Antimatter has been generated in large quantities by the Lawrence Livermore National Laboratory Titan laser. The Titan laser is an ultra-intense laser system on the order of approximately 1020W/cm2 with pulse duration...Antimatter has been generated in large quantities by the Lawrence Livermore National Laboratory Titan laser. The Titan laser is an ultra-intense laser system on the order of approximately 1020W/cm2 with pulse durations of roughly 1ps. With the Titan laser incident on a high atomic number target, such as gold, antimatter on the scale of 2 × 1010 positrons are generated. Roughly 90% of the generated positrons are ejected anisotropic and aft to the respective target. The mechanisms for the laser-derived positron antimatter generation involve electron interaction with the nuclei based on bremsstrahlung photons that yield electron-positron pairs as a consequence of the Bethe-Heitler process, which predominates the Trident process. Given the constraints of the current and near future technology space, a pulsed space propulsion configuration is advocated for antimatter derived space propulsion, similar in concept to pulsed radioisotope propulsion. Antimatter is generated through an ultra-intense laser on the scale of a Titan laser incident on a gold target and annihilated in a closed chamber, representative of a combustion chamber. Upon reaching a temperature threshold, the closed chamber opens, producing a pulse of thrust. The implication of the pulsed space propulsion antimatter architecture is that the energy source for the antimatter propulsion system can be decoupled from the actual spacecraft. In contrast to conventional chemical propulsion systems, which require storage of its respective propulsive chemical potential energy, the proposed antimatter propulsion architecture may have the energy source at a disparate location from the spacecraft. The ultra-intense laser could convey its laser energy over a distance to the actual spacecraft equipped with the positron antimatter pulsed space propulsion system. Hydrogen is considered as the propulsive fluid, in light of its low molecular weight. Fundamental analysis is applied to preliminarily define the performance of the positron antimatter derived pulsed space propulsion system. The fundamental performance analysis of the antimatter pulsed space propulsion system successfully reveals the architecture is viable for further evaluation.展开更多
The fundamental performance analysis of an advanced concept ramjet propulsion system using antimatter is presented. Antimatter is generated by ultra-intense laser pulses incident on a gold target. The scientific found...The fundamental performance analysis of an advanced concept ramjet propulsion system using antimatter is presented. Antimatter is generated by ultra-intense laser pulses incident on a gold target. The scientific foundation for the generation of antimatter by an ultra-intense laser was established in the early 1970’s and later demonstrated at Lawrence Livermore National Laboratory from 2008 to 2009. Antimatter on the scale of 2 × 1010 positrons were generated through a ~1 ps pulse from the Lawrence Livermore National Laboratory Titan laser that has an intensity of ~1020 W/cm2. The predominant mechanism is the Bethe-Heitler process, which involves high-energy bremsstrahlung photons as a result of electron-nuclei interaction. Propulsion involving lasers through chemical rather than non-chemical interaction has been previously advocated by Phipps. The major utilities of the ultra-intense laser derived antimatter ramjet are the capability to generate antimatter without a complex storage system and the ability to decouple the antimatter ramjet propulsion system from the energy source. For instance the ultra-intense laser and energy source could be terrestrial, while the ramjet could be mounted to a UAV as a propulsion system. With the extrapolation of current technologies, a sufficient number of pulses by ultra-intense lasers are eventually anticipated for the generation of antimatter to heat the propulsive flow of a ramjet. Fundamental performance analysis is provided based on an ideal ramjet derivation that is modified to address the proposed antimatter ramjet architecture.展开更多
Photofission enables a unique capability for the domain of non-chemical space propulsion. An ultra-intense laser enables the capacity to induce nuclear fission through the development of bre- msstrahlung photons. A fu...Photofission enables a unique capability for the domain of non-chemical space propulsion. An ultra-intense laser enables the capacity to induce nuclear fission through the development of bre- msstrahlung photons. A fundamental architecture and performance analysis of a photofission pulsed space propulsion system through the operation of an ultra-intense laser is presented. A historical perspective of previous conceptual nuclear fission propulsion systems is addressed. These applications use neutron derived nuclear fission;however, there is inherent complexity that has precluded further development. The background of photofission is detailed. The conceptual architecture of photofission pulsed space propulsion and fundamental performance parameters are established. The implications are the energy source and ultra-intense laser can be situated far remote from the propulsion system. Advances in supporting laser technologies are anticipated to increase the potential for photofission pulsed space propulsion. The fundamental performance analysis of the photofission pulsed space propulsion system indicates the architecture is feasible for further evaluation.展开更多
