Excellent weldability substantially contributes to the intrinsic quality of steels,while appropriate chemical composition plays a primary role in the essential weldability of steels.The poor weldability of ferritic st...Excellent weldability substantially contributes to the intrinsic quality of steels,while appropriate chemical composition plays a primary role in the essential weldability of steels.The poor weldability of ferritic stainless steels could be improved through modification with minor alloy elements while minimally increasing the cost.Therefore,studying the effect of minor alloy elements on the weldability of steels is of considerable importance.In this study,several steels of middle-chromium hyperpure ferritic stainless 00Cr21Ti with different Ni content(0.3%,0.5%,0.8%,and 1.0%)were developed,and their weldabilities of butt joint samples welded using the metal inert gas welding process,including the influence of welded joints on the microstructure,tensile performance,corrosion resistance,and fatigue property,were investigated.Results show that the steels with w(Ni)≥0.8%exhibit excellent mechanical properties compared with those with low-Ni content steels,further,their impact toughness at normal atmospheric temperature meets the industrial application standard and the fatigue property is similar to that of 304 austenitic stainless steel.Moreover,results show that the corrosion resistance of all the samples is almost at the same level.The results acquired in this study are supposed to be useful for the optimization of the chemical composition of stainless steels aiming to improve weldability.展开更多
In ferritic stainless steels, a significant non-uniform recrystallization orientation and a substantial texture gradient usually occur, which can degrade the ridging resistance of the final sheets. To improve the homo...In ferritic stainless steels, a significant non-uniform recrystallization orientation and a substantial texture gradient usually occur, which can degrade the ridging resistance of the final sheets. To improve the homogeneity of the recrystallization orientation and reduce the texture gradient in ultra-purified 17%Cr ferritic stainless steel, in this work, we performed conventional and asymmetric rolling processes and conducted macro and micro-texture analyses to investigate texture evolution under different cold-rolling conditions. In the conventional rolling specimens, we observed that the deformation was not uniform in the thickness direction, whereas there was homogeneous shear deformation in the asymmetric rolling specimens as well as the formation of uniform recrystallized grains and random orientation grains in the final annealing sheets. As such, the ridging resistance of the final sheets was significantly improved by employing the asymmetric rolling process. This result indicates with certainty that the texture gradient and orientation inhomogeneity can be attributed to non-uniform deformation, whereas the uniform orientation gradient in the thickness direction is explained by the increased number of shear bands obtained in the asymmetric rolling process.展开更多
The grades of ultra-pure ferritic stainless steels, especially the grades used in automobile exhaust system, were reviewed. The dependence of properties on alloying elements, the refining facilities, and the mechanism...The grades of ultra-pure ferritic stainless steels, especially the grades used in automobile exhaust system, were reviewed. The dependence of properties on alloying elements, the refining facilities, and the mechanism of the reactions in steel melts were described in detail. Vacuum, strong stirring, and powder injection proved to be effective technologies in the melting of ultra-pure ferritic stainless steels. The application of the ferritic grades was also briefly introduced.展开更多
The formation mechanism of acicular ferrite and its microstructural characteristics in 430 ferrite stainless steel with TiC additions were studied by theory and experiment.Using an"edge?to?edge matching"mode...The formation mechanism of acicular ferrite and its microstructural characteristics in 430 ferrite stainless steel with TiC additions were studied by theory and experiment.Using an"edge?to?edge matching"model,a 5.25 mismatch between TiC(FCC structure)and ferritic stainless steel(BCC structure)was identified,which met the mismatch requirement for the heterogeneous nucleation of 430 ferritic stainless steel.TiC was found to be an effective nucleation site for the formation of acicular ferrite in a smelting experiment,as analyzed by metallographic examination,Image-Pro Plus 6.0 analysis software,and SEM–EDS.Furthermore,small inclusions in the size of 2–4?m increased the probability of acicular ferrite nucleation,and the secondary acicular ferrite would grow sympathetically from the initial acicular ferrite to produce multi-dimensional acicular ferrites.Moreover,the addition of Ti C can increase the average microstrain and dislocation density of 430 ferrite stainless steel,as calculated by Williamson-Hall(WH)method,which could play some role in strengthening the dislocation.展开更多
