advantages such as high fabrication accuracy,true 3D processing flexibility,and no need for mold or...Femtosecond laser direct inscription is a technique especially useful for prototyping purposes due to its distinctive advantages such as high fabrication accuracy,true 3D processing flexibility,and no need for mold or photomask.In this paper,we demonstrate the design and fabrication of a planar lightwave circuit(PLC)power splitter encoded with waveguide Bragg gratings(WBG)using a femtosecond laser inscription technique for passive optical network(PON)fault localization application.Both the reflected wavelengths and intervals of WBGs can be conveniently tuned.In the experiment,we succeeded in directly inscribing WBGs in 1×4 PLC splitter chips with a wavelength interval of about 4 nm and an adjustable reflectivity of up to 70% in the C-band.The proposed method is suitable for the prototyping of a PLC splitter encoded with WBG for PON fault localization applications.展开更多
Freeform optics has become the most prominent element of the optics industry. Advanced freeform optical designs supplementary to ultra-precision manufacturing and metrology techniques have upgraded the lifestyle, thin...Freeform optics has become the most prominent element of the optics industry. Advanced freeform optical designs supplementary to ultra-precision manufacturing and metrology techniques have upgraded the lifestyle, thinking, and observing power of existing humans.Imaginations related to space explorations, portability, accessibility have also witnessed sensible in today’s time with freeform optics. Present-day design methods and fabrications techniques applicable in the development of freeform optics and the market requirements are focussed and explained with the help of traditional and non-traditional optical applications. Over the years,significant research is performed in the emerging field of freeform optics, but no standards are established yet in terms of tolerances and definitions. We critically review the optical design methods for freeform optics considering the image forming and non-image forming applications. Numerous subtractive manufacturing technologies including figure correction methods and metrology have been developed to fabricate extreme modern freeform optics to satisfy the demands of various applications such as space, astronomy, earth science, defence,biomedical, material processing, surveillance, and many more. We described a variety of advanced technologies in manufacturing and metrology for novel freeform optics. Next, we also covered the manufacturing-oriented design scheme for advanced optics. We conclude this review with an outlook on the future of freeform optics design, manufacturing and metrology.展开更多
The alignment coupling between optical waveguide chips and optical fiber arrays is the basis of the alignment coupling of planar optical waveguide devices, and the precise position detection with angle and spacing adj...The alignment coupling between optical waveguide chips and optical fiber arrays is the basis of the alignment coupling of planar optical waveguide devices, and the precise position detection with angle and spacing adjustments is one of the key steps of alignment coupling. A methodology for position detection, and angle and spacing adjustment was proposed for optical waveguide chips and optical fiber arrays based on machine vision. The experimental results show angle detection precision levels higher than 0.05°, line detection precision levels higher than 0.1 μm, and detection time less than 2 s. Therefore, the system developed herein meets the precise requirements necessary for position detection, and angle and spacing adjustments for optical waveguide chips and optical fiber arrays.展开更多
We propose a novel and efficient multi-functional optical fiber sensor system based on a dense wavelength division multiplexer(DWDM).This system consists of an optical fiber temperature sensor, an optical fiber strain...We propose a novel and efficient multi-functional optical fiber sensor system based on a dense wavelength division multiplexer(DWDM).This system consists of an optical fiber temperature sensor, an optical fiber strain sensor, and a 48-channel DWDM.This system can monitor temperature and strain changes at the same time.The ranges of these two sensors are from-20℃ to 100℃ and from-1000 με to 2000 με, respectively.The sensitivities of the temperature sensor and strain sensor are 0.03572 nm/℃ and 0.03808 nm/N, respectively.With the aid of a broadband source and spectrometer,different kinds and ranges of parameters in the environment can be monitored by using suitable sensors.展开更多
Grazing incidence optics (GIO) is the most important compound in an x-ray detection system; it is used to concentrate the x-ray photons from outer space. A nested planar GIO for x-ray concentration is designed and d...Grazing incidence optics (GIO) is the most important compound in an x-ray detection system; it is used to concentrate the x-ray photons from outer space. A nested planar GIO for x-ray concentration is designed and developed by authors in this paper; planar segments are used as the reflection mirror instead of curved segments because of the simple process and low cost. After the complex assembling process with a special metal supporter, a final circle light spot of φ 12 mm was obtained in the visible light testing experiment of GIO; the effective area of 1710.51 mm^2@ 1 keV and 530 mm^2@8 keV is obtained in the x-ray testing experiment with the GIO-SDD combination, which is supposed to be a concentrating detector in xray detection systems.展开更多
TiO2/ ormosil planar waveguide was prepared by sol-gel method at low thermal treatment temperature ( 〈 200 ℃). Scanning electron microscope, FT-IR spectrometer, spectrophotometer, atomic force microscopy, thermal ...TiO2/ ormosil planar waveguide was prepared by sol-gel method at low thermal treatment temperature ( 〈 200 ℃). Scanning electron microscope, FT-IR spectrometer, spectrophotometer, atomic force microscopy, thermal analyzer, and dark m-line spectroscopy were used with the method of scattering-detection to investigate optical and structural properties. High optical quality waveguide film was obtained. The propagation loss of film was 0.569 dB/cm at a wavelength of 632.8 nm.展开更多
基金the National Key Research and Development Program of China(Grant No.2022YFA1404104)the National Natural Science Foundation of China(Grant Nos.12025509 and 12104521)Fundamental Research Project of Shenzhen(Grant No.JCYJ20230808105009018).