Project New Orion entails a pulsed nuclear space propulsion system that utilizes photofission through the implementation of an ultra-intense laser. The historical origins derive from the endeavors of Project Orion, wh...Project New Orion entails a pulsed nuclear space propulsion system that utilizes photofission through the implementation of an ultra-intense laser. The historical origins derive from the endeavors of Project Orion, which utilized thermonuclear devices to impart a considerable velocity increment on the respective spacecraft. The shear magnitude of Project Orion significantly detracts from the likelihood of progressive research development testing and evaluation. Project New Orion incorporates a more feasible pathway for the progressive research development testing and evaluation of the pulsed nuclear space propulsion system. Photofission through the application of an ultra-intense laser enables a much more controllable and scalable nuclear yield. The energy source for the ultra-intense laser is derived from a first stage liquid hydrogen and liquid oxygen chemical propulsion system. A portion of the thermal/kinetic energy of the rocket propulsive fluid is converted to electrical energy through a magneto-hydrodynamic generator with cryogenic propellant densification for facilitating the integral superconducting magnets. Fundamental analysis of Project New Orion demonstrates the capacity to impart a meaningful velocity increment through ultra-intense laser derived photofission on a small spacecraft.展开更多
A theoretical and numerical model of photon and electron–positron pair production in strong-field quantum electrodynamics(QED) is described. Two processes are contained in our QED theoretical model, one is photon e...A theoretical and numerical model of photon and electron–positron pair production in strong-field quantum electrodynamics(QED) is described. Two processes are contained in our QED theoretical model, one is photon emission in the interaction of ultra-intense laser with relativistic electron(or positron), and the other is pair production by a gamma-ray photon interacting with the laser field.This model has been included in a PIC/MCC simulation code named BUMBLEBEE 1 D, which is used to simulate the laser plasma interaction. Using this code, the evolutions of electron–positron pair and gamma-ray photon production in ultra-intense laser interaction with aluminum foil target are simulated and analyzed. The simulation results revealed that more positrons are moved in the opposite direction to the incident direction of the laser under the charge separation field.展开更多
An electromagnetic solitary structure in attosecond regime is identified, costreaming with electron bunch. It is observed via nonlinear process of Self-Thomson backscattering of an ultra-intense laser from thin foil t...An electromagnetic solitary structure in attosecond regime is identified, costreaming with electron bunch. It is observed via nonlinear process of Self-Thomson backscattering of an ultra-intense laser from thin foil target. The process is termed as Self-Thomson Backscattering since the counter propagating electron sheets are generated by the drive laser itself. The radiation pressure acceleration model is considered for the interaction of a super-intense linearly polarized laser pulse with a thin foil in one-dimensional (1D) particle-in-cell (PIC) simulations.展开更多
A pulsed space propulsion system using position antimatter to induce Deuterium-Tritium fusion through an ultra-intense laser incident on a gold target is conceptually presented through fundamental performance analysis...A pulsed space propulsion system using position antimatter to induce Deuterium-Tritium fusion through an ultra-intense laser incident on a gold target is conceptually presented through fundamental performance analysis. As opposed to traditional strategies positron antimatter is considered rather than antiproton antimatter. Positron antimatter can be produced by an ultra- intense laser incident on a high atomic number target, such as gold. The ultra-intense laser production of positron antimatter mechanism greatly alleviates constraints, such as requirements for antimatter storage imperative for antiproton antimatter. Also the ultra-intense laser and associated energy source can be stationary or positioned remote while the pulsed space propulsion system using position antimatter to induce Deuterium-Tritium fusion is in flight. Various mechanisms for antimatter catalyzed fusion are considered, for which the preferred mechanism is the antiproton hotspot ignition strategy. Fundamental performance analysis is subsequently applied to derive positron antimatter generation requirements and associated propulsion performance. The characteristics of the pulsed space propulsion system using position antimatter to induce Deuterium-Tritium fusion through an ultra-intense laser incident on a gold target imply a promising non-chemical propulsion alternative for the transport of bulk cargo to support space missions.展开更多
A controllable strategy for eliciting nuclear fusion is presented through ultra-intenselaser derived positron generation by a conceptual first physics perspective. The capability to generate positrons on demand in a c...A controllable strategy for eliciting nuclear fusion is presented through ultra-intenselaser derived positron generation by a conceptual first physics perspective. The capability to generate positrons on demand in a controlled manner through an ultra-intense laser incident on a high atomic number target, such as gold, is the intrinsic core to the foundation of controllable nuclear fusion. Positron antimatter generated from the periphery of the fusion fuel pellet provides the basis for initiating the fusion reaction, which is regulated by controlling the operation of the ultra-intense laser. A dual pulsed Fast Ignition mechanism is selected to achieve the fusion reaction. Based on first physics performance analysis the controllable strategy for eliciting nuclear fusion through ultra-intenselaser derived positron generation offers a realizable means for achieving regulated nuclear fusion. A future perspective of the controllable fusion strategy addresses the opportunities and concerns of a pathway toward regulated nuclear fusion.展开更多
Based on the kinetic theoretical Vlasov-Poisson equation, a surface Coulomb explosion model of SiO2 material induced by ultra-short pulsed laser radiation is established. The non-equilibrium free electron distribution...Based on the kinetic theoretical Vlasov-Poisson equation, a surface Coulomb explosion model of SiO2 material induced by ultra-short pulsed laser radiation is established. The non-equilibrium free electron distribution resulting from the two mechanisms of multi-photon ionization and avalanche ionization is computed. A quantitative analysis is given to describe the Coulomb explosion induced by the self-consistent electric field, and the impact of the parameters of laser pulses on the surface ablation is also discussed. The results show that the electron relaxation time is not constant, but it is related to the microscopic state of the electrons, so the relaxation time approximation is not available on the femtosecond time scale. The ablation depths computed by the theoretical model are in good agreement with the experimental results in the range of pulse durations from 0 to 1 ps.展开更多