One of the main problems during the welding of ferritic stainless steels is severe grain growth within the heat-affected zone (HAZ) In the present study, the microstmctural characteristics of tungsten inert gas (TI...One of the main problems during the welding of ferritic stainless steels is severe grain growth within the heat-affected zone (HAZ) In the present study, the microstmctural characteristics of tungsten inert gas (TIG) welded AISI409 ferritic stainless steel were investigated by electron backscattered diffraction (EBSD), and the effects of welding parameters on the grain size, local misorientation, and low-angle grain boundaries were studied. A 3-D finite element model (FEM) was developed to predict the effects of welding parameters on the holding time of the HAZ above the critical temperature of grain growth. It is found that the base metal is not fully recrystallized. During the welding, complete recrystallization is followed by severe grain growth. A decrease in the number of low-angle grain boundaries is observed within the HAZ. FEM results show that the final state of residual sWains is caused by competition between welding plastic strains and their release by recrystallization. Still, the decisive factor for grain growth is heat input.展开更多
This article reports the effects of Sn on the inclusions as well as the mechanical properties and hot workability of ferritic stainless steel. Precipitation phases and inclusions in Sn-bearing ferritic stainless steel...This article reports the effects of Sn on the inclusions as well as the mechanical properties and hot workability of ferritic stainless steel. Precipitation phases and inclusions in Sn-bearing ferritic stainless steel were observed, and the relationship between the workability and the microstructure of the steel was established. Energy-dispersive X-ray spectroscopic analysis of the steel reveals that an almost pure Sn phase forms and MnS-Sn compound inclusions appear in the steel with a higher Sn content. Little Sn segregation was observed in grain boundaries and in the areas around sulfide inclusions;however, the presence of Sn does not adversely affect the workability of the steel con-taining 0.4wt%Sn. When the Sn content is 0.1wt%-0.4wt%, Sn improves the tensile strength and the plastic strain ratio and also improves the plasticity with increasing temperature. A mechanism of improving the workability of ferritic stainless steel induced by Sn addition was discussed:the presence of Sn lowers the defect concentration in the ultra-pure ferritic lattice and the good distribution of tin in the lattice overcomes the problem of hot brittleness that occurs in low-carbon steel as a result of Sn segregation.展开更多
The effect of chloride ion concentration, pH value, and grain size on the pitting corrosion resistance of a new ferritic stainless steel with 15wt% Cr was investigated using the anodic polarization method. The semicon...The effect of chloride ion concentration, pH value, and grain size on the pitting corrosion resistance of a new ferritic stainless steel with 15wt% Cr was investigated using the anodic polarization method. The semiconducting properties of passive films with different chloride ion concentrations were performed using capacitance measurement and Mott-Schottky analysis methods. The aging precipitation and intergranular corrosion behavior were evaluated at 400- 900℃. It is found that the pitting potential decreases when the grain size increases. With the increase in chloride ion concentration, the doping density and the flat-bland potential increase but the thickness of the space charge layer decreases. The pitting corrosion resistance increases rapidly with the decrease in pH value. Precipitants is identified as Nb(C,N) and NbC, rather than Cr-carbide. The intergranular corrosion is attributed to the synergistic effects of Nb(C,N) and NbC precipitates and Cr segregation adjacent to the precipitates.展开更多
In this study, Inconel 738 alloy was diffusion bonded to a ferritic stainless steel. The effect of bonding temperature on the microstructural development across the joint region was investigated. Following the diffusi...In this study, Inconel 738 alloy was diffusion bonded to a ferritic stainless steel. The effect of bonding temperature on the microstructural development across the joint region was investigated. Following the diffusion bonding, conventional characterization techniques such as scanning electron microscopy (SEM), energy dispersive X-ray (EDX) and microhardness were used to examine the interracial microstructure. It was seen that bonding temperature was effective on the diffusion of Ni from Inconel 738 to ferritic stainless steel that affected the microstructure of the interface. Austenite phase was formed at the interface as a result of Ni diffusion from the Inconel 738 to the interface.展开更多