文摘Magneto-optical traps (MOTs) composed of magnetic fields and light fields have been widely utilized to cool andconfine microscopic particles. Practical technology applications require miniaturized MOTs. The advancement of planaroptics has promoted the development of compact MOTs. In this article, we review the development of compact MOTs basedon planar optics. First, we introduce the standardMOTs. We then introduce the gratingMOTs with micron structures, whichhave been used to build cold atomic clocks, cold atomic interferometers, and ultra-cold sources. Further, we introducethe integrated MOTs based on nano-scale metasurfaces. These new compact MOTs greatly reduce volume and powerconsumption, and provide new opportunities for fundamental research and practical applications.
基金the support from the National Key Research and Development Program of China[2018YFA0703400].
文摘The infrared conformal window is one of the most critical components in aircraft.Conformal windows with high performance bring low aberrations,high aerodynamic performance,reliability in extreme working environments,and added value for aircraft.Through the past decades,remarkable advances have been achieved in manufacturing technologies for conformal windows,where the machining accuracy approaches the nanometer level,and the surface form becomes more complex.These advances are critical to aircraft development,and these manufacturing technologies also have significant reference values for other directions of the ultra-precision machining field.In this review,the infrared materials suitable for manufacturing conformal windows are introduced and compared with insights into their performances.The remarkable advances and concrete work accomplished by researchers are reviewed.The challenges in manufacturing conformal windows that should be faced in the future are discussed.
文摘Digital manufacturing technology can be used in optical field to solve many problems caused by traditional machining. According to the characters of digital manufacturing and the practical applications of ultra-precision machining,the process of digital ultra-precision machining and its technical contents were presented in this paper. In the conclusions,it was stated that the digitalization of ultra-precision machining will be an economical and efficient way for the production of new sorts of optical workpieces.
基金Project supported by the National High Technology Research and Development Program of China(Grant No.2015AA016902)the National Nature Science Foundation of China(Grant Nos.61435013,61405188,and 61627820)
文摘The power consumption of a variable optical attenuator(VOA) array based on a silica planar lightwave circuit was investigated. The thermal field profile of the device was optimized using the finite-element analysis. The simulation results showed that the power consumption reduces as the depth of the heat-insulating grooves is deeper, the up-cladding is thinner,the down-cladding is thicker, and the width of the cladding ridge is narrower. The materials component and thickness of the electrodes were also optimized to guarantee the driving voltage under 5 V. The power consumption was successfully reduced to as low as 155 mW at an attenuation of 30 dB in the experiment.
文摘A matrix method used in multilayer stack of dielectric films is applied-to planar dielectric optical waveguides. A simple and applicable method for obtaining characteristic equation is presented.
基金supports of the Funds for the National Natural Science Foundation of China [grant numbers 51575386,51275344]
文摘With the increasing market demand for optical complex surface parts,the application of multi-axis ultraprecision single-point diamond turning is increasing.A tool path generation method is very important to decrease manufacturing time,enhance surface quality,and reduce cost.Compared with the tool path generation of the traditional multi-axis milling,that of the ultra-precision single-point diamond turning requires higher calculation accuracy and efficiency.This paper reviews the tool path generation of ultra-precision diamond turning,considering several key issues:cutter location(CL)points calculation,the topological form of tool path,interpolation mode,and G code optimization.