Ultra-short laser pulses possess many advantages for materials processing.Ultrafast laser has a significantly low thermal effect on the areas surrounding the focal point;therefore,it is a promising tool for micro-and ...Ultra-short laser pulses possess many advantages for materials processing.Ultrafast laser has a significantly low thermal effect on the areas surrounding the focal point;therefore,it is a promising tool for micro-and submicro-sized precision processing.In addition,the nonlinear multiphoton absorption phenomenon of focused ultra-short pulses provides a promising method for the fabrication of various structures on transparent material,such as glass and transparent polymers.A laser direct writing process was applied in the fabrication of high-performance three-dimensional(3D)structured multilayer microsupercapacitors(MSCs)on polymer substrates exhibiting a peak specific capacitance of 42.6 mF·cm^-2 at a current density of 0.1 mA·cm^-12.Furthermore,a flexible smart sensor array on a polymer substrate was fabricated for multi-flavor detection.Different surface treatments such as gold plating,reducedgraphene oxide(rGO)coating,and polyaniline(PANI)coating were accomplished for different measurement units.By applying principal component analysis(PCA),this sensing system showed a promising result for flavor detection.In addition,two-dimensional(2D)periodic metal nanostructures inside 3D glass microfluidic channels were developed by all-femtosecond-laser processing for real-time surfaceenhanced Raman spectroscopy(SERS).The processing mechanisms included laser ablation,laser reduction,and laser-induced surface nano-engineering.These works demonstrate the attractive potential of ultra-short pulsed laser for surface precision manufacturing.展开更多
Glass welding by ultra-short pulsed(USP)lasers is a piece of technology that offers high strength joints with hermetic sealing.The joints are typically formed in glass that is transparent to the laser by exploiting no...Glass welding by ultra-short pulsed(USP)lasers is a piece of technology that offers high strength joints with hermetic sealing.The joints are typically formed in glass that is transparent to the laser by exploiting nonlinear absorption effects that occur under extreme conditions.Though the temperature reached during the process is on the order of a few 1000°C,the heat affected zone(HAZ)is confined to only tens of micrometers.It is this controlled confinement of the HAZ during the joining process that makes this technology so appealing to a multitude of applications because it allows the foregoing of a subsequent tempering step that is typically essential in other glass joining techniques,thus making it possible to effectively join highly heat sensitive components.In this work,we give an overview on the process,development and applications of glass welding by USP lasers.展开更多
The objective of this work was to investigate the possibility of taper angle correction in cutting of complex micro-mechanical contours using a TruMicro ultra-short pulse laser in combination with the SCANLAB precSYS ...The objective of this work was to investigate the possibility of taper angle correction in cutting of complex micro-mechanical contours using a TruMicro ultra-short pulse laser in combination with the SCANLAB precSYS micro machining sub system. In a first step, the influence of the process parameters on the kerftaper angle of metallic alloys was systematically investigated without beam inclination. A set of base parameters was derived for the subsequent investigations. In a second step, the kerftaper angle was controlled by static beam inclination. In a third step, the same optics was used in its dynamic precession mode to fabricate micro-mechanical components of complex contours with perpendicular 0~ taper angles. It was found that taper angle adjustments of up to 7.5~ are possible with the used setup for cutting applications. Taper angle control is possible both in the static beam inclination mode and in the dynamic precession mode. The static mode could be interesting for contours with sharp inner radii and for achieving faster cutting times similar to results with fixed optics, but would require excellent synchronization of beam inclination and axis motion. The dynamic precession mode would allow an easier integration of the optics into a laser machine but will result in longer cutting times and limitations with respect to achievable inner radii.展开更多
Proton acceleration experiments were carried out by a 1.2× 1018 W/cm2 ultra-short laser interaction with solid foil targets. The peak proton energy observed from an optimum target thickness of 7 μm in our experi...Proton acceleration experiments were carried out by a 1.2× 1018 W/cm2 ultra-short laser interaction with solid foil targets. The peak proton energy observed from an optimum target thickness of 7 μm in our experiments was 2.1 MeV. Peak proton energy and proton yield were investigated for different foil target thicknesses. It was shown that proton energy and conversion efficiency increased as the target became thinner, on one condition that the preplasma generated by the laser prepulse did not have enough shock energy and time to influence or destroy the target rear-surface. The existence of optimum foil thickness is due to the effect of the prepulse and hot electron transportation behavior on the foil target.展开更多