The present study is concerned with the effect of filler metals such as austenitic stainless steel, ferritic stainless steel and duplex stainless steel on tensile and impact properties of the ferritic stainless steel ...The present study is concerned with the effect of filler metals such as austenitic stainless steel, ferritic stainless steel and duplex stainless steel on tensile and impact properties of the ferritic stainless steel conforming to AISI 409M grade. Rolled plates of 4 mm thickness were used as the base material for preparing single pass butt welded joints. Tensile and impact properties, microhardness, microstructure and fracture surface morphology of the joints fabricated by austenitic stainless steel, ferritic stainless steel and duplex stainless steel filler metals were evaluated and the results were reported. From this investigation, it is found that the joints fabricated by duplex stainless steel filler metal showed higher tensile strength and hardness compared to the joints fabricated by austenitic and ferritic stainless steel filler metals. Joints fabricated by austenitic stainless steel filler metal exhibited higher ductility and impact toughness compared with the joints fabricated by ferritic stainless steel and duplex stainless steel filler metals.展开更多
The behaviors of YAG laser welding process of ferritic stainless steel with activating fluxes were investigatedin this study. Some conventional oxides, halides and carbonates were applied in laser welding. The results...The behaviors of YAG laser welding process of ferritic stainless steel with activating fluxes were investigatedin this study. Some conventional oxides, halides and carbonates were applied in laser welding. The resultsshowed that the effect of oxides on the penetration depth was more remarkable. Most activating fluxes improved thepenetration more effectively at low power than that at high power. The uniform design was adopted to arrange theformula of multicomponent activating fluxes, showing that the optimal formula can make the penetration depth up to2.23 times as large as that without flux, including 50% ZrO2, 12.09% CaCO3, 10.43% CaO and 27.48% MgO. Throughthe high-speed photographs of welding process, CaF2 can minimize the plasma volume but slightly improve the penetrationcapability.展开更多
Effects of Cr, Mo, and Nb on the ferritic stainless steel ]2(210) grain boundary and intragranularity are investigated using the first-principles principle. Different positions of solute atoms are considered. Struct...Effects of Cr, Mo, and Nb on the ferritic stainless steel ]2(210) grain boundary and intragranularity are investigated using the first-principles principle. Different positions of solute atoms are considered. Structural stability is lowered by Cr doping and enhanced by Mo and Nb doping. A ranking on the effect of solute atoms enhancing the cohesive strength of the grain boundary, from the strongest to the weakest is Cr, Mo, and Nb. Cr clearly prefers to locate in the intragranular region of Fe rather than in the grain boundary, while Mo and Nb tend to segregate to the grain boundary. Solute Mo and Nb atoms possess a strong driving force for segregation to the grain boundary from the intragranular region, which increases the grain boundary embrittlement. For Mo- and Nb-doped systems, a remarkable quantity of electrons accumulate in the region close to Mo (Nb). Therefore, the bond strength may increase. With Cr, Mo, and Nb additions, an anti-parallel island is formed around the center of the grain boundary.展开更多
The sticking phenomenon during hot rolling of SUS 430 ferritic stainless steel was investigated by means of a two-disc type high-temperature wear tester. The test results indicate that sticking particles on the surfac...The sticking phenomenon during hot rolling of SUS 430 ferritic stainless steel was investigated by means of a two-disc type high-temperature wear tester. The test results indicate that sticking particles on the surfaces of high chromium steel (HiCr) and high-speed steel (HSS) rolls undergo nucleation, growth, and saturation stages. Grooves on the roll surface generated by grinding provide nucleation sites for sticking particles. The number of sticking particles on the HiCr roll surface is greater than that on the HSS roll surface. The average surface roughnesses (Ra) of HiCr and HSS rolls change from 0.502 and 0.493 μm at the initial stage to 0.837 and 0.530 μm at the saturation stage, respectively. The test further proves that the sticking behavior is strongly dependent on roll materials, and the HSS roll is more benefi- cial to prevent particles sticking compared with the HiCr roll under the same hot-rolling conditions.展开更多