文摘In this paper, the factors of affecting surface roughness and profiles accuracy of the machined larege depth diamter ratio aspheric surfaces in ultra-precision grinding process are analyzed theoretically. An ultra-precision aspheric grinding system is then designed and manufactured. Aerostatic form is adopted to build the spindle of the workpiece, transverse guideway, longitudinal guideway and the spindle of the grinder in this system. The following specification is achieved, such as the turning accuracy of the spindle of the workpiece is 0.05 μm, radial rigidity of the spindle is GE 220N/μm, axial rigidity is GE 160 N/μm, radial rigidity of the guideway is GE 200N/μm, the highest rotational speed of the grinder is 80 000 rev/min and its turning accuracy is 0.1 μm, the resolution of linear displacement of the transverse and longitudinal guideway is 4.9 nm. Adjusting range of this adjusting mechanism is 2 mm in the Y direction, the adjusting accuracy of the precise adjusting mechanism is 0.1 μm. Micro displacement measuring system of this ultra-precision aspheric grinding adopts two-backfeed strategy, and angle displacement back-feed is realized by photoelectric encoder, it’s resolution is 655 360 pulse/rev. after 4 frequency multiplication, it’s angle displacement resolution is achieved 2 621 440 pulse/rev. Straight-line displacement is monitored by single frequency laser interferometer (DLSTAX LTM-20B, made in Japan). This CNC system adopts inimitable bi-arc step length flex CN interpolation algorithm, it’s CN system resolution is 5 nm.So this aspheric grinding system ensures profile accuracy of the machined part. The resolution of this interferometer is 5 nm. Finally, lots of ultra-precision grinding experiments are carried out on this grinding system. Some optical aspheric parts, with profiles accuracy of 0.3 μm, surface roughness less than 0.01 μm, are obtained.
文摘Planar optical waveguides are the key elements in a modern, high-speed optical network. An important problem facing the optical fiber communication system, specifically planar optical waveguides, is coupling. The current study presents a coupling model for planar optical waveguides and optical fibers. The various effects of the optical properties of the coupling interface were analyzed by the scalar finite difference beam propagation method, including the thickness, with or without the matching refractive index of the interface adhesive. The findings can serve as a guide for planar optical waveguide packaging.
基金The National Natural Science Foundation of China(No.60977038)the Specialized Research Fund for the Doctoral Program of Higher Education(No.20110092110016)+1 种基金the National Basic Research Program of China(973Program)(No.2011CB302004)the Foundation of Key Laboratory of Micro-Inertial Instrument and Advanced Navigation Technology of Ministry of Education of China(No.201204)
文摘Based on attenuated total reflection (ATR) and thermo-optic effect, the polymeric thin film planar optical waveguide is used as the temperature sensor, and the factors influencing the sensitivity of the temperature sensor are comprehensively analyzed. Combined with theoretical analysis and experimental investigation, the sensitivity of the temperature sensor is related to the thicknesses of the upper cladding layer, the waveguide layer, the optical loss of the polymer material and the guided wave modes. The results show that the slope value about reflectivity and temperature, which stands for the sensitivity of the polymer thin film temperature sensor, is associated with the waveguide film thickness and the guided wave modes, and the slope value is the highest in the zero reflectance of a certain transverse electric (TE) mode. To improve the sensitivity of the temperature sensor, the sensor's working incident light exterior angle α should be chosen under a certain TE mode with the reflectivity to be zero. This temperature sensor is characterized by high sensitivity and simple structure and it is easily fabricated.
文摘This paper presents an optical sensor technique used in the damage evaluation which is formed by structurally integrated fiber optic reticulate sensors embedded in the composite materials. The fibers are processed by chemical method and their outsides are peeled to form particles of irregular distribution and they differ in size, so the slight disturbance range of stochastic wall are formed in fibers. According to the characteristics of power loss of waveguide mode caused by slight disturbance of stochastic wall and radiative mode transmission, the range of slight disturbance of stochastic wall may be served as the sensitive range of the sensor. On the basis of theory of slight disturbance of stochastic wall of planar optical waveguide, the relation between the corrosion time and the opposite power loss by experiments is investigated. In this paper, the measurement results of object of SIFORS are also presented. The results show that the optical sensor technique may be used in the damage evaluation of an aircraft.
基金supported by the ZTE Industry-University-Institute Fund Project under Grant No.IA20221202011。
文摘Femtosecond laser direct inscription is a technique especially useful for prototyping purposes due to its distinctive advantages such as high fabrication accuracy,true 3D processing flexibility,and no need for mold or photomask.In this paper,we demonstrate the design and fabrication of a planar lightwave circuit(PLC)power splitter encoded with waveguide Bragg gratings(WBG)using a femtosecond laser inscription technique for passive optical network(PON)fault localization application.Both the reflected wavelengths and intervals of WBGs can be conveniently tuned.In the experiment,we succeeded in directly inscribing WBGs in 1×4 PLC splitter chips with a wavelength interval of about 4 nm and an adjustable reflectivity of up to 70% in the C-band.The proposed method is suitable for the prototyping of a PLC splitter encoded with WBG for PON fault localization applications.