The dynamical progresses involved in ultra-short laser pulse ablation of face-centered cubic metals under stress confinement condition are described completely using molecular dynamics method. The laser beam absorptio...The dynamical progresses involved in ultra-short laser pulse ablation of face-centered cubic metals under stress confinement condition are described completely using molecular dynamics method. The laser beam absorption and thermal energy turning into kinetics energy of. atoms are taken into account to give a detailed picture of laser metal interaction. Superheating phenomenon is observed, and the phase change from solid to liquid is characterized by a destroyed atom configuration and a decreased number density. The steep velocity gradients are found in the systems of Cu and Ni after pulse in consequence of located heating and exponential decrease of fluences following the Lambert-Beer expression. The shock wave velocities are predicted to be about 5 000 m/s in Cu and 7 200 m/s in Ni. The higher ablation rates are obtained from simulations compared with experimental data as a result of a well-defined crystalline surface irradiated by a single pulse. Simulation results show that the main mechanisms of ablation are evaporation and thermoelastic stress due to located heating.展开更多
This paper focuses on the preparation of a new extended set of calibrations of cooling rate(fictive temperature)in fused silica determined by inelastic light scattering and its subsequent use to characterize the local...This paper focuses on the preparation of a new extended set of calibrations of cooling rate(fictive temperature)in fused silica determined by inelastic light scattering and its subsequent use to characterize the local cooling rate distribution in ultra-short pulsed(USP)laser modification.In order to determine the thermal history(e.g.cooling rate and fictive temperature)of fused silica,high-resolution inelastic light-scattering experiments(Raman and Brillouin spectroscopy)were investigated.Calibrations were performed and compared to the existing literature to quantify structural changes due to a change of fictive temperature.Compared to existing calibrations,this paper provides an extension to lower and higher cooling rates.Using this new set of calibrations,we characterized a USP laser modification in fused silica and calculated the local fictive temperature distribution.An equation relating the fictive temperature(Tf)to cooling rates is given.A maximum cooling rate of 3000 K min-1 in the glass transition region around 1200℃ was deduced from the Raman analysis.The Brillouin observations are sensitive to both the thermal history and the residual stress.By comparing the Raman and Brillouin observations,we extracted the local residual stress distribution with high spatial resolution.For the first time,combined Raman and Brillouin inelastic light scattering experiments show the local distribution of cooling rates and residual stresses(detailed behavior of the glass structure)in the interior and the surrounding of an USP laser modified zone.展开更多
Based on previously reported work, we propose a new method for calibrating image plate(IP) scanners, offering greater flexibility and convenience, which can be extended to the calibration tasks of various scanner mode...Based on previously reported work, we propose a new method for calibrating image plate(IP) scanners, offering greater flexibility and convenience, which can be extended to the calibration tasks of various scanner models. This method was applied to calibrate the sensitivity of a GE Typhoon FLA 7000 scanner. Additionally, we performed a calibration of the spontaneous signal attenuation behavior for BAS-MS, BAS-SR, and BAS-TR type IPs under the 20±1℃ environmental conditions, and observed significant signal carrier diffusion behavior in BAS-MS IP. The calibration results lay a foundation for further research on the interaction between ultra-short, ultra-intense lasers and matter.展开更多
After a half century of development, fiber laser has evolved from a concept to a great family penetrating into various fields of applications. This paper reviews the history and current development of fiber lasers, wi...After a half century of development, fiber laser has evolved from a concept to a great family penetrating into various fields of applications. This paper reviews the history and current development of fiber lasers, with topics covering both continuous wave and short pulse fiber lasers. Important issues such as the major rare earth dopants, fiber laser brightness, polarization effects, clad pumping technology, beam combination, mode locking and pulse shaping are discussed in this paper.展开更多
Proton acceleration induced by a high-intensity ultraviolet laser interaction with a thin foil target was studied on an ultra-short KrF laser amplifier called LLG50 in China Institute of Atomic Energy (CIAE). The ul...Proton acceleration induced by a high-intensity ultraviolet laser interaction with a thin foil target was studied on an ultra-short KrF laser amplifier called LLG50 in China Institute of Atomic Energy (CIAE). The ultraviolet laser produced pulses with a high-contrast of 109, duration of 500 fs and energy of 30 mJ. The p-polarized laser was focused on a 2.1 #m gold foil by an off-axis parabola mirror (OAP) at an incident angle of 45°. The laser intensity was 1.2× 1017 W/cm2. The divergence angle for proton energy of 265 keV or higher was 30°, which was recorded by a CR39 detector covered with 2 μm aluminum foil in the target normal direction. The maximum proton energy recorded by a CR39 detector covered with a 4 μm aluminum foil was 440 keV, and the proton energy spectrum was measured by a proton spectrometer. The ultraviolet laser acquires a relatively lower hot electron temperature, which can be ascribed to the proportional relationship of Iλ2, but a higher hot electron density because of the higher laser absorption and critical density. Higher electron density availed to strengthen the sheath electric field, and increased the proton acceleration.展开更多
This paper investigates the effect of Lorentz local field correction (LFC) on the propagation of ultrashort laser pulses in a para-nitroaniline molecular medium under resonant and nonresonant conditions by solving n...This paper investigates the effect of Lorentz local field correction (LFC) on the propagation of ultrashort laser pulses in a para-nitroaniline molecular medium under resonant and nonresonant conditions by solving numerically the full-wave Maxwell-Bloch equations beyond slowly-varying envelope approximation and rotating-wave approximation. The effect of the LFC is considerably obvious when pulses with large areas propagate in the dense molecular medium. In the case of resonance, the group velocity of the sub-pulses split from the incident pulse along propagation is severely decreased by the LFC, especially for the latest sub-pulse. However, in the case of nonresonance, the influence of the LFC on the temporal evolution of the pulse is less obvious and lacks homogeneity with an increase in incident pulse area, propagation distance and molecular density.展开更多