In recent years, with attention paid to global environmental problems, there have been requirements for continuous improvement of automobile fuel economy and exhaust gas purification rate. The properties of the ferrit...In recent years, with attention paid to global environmental problems, there have been requirements for continuous improvement of automobile fuel economy and exhaust gas purification rate. The properties of the ferritic stainless steels (FSS) used to make automobile parts have been improved. This paper introduces the construction of automotive exhaust systems and describes their main failure behaviors and corrosion evaluation procedures.展开更多
With the increase in the content of carbon, nitrogen and titanium in 430 ferritic stainless steel, the refinement of the solidification structure is obvious and the proportion of equiaxed grain increases remarkably as...With the increase in the content of carbon, nitrogen and titanium in 430 ferritic stainless steel, the refinement of the solidification structure is obvious and the proportion of equiaxed grain increases remarkably as well. This is attributed to the increasing role of the inhomogeneous nucleation by TiN particles during solidification. In addition, more fine precipitations of (Ti ,Nb)N are found in steel with increased carbon and nitrogen content.展开更多
By using auger electron spectroscopy (AES) and diffusion theory to analyze the surface segregation of copper in antibacterial ferritic stainless steel, establishing a diffusion model, and calculating the activation ...By using auger electron spectroscopy (AES) and diffusion theory to analyze the surface segregation of copper in antibacterial ferritic stainless steel, establishing a diffusion model, and calculating the activation energy of diffusion of the copper in ferrite, the affect of surface segregation on the antibacterial capabilities were researched. The results show that the concentration of the copper surface at 973 K and 1 073 K could be expressed asln X^sCu/X^bCu = k0 √Dt/d(-△Hv^Cu+△Hf^tron+ △Hs^Cu)/3RT , with the parameters relating to the concentration of the diffusion layer, the coefficient of diffusion, the length of diffusion, the latent heat of evaporation and the latent heat of fusion. The activation energy of diffusion of copper in ferrite is approximately 221. 688 kJ/mol. The antibacterial property of the steel is improved as the surface segregation of the copper is increased. At 1 073 K for 60 min, the concentration of the surface copper is over three times higher than the basic concentration. The antibacterial property of the stainless steel can reach approximately 99.9%.展开更多
The effect of stabilizing elements, such as Nb and Ti, on the microstructure and properties of low carbon ferritic stainless steel (FSS) has been investigated. The results of the Thermo-calc simulation have shown th...The effect of stabilizing elements, such as Nb and Ti, on the microstructure and properties of low carbon ferritic stainless steel (FSS) has been investigated. The results of the Thermo-calc simulation have shown that the interstitial elements, such as C and N, may be completely stabilized by the addition of Nb and Ti. With the increase of Nb and Ti contents ,the α + γ two phases gradually transfer to a single α-phase under a high temperature condition ,and the content of the carbide M23 C6 gradually decreases. The microstructure has indicated that the combined addition of Nb and Ti can promote the recrystallization of the band structure and form more uniform equiaxed grains. Also, with the increase of Nb and Ti contents,the elongation, the r-value and the corrosion resistance of cold-rolled and annealed sheets are improved prominently. In comparison with the effect of Ti ,the addition of Nb is more beneficial to the increase of r-value and the corrosion resistance.展开更多
This study investigates the corrosion properties of 0Cr11Ti and 0Cr11NbTi ferritic stainless steels (FSS) for automotive exhaust systems. The results indicate that the base metal and weld seam of 0Cr11NbTi steel exh...This study investigates the corrosion properties of 0Cr11Ti and 0Cr11NbTi ferritic stainless steels (FSS) for automotive exhaust systems. The results indicate that the base metal and weld seam of 0Cr11NbTi steel exhibit better intergranular and condensate corrosion resistant properties because carbon and nitrogen are stabilized by Nb and Ti, and the precipitation of Cr carbide is retarded in grain boundaries.展开更多
A study has been carried out on the effect of continuous cooling with different rate from 1 200 ℃ on the brittleness of vacuum melted,extra-low interstitial Cr18Mo2 ferritic stainless steels.The ductile-brittle trans...A study has been carried out on the effect of continuous cooling with different rate from 1 200 ℃ on the brittleness of vacuum melted,extra-low interstitial Cr18Mo2 ferritic stainless steels.The ductile-brittle transition temperature was found to be the lowest after water cooling and the highest after furnace cooling.The increase of brittleness with cooling rate decrease is attributed to the formation of more nitrides.With the increase of titanium content the ductile- brittle transition temperature increases significantly.A low transition temperature occurred in steel containing0.18%Nb,and further increase of niobium brought about an increase of transition temperature.The transition temperature of ferritic stainless steel was raised severely by the precipitation of nitrides(Cr2N,Cr2Nb2N2and TiN)and oxides(Al2O3)promoting brittle crack initiation.展开更多