基金the UK’s Engineering and Physical Sciences Research Council(EPSRC)funding of Future Metrology Hub(Ref.:EP/P006930/1)the UK’s Science and Technology Facilities Council(STFC)Innovation Partnership Scheme(IPS)project under Grant Agreement No.ST/V001280/1the European Union’s Horizon 2020research and innovation programme under Grant Agreement No.767589。
文摘Freeform optics has become the most prominent element of the optics industry. Advanced freeform optical designs supplementary to ultra-precision manufacturing and metrology techniques have upgraded the lifestyle, thinking, and observing power of existing humans.Imaginations related to space explorations, portability, accessibility have also witnessed sensible in today’s time with freeform optics. Present-day design methods and fabrications techniques applicable in the development of freeform optics and the market requirements are focussed and explained with the help of traditional and non-traditional optical applications. Over the years,significant research is performed in the emerging field of freeform optics, but no standards are established yet in terms of tolerances and definitions. We critically review the optical design methods for freeform optics considering the image forming and non-image forming applications. Numerous subtractive manufacturing technologies including figure correction methods and metrology have been developed to fabricate extreme modern freeform optics to satisfy the demands of various applications such as space, astronomy, earth science, defence,biomedical, material processing, surveillance, and many more. We described a variety of advanced technologies in manufacturing and metrology for novel freeform optics. Next, we also covered the manufacturing-oriented design scheme for advanced optics. We conclude this review with an outlook on the future of freeform optics design, manufacturing and metrology.
基金Projects(51475479,51075402)supported by the National Natural Science Foundation of ChinaProject(2012AA040406)supported by the National High Technology Research and Development Program of China+2 种基金Project(20110162130004)supported by the Research Fund for the Doctoral Program of Higher Education of ChinaProject(14JJ2010)supported by the Natural Science Foundation of Hunan Province,ChinaProject(GZKF-201401)supported by the Open Project of Stage Key Laboratory of Fluid Power Transmission and Control(Zhejiang University),China
文摘The alignment coupling between optical waveguide chips and optical fiber arrays is the basis of the alignment coupling of planar optical waveguide devices, and the precise position detection with angle and spacing adjustments is one of the key steps of alignment coupling. A methodology for position detection, and angle and spacing adjustment was proposed for optical waveguide chips and optical fiber arrays based on machine vision. The experimental results show angle detection precision levels higher than 0.05°, line detection precision levels higher than 0.1 μm, and detection time less than 2 s. Therefore, the system developed herein meets the precise requirements necessary for position detection, and angle and spacing adjustments for optical waveguide chips and optical fiber arrays.
基金Project supported by the National Key Research and Development Program of China(Grant No.2016YFB0402504)the National Natural Science Foundation of China(Grant Nos.61875069 and 61575076)+1 种基金Hong Kong Scholars Program,China(Grant No.XJ2016026)the Science and Technology Development Plan of Jilin Province,China(Grant Nos.20190302010GX and 20160520091JH)
文摘We propose a novel and efficient multi-functional optical fiber sensor system based on a dense wavelength division multiplexer(DWDM).This system consists of an optical fiber temperature sensor, an optical fiber strain sensor, and a 48-channel DWDM.This system can monitor temperature and strain changes at the same time.The ranges of these two sensors are from-20℃ to 100℃ and from-1000 με to 2000 με, respectively.The sensitivities of the temperature sensor and strain sensor are 0.03572 nm/℃ and 0.03808 nm/N, respectively.With the aid of a broadband source and spectrometer,different kinds and ranges of parameters in the environment can be monitored by using suitable sensors.
基金supported by the National Natural Science Foundation of China(Grant No.61471357)the State Key Laboratory of Geo-Information Engineering Foundation(Grant No.SKLGIE2014-M-2-1)
文摘Grazing incidence optics (GIO) is the most important compound in an x-ray detection system; it is used to concentrate the x-ray photons from outer space. A nested planar GIO for x-ray concentration is designed and developed by authors in this paper; planar segments are used as the reflection mirror instead of curved segments because of the simple process and low cost. After the complex assembling process with a special metal supporter, a final circle light spot of φ 12 mm was obtained in the visible light testing experiment of GIO; the effective area of 1710.51 mm^2@ 1 keV and 530 mm^2@8 keV is obtained in the x-ray testing experiment with the GIO-SDD combination, which is supposed to be a concentrating detector in xray detection systems.
文摘TiO2/ ormosil planar waveguide was prepared by sol-gel method at low thermal treatment temperature ( 〈 200 ℃). Scanning electron microscope, FT-IR spectrometer, spectrophotometer, atomic force microscopy, thermal analyzer, and dark m-line spectroscopy were used with the method of scattering-detection to investigate optical and structural properties. High optical quality waveguide film was obtained. The propagation loss of film was 0.569 dB/cm at a wavelength of 632.8 nm.