The random oscillations of many longitudinal modes are inevitable in both class –A and –B lasers due to their broadened atomic bandwidths. The destructive superposition of electric field components that are incohere...The random oscillations of many longitudinal modes are inevitable in both class –A and –B lasers due to their broadened atomic bandwidths. The destructive superposition of electric field components that are incoherently oscillating at the different longitudinal modes can be converted into a constructive one by using the mode-locking technique. Here, the Maxwell–Bloch equations of motion are solved for a three-mode class-B laser under the mode-locking conditions. The results indicate that the cavity oscillating modes are shifted by changing the laser pumping rate. On the other hand, the frequency components of cavity electric field simultaneously form the various bifurcations. These bifurcations satisfy the well-known mode-locking conditions as well. The atomic population inversion forms only one bifurcation, which is responsible for shaping the cavity electric field bifurcations.展开更多
文摘Antimatter has been generated in large quantities by the Lawrence Livermore National Laboratory Titan laser. The Titan laser is an ultra-intense laser system on the order of approximately 1020W/cm2 with pulse durations of roughly 1ps. With the Titan laser incident on a high atomic number target, such as gold, antimatter on the scale of 2 × 1010 positrons are generated. Roughly 90% of the generated positrons are ejected anisotropic and aft to the respective target. The mechanisms for the laser-derived positron antimatter generation involve electron interaction with the nuclei based on bremsstrahlung photons that yield electron-positron pairs as a consequence of the Bethe-Heitler process, which predominates the Trident process. Given the constraints of the current and near future technology space, a pulsed space propulsion configuration is advocated for antimatter derived space propulsion, similar in concept to pulsed radioisotope propulsion. Antimatter is generated through an ultra-intense laser on the scale of a Titan laser incident on a gold target and annihilated in a closed chamber, representative of a combustion chamber. Upon reaching a temperature threshold, the closed chamber opens, producing a pulse of thrust. The implication of the pulsed space propulsion antimatter architecture is that the energy source for the antimatter propulsion system can be decoupled from the actual spacecraft. In contrast to conventional chemical propulsion systems, which require storage of its respective propulsive chemical potential energy, the proposed antimatter propulsion architecture may have the energy source at a disparate location from the spacecraft. The ultra-intense laser could convey its laser energy over a distance to the actual spacecraft equipped with the positron antimatter pulsed space propulsion system. Hydrogen is considered as the propulsive fluid, in light of its low molecular weight. Fundamental analysis is applied to preliminarily define the performance of the positron antimatter derived pulsed space propulsion system. The fundamental performance analysis of the antimatter pulsed space propulsion system successfully reveals the architecture is viable for further evaluation.
文摘The fundamental performance analysis of an advanced concept ramjet propulsion system using antimatter is presented. Antimatter is generated by ultra-intense laser pulses incident on a gold target. The scientific foundation for the generation of antimatter by an ultra-intense laser was established in the early 1970’s and later demonstrated at Lawrence Livermore National Laboratory from 2008 to 2009. Antimatter on the scale of 2 × 1010 positrons were generated through a ~1 ps pulse from the Lawrence Livermore National Laboratory Titan laser that has an intensity of ~1020 W/cm2. The predominant mechanism is the Bethe-Heitler process, which involves high-energy bremsstrahlung photons as a result of electron-nuclei interaction. Propulsion involving lasers through chemical rather than non-chemical interaction has been previously advocated by Phipps. The major utilities of the ultra-intense laser derived antimatter ramjet are the capability to generate antimatter without a complex storage system and the ability to decouple the antimatter ramjet propulsion system from the energy source. For instance the ultra-intense laser and energy source could be terrestrial, while the ramjet could be mounted to a UAV as a propulsion system. With the extrapolation of current technologies, a sufficient number of pulses by ultra-intense lasers are eventually anticipated for the generation of antimatter to heat the propulsive flow of a ramjet. Fundamental performance analysis is provided based on an ideal ramjet derivation that is modified to address the proposed antimatter ramjet architecture.
文摘Photofission enables a unique capability for the domain of non-chemical space propulsion. An ultra-intense laser enables the capacity to induce nuclear fission through the development of bre- msstrahlung photons. A fundamental architecture and performance analysis of a photofission pulsed space propulsion system through the operation of an ultra-intense laser is presented. A historical perspective of previous conceptual nuclear fission propulsion systems is addressed. These applications use neutron derived nuclear fission;however, there is inherent complexity that has precluded further development. The background of photofission is detailed. The conceptual architecture of photofission pulsed space propulsion and fundamental performance parameters are established. The implications are the energy source and ultra-intense laser can be situated far remote from the propulsion system. Advances in supporting laser technologies are anticipated to increase the potential for photofission pulsed space propulsion. The fundamental performance analysis of the photofission pulsed space propulsion system indicates the architecture is feasible for further evaluation.