The dull-finish ferritic stainless steel (FSS) sheet B445R for architectural roofing has been developed by Baosteel. This steel product exhibits excellent corrosion resistance superior to that of SUS 316L with a low...The dull-finish ferritic stainless steel (FSS) sheet B445R for architectural roofing has been developed by Baosteel. This steel product exhibits excellent corrosion resistance superior to that of SUS 316L with a lower cost. It can be easily formed into roofing panels by ordinary processes. Moreover,the thermal strain of it is less than SUS 316L because of its lower thermal expansion coefficient, and its reflectivity is lower due to the dull-finish treatment. All of these features make it capable of being used as architectural roofing materials in coastal regions.展开更多
Thin plates of 21% Cr ferritic stainless steel welded by pulsed gas tungsten arc welding at different pulse frequencies were investigated for the microstructure characteristics and hardness behavior.The welds containe...Thin plates of 21% Cr ferritic stainless steel welded by pulsed gas tungsten arc welding at different pulse frequencies were investigated for the microstructure characteristics and hardness behavior.The welds contained columnar grains in the outer part and fine equiaxed grains in the central region due to the pulsed process.展开更多
文摘Excellent weldability substantially contributes to the intrinsic quality of steels,while appropriate chemical composition plays a primary role in the essential weldability of steels.The poor weldability of ferritic stainless steels could be improved through modification with minor alloy elements while minimally increasing the cost.Therefore,studying the effect of minor alloy elements on the weldability of steels is of considerable importance.In this study,several steels of middle-chromium hyperpure ferritic stainless 00Cr21Ti with different Ni content(0.3%,0.5%,0.8%,and 1.0%)were developed,and their weldabilities of butt joint samples welded using the metal inert gas welding process,including the influence of welded joints on the microstructure,tensile performance,corrosion resistance,and fatigue property,were investigated.Results show that the steels with w(Ni)≥0.8%exhibit excellent mechanical properties compared with those with low-Ni content steels,further,their impact toughness at normal atmospheric temperature meets the industrial application standard and the fatigue property is similar to that of 304 austenitic stainless steel.Moreover,results show that the corrosion resistance of all the samples is almost at the same level.The results acquired in this study are supposed to be useful for the optimization of the chemical composition of stainless steels aiming to improve weldability.
基金financially supported by the National Key R&D Program of China (2016YFB0300200)National Natural Science Foundation of China (Nos. U1660114 and 51174026)
文摘In ferritic stainless steels, a significant non-uniform recrystallization orientation and a substantial texture gradient usually occur, which can degrade the ridging resistance of the final sheets. To improve the homogeneity of the recrystallization orientation and reduce the texture gradient in ultra-purified 17%Cr ferritic stainless steel, in this work, we performed conventional and asymmetric rolling processes and conducted macro and micro-texture analyses to investigate texture evolution under different cold-rolling conditions. In the conventional rolling specimens, we observed that the deformation was not uniform in the thickness direction, whereas there was homogeneous shear deformation in the asymmetric rolling specimens as well as the formation of uniform recrystallized grains and random orientation grains in the final annealing sheets. As such, the ridging resistance of the final sheets was significantly improved by employing the asymmetric rolling process. This result indicates with certainty that the texture gradient and orientation inhomogeneity can be attributed to non-uniform deformation, whereas the uniform orientation gradient in the thickness direction is explained by the increased number of shear bands obtained in the asymmetric rolling process.
基金Item Sponsored by National Natural Science Foundation of China Baoshan Iron and Steel Co Ltd(50534010)
文摘The grades of ultra-pure ferritic stainless steels, especially the grades used in automobile exhaust system, were reviewed. The dependence of properties on alloying elements, the refining facilities, and the mechanism of the reactions in steel melts were described in detail. Vacuum, strong stirring, and powder injection proved to be effective technologies in the melting of ultra-pure ferritic stainless steels. The application of the ferritic grades was also briefly introduced.
基金financially supported by the National Natural Science Foundation of China (No. 51674071)
文摘The formation mechanism of acicular ferrite and its microstructural characteristics in 430 ferrite stainless steel with TiC additions were studied by theory and experiment.Using an"edge?to?edge matching"model,a 5.25 mismatch between TiC(FCC structure)and ferritic stainless steel(BCC structure)was identified,which met the mismatch requirement for the heterogeneous nucleation of 430 ferritic stainless steel.TiC was found to be an effective nucleation site for the formation of acicular ferrite in a smelting experiment,as analyzed by metallographic examination,Image-Pro Plus 6.0 analysis software,and SEM–EDS.Furthermore,small inclusions in the size of 2–4?m increased the probability of acicular ferrite nucleation,and the secondary acicular ferrite would grow sympathetically from the initial acicular ferrite to produce multi-dimensional acicular ferrites.Moreover,the addition of Ti C can increase the average microstrain and dislocation density of 430 ferrite stainless steel,as calculated by Williamson-Hall(WH)method,which could play some role in strengthening the dislocation.
文摘One of the main problems during the welding of ferritic stainless steels is severe grain growth within the heat-affected zone (HAZ) In the present study, the microstmctural characteristics of tungsten inert gas (TIG) welded AISI409 ferritic stainless steel were investigated by electron backscattered diffraction (EBSD), and the effects of welding parameters on the grain size, local misorientation, and low-angle grain boundaries were studied. A 3-D finite element model (FEM) was developed to predict the effects of welding parameters on the holding time of the HAZ above the critical temperature of grain growth. It is found that the base metal is not fully recrystallized. During the welding, complete recrystallization is followed by severe grain growth. A decrease in the number of low-angle grain boundaries is observed within the HAZ. FEM results show that the final state of residual sWains is caused by competition between welding plastic strains and their release by recrystallization. Still, the decisive factor for grain growth is heat input.
基金the National Key Technology R&D Program of China(No. 2012BAE04B02)the Fundamental Research Funds for Central Universities of China(No.N130402009)+1 种基金the Natural Science Foundation of Liaoning Province of China(No. 2014020032)the Program for Liaoning Innovative Research Team in University
文摘This article reports the effects of Sn on the inclusions as well as the mechanical properties and hot workability of ferritic stainless steel. Precipitation phases and inclusions in Sn-bearing ferritic stainless steel were observed, and the relationship between the workability and the microstructure of the steel was established. Energy-dispersive X-ray spectroscopic analysis of the steel reveals that an almost pure Sn phase forms and MnS-Sn compound inclusions appear in the steel with a higher Sn content. Little Sn segregation was observed in grain boundaries and in the areas around sulfide inclusions;however, the presence of Sn does not adversely affect the workability of the steel con-taining 0.4wt%Sn. When the Sn content is 0.1wt%-0.4wt%, Sn improves the tensile strength and the plastic strain ratio and also improves the plasticity with increasing temperature. A mechanism of improving the workability of ferritic stainless steel induced by Sn addition was discussed:the presence of Sn lowers the defect concentration in the ultra-pure ferritic lattice and the good distribution of tin in the lattice overcomes the problem of hot brittleness that occurs in low-carbon steel as a result of Sn segregation.
基金financially supported by the Program for Liaoning Innovative Research Team in University(No.LT20120008)the Fundamental Research Funds for the Central Universities(No.N100402015)the General Scientifc Research Project of the Department of Education of Liaoning Province,China(No.L2012077)
文摘The effect of chloride ion concentration, pH value, and grain size on the pitting corrosion resistance of a new ferritic stainless steel with 15wt% Cr was investigated using the anodic polarization method. The semiconducting properties of passive films with different chloride ion concentrations were performed using capacitance measurement and Mott-Schottky analysis methods. The aging precipitation and intergranular corrosion behavior were evaluated at 400- 900℃. It is found that the pitting potential decreases when the grain size increases. With the increase in chloride ion concentration, the doping density and the flat-bland potential increase but the thickness of the space charge layer decreases. The pitting corrosion resistance increases rapidly with the decrease in pH value. Precipitants is identified as Nb(C,N) and NbC, rather than Cr-carbide. The intergranular corrosion is attributed to the synergistic effects of Nb(C,N) and NbC precipitates and Cr segregation adjacent to the precipitates.
文摘In this study, Inconel 738 alloy was diffusion bonded to a ferritic stainless steel. The effect of bonding temperature on the microstructural development across the joint region was investigated. Following the diffusion bonding, conventional characterization techniques such as scanning electron microscopy (SEM), energy dispersive X-ray (EDX) and microhardness were used to examine the interracial microstructure. It was seen that bonding temperature was effective on the diffusion of Ni from Inconel 738 to ferritic stainless steel that affected the microstructure of the interface. Austenite phase was formed at the interface as a result of Ni diffusion from the Inconel 738 to the interface.