文摘Project New Orion entails a pulsed nuclear space propulsion system that utilizes photofission through the implementation of an ultra-intense laser. The historical origins derive from the endeavors of Project Orion, which utilized thermonuclear devices to impart a considerable velocity increment on the respective spacecraft. The shear magnitude of Project Orion significantly detracts from the likelihood of progressive research development testing and evaluation. Project New Orion incorporates a more feasible pathway for the progressive research development testing and evaluation of the pulsed nuclear space propulsion system. Photofission through the application of an ultra-intense laser enables a much more controllable and scalable nuclear yield. The energy source for the ultra-intense laser is derived from a first stage liquid hydrogen and liquid oxygen chemical propulsion system. A portion of the thermal/kinetic energy of the rocket propulsive fluid is converted to electrical energy through a magneto-hydrodynamic generator with cryogenic propellant densification for facilitating the integral superconducting magnets. Fundamental analysis of Project New Orion demonstrates the capacity to impart a meaningful velocity increment through ultra-intense laser derived photofission on a small spacecraft.
基金supported by Fundamental Research Funds for the Central Universities(Grant Nos.ZYGX2016J065 and ZYGX2016J066)
文摘A theoretical and numerical model of photon and electron–positron pair production in strong-field quantum electrodynamics(QED) is described. Two processes are contained in our QED theoretical model, one is photon emission in the interaction of ultra-intense laser with relativistic electron(or positron), and the other is pair production by a gamma-ray photon interacting with the laser field.This model has been included in a PIC/MCC simulation code named BUMBLEBEE 1 D, which is used to simulate the laser plasma interaction. Using this code, the evolutions of electron–positron pair and gamma-ray photon production in ultra-intense laser interaction with aluminum foil target are simulated and analyzed. The simulation results revealed that more positrons are moved in the opposite direction to the incident direction of the laser under the charge separation field.
文摘An electromagnetic solitary structure in attosecond regime is identified, costreaming with electron bunch. It is observed via nonlinear process of Self-Thomson backscattering of an ultra-intense laser from thin foil target. The process is termed as Self-Thomson Backscattering since the counter propagating electron sheets are generated by the drive laser itself. The radiation pressure acceleration model is considered for the interaction of a super-intense linearly polarized laser pulse with a thin foil in one-dimensional (1D) particle-in-cell (PIC) simulations.
文摘A pulsed space propulsion system using position antimatter to induce Deuterium-Tritium fusion through an ultra-intense laser incident on a gold target is conceptually presented through fundamental performance analysis. As opposed to traditional strategies positron antimatter is considered rather than antiproton antimatter. Positron antimatter can be produced by an ultra- intense laser incident on a high atomic number target, such as gold. The ultra-intense laser production of positron antimatter mechanism greatly alleviates constraints, such as requirements for antimatter storage imperative for antiproton antimatter. Also the ultra-intense laser and associated energy source can be stationary or positioned remote while the pulsed space propulsion system using position antimatter to induce Deuterium-Tritium fusion is in flight. Various mechanisms for antimatter catalyzed fusion are considered, for which the preferred mechanism is the antiproton hotspot ignition strategy. Fundamental performance analysis is subsequently applied to derive positron antimatter generation requirements and associated propulsion performance. The characteristics of the pulsed space propulsion system using position antimatter to induce Deuterium-Tritium fusion through an ultra-intense laser incident on a gold target imply a promising non-chemical propulsion alternative for the transport of bulk cargo to support space missions.
文摘A controllable strategy for eliciting nuclear fusion is presented through ultra-intenselaser derived positron generation by a conceptual first physics perspective. The capability to generate positrons on demand in a controlled manner through an ultra-intense laser incident on a high atomic number target, such as gold, is the intrinsic core to the foundation of controllable nuclear fusion. Positron antimatter generated from the periphery of the fusion fuel pellet provides the basis for initiating the fusion reaction, which is regulated by controlling the operation of the ultra-intense laser. A dual pulsed Fast Ignition mechanism is selected to achieve the fusion reaction. Based on first physics performance analysis the controllable strategy for eliciting nuclear fusion through ultra-intenselaser derived positron generation offers a realizable means for achieving regulated nuclear fusion. A future perspective of the controllable fusion strategy addresses the opportunities and concerns of a pathway toward regulated nuclear fusion.
文摘Based on the kinetic theoretical Vlasov-Poisson equation, a surface Coulomb explosion model of SiO2 material induced by ultra-short pulsed laser radiation is established. The non-equilibrium free electron distribution resulting from the two mechanisms of multi-photon ionization and avalanche ionization is computed. A quantitative analysis is given to describe the Coulomb explosion induced by the self-consistent electric field, and the impact of the parameters of laser pulses on the surface ablation is also discussed. The results show that the electron relaxation time is not constant, but it is related to the microscopic state of the electrons, so the relaxation time approximation is not available on the femtosecond time scale. The ablation depths computed by the theoretical model are in good agreement with the experimental results in the range of pulse durations from 0 to 1 ps.
基金the University of Tennessee Research Foundation and a grant from the National Natural Science Foundation of China(51575016).