文摘The present study is concerned with the effect of filler metals such as austenitic stainless steel, ferritic stainless steel and duplex stainless steel on tensile and impact properties of the ferritic stainless steel conforming to AISI 409M grade. Rolled plates of 4 mm thickness were used as the base material for preparing single pass butt welded joints. Tensile and impact properties, microhardness, microstructure and fracture surface morphology of the joints fabricated by austenitic stainless steel, ferritic stainless steel and duplex stainless steel filler metals were evaluated and the results were reported. From this investigation, it is found that the joints fabricated by duplex stainless steel filler metal showed higher tensile strength and hardness compared to the joints fabricated by austenitic and ferritic stainless steel filler metals. Joints fabricated by austenitic stainless steel filler metal exhibited higher ductility and impact toughness compared with the joints fabricated by ferritic stainless steel and duplex stainless steel filler metals.
基金Supported by the Research Institute,Baoshan Iron & Steel Co.,Ltd
文摘The behaviors of YAG laser welding process of ferritic stainless steel with activating fluxes were investigatedin this study. Some conventional oxides, halides and carbonates were applied in laser welding. The resultsshowed that the effect of oxides on the penetration depth was more remarkable. Most activating fluxes improved thepenetration more effectively at low power than that at high power. The uniform design was adopted to arrange theformula of multicomponent activating fluxes, showing that the optimal formula can make the penetration depth up to2.23 times as large as that without flux, including 50% ZrO2, 12.09% CaCO3, 10.43% CaO and 27.48% MgO. Throughthe high-speed photographs of welding process, CaF2 can minimize the plasma volume but slightly improve the penetrationcapability.
基金Project supported by the National Natural Science Foundation of China(Grant No.51371123)the Specialized Research Foundation of the Doctoral Program for Institution of Higher Education of China(Grant No.2013140211003)+1 种基金the Science and Technology Research Project of Municipal Education Commission of Chongqin,China(Grant Nos.KJ131308 and KJ131315)the Natural Science Foundation of Science and Technology Commission of Chongqin,China(Grant No.cstc2012jjA90017)
文摘Effects of Cr, Mo, and Nb on the ferritic stainless steel ]2(210) grain boundary and intragranularity are investigated using the first-principles principle. Different positions of solute atoms are considered. Structural stability is lowered by Cr doping and enhanced by Mo and Nb doping. A ranking on the effect of solute atoms enhancing the cohesive strength of the grain boundary, from the strongest to the weakest is Cr, Mo, and Nb. Cr clearly prefers to locate in the intragranular region of Fe rather than in the grain boundary, while Mo and Nb tend to segregate to the grain boundary. Solute Mo and Nb atoms possess a strong driving force for segregation to the grain boundary from the intragranular region, which increases the grain boundary embrittlement. For Mo- and Nb-doped systems, a remarkable quantity of electrons accumulate in the region close to Mo (Nb). Therefore, the bond strength may increase. With Cr, Mo, and Nb additions, an anti-parallel island is formed around the center of the grain boundary.
文摘The sticking phenomenon during hot rolling of SUS 430 ferritic stainless steel was investigated by means of a two-disc type high-temperature wear tester. The test results indicate that sticking particles on the surfaces of high chromium steel (HiCr) and high-speed steel (HSS) rolls undergo nucleation, growth, and saturation stages. Grooves on the roll surface generated by grinding provide nucleation sites for sticking particles. The number of sticking particles on the HiCr roll surface is greater than that on the HSS roll surface. The average surface roughnesses (Ra) of HiCr and HSS rolls change from 0.502 and 0.493 μm at the initial stage to 0.837 and 0.530 μm at the saturation stage, respectively. The test further proves that the sticking behavior is strongly dependent on roll materials, and the HSS roll is more benefi- cial to prevent particles sticking compared with the HiCr roll under the same hot-rolling conditions.
文摘In recent years, with attention paid to global environmental problems, there have been requirements for continuous improvement of automobile fuel economy and exhaust gas purification rate. The properties of the ferritic stainless steels (FSS) used to make automobile parts have been improved. This paper introduces the construction of automotive exhaust systems and describes their main failure behaviors and corrosion evaluation procedures.
基金this project by both the National Natural Science Foundation of China(NSF 50734002)and Baosteel is fully acknowledged.
文摘With the increase in the content of carbon, nitrogen and titanium in 430 ferritic stainless steel, the refinement of the solidification structure is obvious and the proportion of equiaxed grain increases remarkably as well. This is attributed to the increasing role of the inhomogeneous nucleation by TiN particles during solidification. In addition, more fine precipitations of (Ti ,Nb)N are found in steel with increased carbon and nitrogen content.
文摘By using auger electron spectroscopy (AES) and diffusion theory to analyze the surface segregation of copper in antibacterial ferritic stainless steel, establishing a diffusion model, and calculating the activation energy of diffusion of the copper in ferrite, the affect of surface segregation on the antibacterial capabilities were researched. The results show that the concentration of the copper surface at 973 K and 1 073 K could be expressed asln X^sCu/X^bCu = k0 √Dt/d(-△Hv^Cu+△Hf^tron+ △Hs^Cu)/3RT , with the parameters relating to the concentration of the diffusion layer, the coefficient of diffusion, the length of diffusion, the latent heat of evaporation and the latent heat of fusion. The activation energy of diffusion of copper in ferrite is approximately 221. 688 kJ/mol. The antibacterial property of the steel is improved as the surface segregation of the copper is increased. At 1 073 K for 60 min, the concentration of the surface copper is over three times higher than the basic concentration. The antibacterial property of the stainless steel can reach approximately 99.9%.
基金funded by the CITIC-CBMM R & D Subject Foundation(2010-D046).
文摘The effect of stabilizing elements, such as Nb and Ti, on the microstructure and properties of low carbon ferritic stainless steel (FSS) has been investigated. The results of the Thermo-calc simulation have shown that the interstitial elements, such as C and N, may be completely stabilized by the addition of Nb and Ti. With the increase of Nb and Ti contents ,the α + γ two phases gradually transfer to a single α-phase under a high temperature condition ,and the content of the carbide M23 C6 gradually decreases. The microstructure has indicated that the combined addition of Nb and Ti can promote the recrystallization of the band structure and form more uniform equiaxed grains. Also, with the increase of Nb and Ti contents,the elongation, the r-value and the corrosion resistance of cold-rolled and annealed sheets are improved prominently. In comparison with the effect of Ti ,the addition of Nb is more beneficial to the increase of r-value and the corrosion resistance.
文摘This study investigates the corrosion properties of 0Cr11Ti and 0Cr11NbTi ferritic stainless steels (FSS) for automotive exhaust systems. The results indicate that the base metal and weld seam of 0Cr11NbTi steel exhibit better intergranular and condensate corrosion resistant properties because carbon and nitrogen are stabilized by Nb and Ti, and the precipitation of Cr carbide is retarded in grain boundaries.
文摘A study has been carried out on the effect of continuous cooling with different rate from 1 200 ℃ on the brittleness of vacuum melted,extra-low interstitial Cr18Mo2 ferritic stainless steels.The ductile-brittle transition temperature was found to be the lowest after water cooling and the highest after furnace cooling.The increase of brittleness with cooling rate decrease is attributed to the formation of more nitrides.With the increase of titanium content the ductile- brittle transition temperature increases significantly.A low transition temperature occurred in steel containing0.18%Nb,and further increase of niobium brought about an increase of transition temperature.The transition temperature of ferritic stainless steel was raised severely by the precipitation of nitrides(Cr2N,Cr2Nb2N2and TiN)and oxides(Al2O3)promoting brittle crack initiation.
文摘The dull-finish ferritic stainless steel (FSS) sheet B445R for architectural roofing has been developed by Baosteel. This steel product exhibits excellent corrosion resistance superior to that of SUS 316L with a lower cost. It can be easily formed into roofing panels by ordinary processes. Moreover,the thermal strain of it is less than SUS 316L because of its lower thermal expansion coefficient, and its reflectivity is lower due to the dull-finish treatment. All of these features make it capable of being used as architectural roofing materials in coastal regions.
文摘Thin plates of 21% Cr ferritic stainless steel welded by pulsed gas tungsten arc welding at different pulse frequencies were investigated for the microstructure characteristics and hardness behavior.The welds contained columnar grains in the outer part and fine equiaxed grains in the central region due to the pulsed process.