文摘Ultra-short laser pulses possess many advantages for materials processing.Ultrafast laser has a significantly low thermal effect on the areas surrounding the focal point;therefore,it is a promising tool for micro-and submicro-sized precision processing.In addition,the nonlinear multiphoton absorption phenomenon of focused ultra-short pulses provides a promising method for the fabrication of various structures on transparent material,such as glass and transparent polymers.A laser direct writing process was applied in the fabrication of high-performance three-dimensional(3D)structured multilayer microsupercapacitors(MSCs)on polymer substrates exhibiting a peak specific capacitance of 42.6 mF·cm^-2 at a current density of 0.1 mA·cm^-12.Furthermore,a flexible smart sensor array on a polymer substrate was fabricated for multi-flavor detection.Different surface treatments such as gold plating,reducedgraphene oxide(rGO)coating,and polyaniline(PANI)coating were accomplished for different measurement units.By applying principal component analysis(PCA),this sensing system showed a promising result for flavor detection.In addition,two-dimensional(2D)periodic metal nanostructures inside 3D glass microfluidic channels were developed by all-femtosecond-laser processing for real-time surfaceenhanced Raman spectroscopy(SERS).The processing mechanisms included laser ablation,laser reduction,and laser-induced surface nano-engineering.These works demonstrate the attractive potential of ultra-short pulsed laser for surface precision manufacturing.
基金The authors gratefully acknowledge support by the Graduate School in Advanced Optical Technologies(SAOT)of the Friedrich–Alexander-University of Erlangen–Nürnberg,and the Bayerisches Laserzentrum GmbH.
文摘Glass welding by ultra-short pulsed(USP)lasers is a piece of technology that offers high strength joints with hermetic sealing.The joints are typically formed in glass that is transparent to the laser by exploiting nonlinear absorption effects that occur under extreme conditions.Though the temperature reached during the process is on the order of a few 1000°C,the heat affected zone(HAZ)is confined to only tens of micrometers.It is this controlled confinement of the HAZ during the joining process that makes this technology so appealing to a multitude of applications because it allows the foregoing of a subsequent tempering step that is typically essential in other glass joining techniques,thus making it possible to effectively join highly heat sensitive components.In this work,we give an overview on the process,development and applications of glass welding by USP lasers.
文摘The objective of this work was to investigate the possibility of taper angle correction in cutting of complex micro-mechanical contours using a TruMicro ultra-short pulse laser in combination with the SCANLAB precSYS micro machining sub system. In a first step, the influence of the process parameters on the kerftaper angle of metallic alloys was systematically investigated without beam inclination. A set of base parameters was derived for the subsequent investigations. In a second step, the kerftaper angle was controlled by static beam inclination. In a third step, the same optics was used in its dynamic precession mode to fabricate micro-mechanical components of complex contours with perpendicular 0~ taper angles. It was found that taper angle adjustments of up to 7.5~ are possible with the used setup for cutting applications. Taper angle control is possible both in the static beam inclination mode and in the dynamic precession mode. The static mode could be interesting for contours with sharp inner radii and for achieving faster cutting times similar to results with fixed optics, but would require excellent synchronization of beam inclination and axis motion. The dynamic precession mode would allow an easier integration of the optics into a laser machine but will result in longer cutting times and limitations with respect to achievable inner radii.
基金supported by the Key Project of Chinese National Programs for Fundamental Research(973 Program)(No.2011CB808104)National Natural Science Foundation of China(Nos.11335013,11375276,11105234)
文摘Proton acceleration experiments were carried out by a 1.2× 1018 W/cm2 ultra-short laser interaction with solid foil targets. The peak proton energy observed from an optimum target thickness of 7 μm in our experiments was 2.1 MeV. Peak proton energy and proton yield were investigated for different foil target thicknesses. It was shown that proton energy and conversion efficiency increased as the target became thinner, on one condition that the preplasma generated by the laser prepulse did not have enough shock energy and time to influence or destroy the target rear-surface. The existence of optimum foil thickness is due to the effect of the prepulse and hot electron transportation behavior on the foil target.
基金the Ministerial Level Advanced Research Foundation (ABAQ440261)
文摘The dynamical progresses involved in ultra-short laser pulse ablation of face-centered cubic metals under stress confinement condition are described completely using molecular dynamics method. The laser beam absorption and thermal energy turning into kinetics energy of. atoms are taken into account to give a detailed picture of laser metal interaction. Superheating phenomenon is observed, and the phase change from solid to liquid is characterized by a destroyed atom configuration and a decreased number density. The steep velocity gradients are found in the systems of Cu and Ni after pulse in consequence of located heating and exponential decrease of fluences following the Lambert-Beer expression. The shock wave velocities are predicted to be about 5 000 m/s in Cu and 7 200 m/s in Ni. The higher ablation rates are obtained from simulations compared with experimental data as a result of a well-defined crystalline surface irradiated by a single pulse. Simulation results show that the main mechanisms of ablation are evaporation and thermoelastic stress due to located heating.
基金The authors gratefully acknowledge support by the Deutsche Forschungsgemeinschaft through the Grant Nos.Ho1691/8-1 I Li2713/4-1 | Schm2115/62-1,the Graduate School in Advanced Optical Technologies(SAOT)of the Friedrich-Alexander-Universitat Erlangen-Nurnberg and the QSIL GmbH Quarzschmelze Ilmenau.
文摘This paper focuses on the preparation of a new extended set of calibrations of cooling rate(fictive temperature)in fused silica determined by inelastic light scattering and its subsequent use to characterize the local cooling rate distribution in ultra-short pulsed(USP)laser modification.In order to determine the thermal history(e.g.cooling rate and fictive temperature)of fused silica,high-resolution inelastic light-scattering experiments(Raman and Brillouin spectroscopy)were investigated.Calibrations were performed and compared to the existing literature to quantify structural changes due to a change of fictive temperature.Compared to existing calibrations,this paper provides an extension to lower and higher cooling rates.Using this new set of calibrations,we characterized a USP laser modification in fused silica and calculated the local fictive temperature distribution.An equation relating the fictive temperature(Tf)to cooling rates is given.A maximum cooling rate of 3000 K min-1 in the glass transition region around 1200℃ was deduced from the Raman analysis.The Brillouin observations are sensitive to both the thermal history and the residual stress.By comparing the Raman and Brillouin observations,we extracted the local residual stress distribution with high spatial resolution.For the first time,combined Raman and Brillouin inelastic light scattering experiments show the local distribution of cooling rates and residual stresses(detailed behavior of the glass structure)in the interior and the surrounding of an USP laser modified zone.
基金supported by the Nuclear Industry Academician Fund, the National Natural Science Foundation of China (Grant No. 1220051312)Young Talents Fund of China National Nuclear Corporation (Grant No. FY212406000901)。
文摘Based on previously reported work, we propose a new method for calibrating image plate(IP) scanners, offering greater flexibility and convenience, which can be extended to the calibration tasks of various scanner models. This method was applied to calibrate the sensitivity of a GE Typhoon FLA 7000 scanner. Additionally, we performed a calibration of the spontaneous signal attenuation behavior for BAS-MS, BAS-SR, and BAS-TR type IPs under the 20±1℃ environmental conditions, and observed significant signal carrier diffusion behavior in BAS-MS IP. The calibration results lay a foundation for further research on the interaction between ultra-short, ultra-intense lasers and matter.
文摘After a half century of development, fiber laser has evolved from a concept to a great family penetrating into various fields of applications. This paper reviews the history and current development of fiber lasers, with topics covering both continuous wave and short pulse fiber lasers. Important issues such as the major rare earth dopants, fiber laser brightness, polarization effects, clad pumping technology, beam combination, mode locking and pulse shaping are discussed in this paper.
基金supported by the Key Project of Chinese National Programs for Fundamental Research(973 Program)(No.2011CB808104)National Natural Science Foundation of China(Nos.10834008,11105234)
文摘Proton acceleration induced by a high-intensity ultraviolet laser interaction with a thin foil target was studied on an ultra-short KrF laser amplifier called LLG50 in China Institute of Atomic Energy (CIAE). The ultraviolet laser produced pulses with a high-contrast of 109, duration of 500 fs and energy of 30 mJ. The p-polarized laser was focused on a 2.1 #m gold foil by an off-axis parabola mirror (OAP) at an incident angle of 45°. The laser intensity was 1.2× 1017 W/cm2. The divergence angle for proton energy of 265 keV or higher was 30°, which was recorded by a CR39 detector covered with 2 μm aluminum foil in the target normal direction. The maximum proton energy recorded by a CR39 detector covered with a 4 μm aluminum foil was 440 keV, and the proton energy spectrum was measured by a proton spectrometer. The ultraviolet laser acquires a relatively lower hot electron temperature, which can be ascribed to the proportional relationship of Iλ2, but a higher hot electron density because of the higher laser absorption and critical density. Higher electron density availed to strengthen the sheath electric field, and increased the proton acceleration.
基金supported by the National Natural Science Foundation of China (Grant No. 10974121)the National Basic Research Program of China (Grant No. 2006CB806000)the Open Fund of the State Key Laboratory of High Field Laser Physics(Shanghai Institute of Optics and Fine Mechanics)
文摘This paper investigates the effect of Lorentz local field correction (LFC) on the propagation of ultrashort laser pulses in a para-nitroaniline molecular medium under resonant and nonresonant conditions by solving numerically the full-wave Maxwell-Bloch equations beyond slowly-varying envelope approximation and rotating-wave approximation. The effect of the LFC is considerably obvious when pulses with large areas propagate in the dense molecular medium. In the case of resonance, the group velocity of the sub-pulses split from the incident pulse along propagation is severely decreased by the LFC, especially for the latest sub-pulse. However, in the case of nonresonance, the influence of the LFC on the temporal evolution of the pulse is less obvious and lacks homogeneity with an increase in incident pulse area, propagation distance and molecular density.
文摘The random oscillations of many longitudinal modes are inevitable in both class –A and –B lasers due to their broadened atomic bandwidths. The destructive superposition of electric field components that are incoherently oscillating at the different longitudinal modes can be converted into a constructive one by using the mode-locking technique. Here, the Maxwell–Bloch equations of motion are solved for a three-mode class-B laser under the mode-locking conditions. The results indicate that the cavity oscillating modes are shifted by changing the laser pumping rate. On the other hand, the frequency components of cavity electric field simultaneously form the various bifurcations. These bifurcations satisfy the well-known mode-locking conditions as well. The atomic population inversion forms only one bifurcation, which is responsible for shaping the cavity electric field bifurcations.